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ABSTRACT. Meshless approximations seem to be an appealing choice for simulating forming 
processes involving large transformations because they allows alleviating the mesh 
constraints. However, because the novelty of these techniques a lot of questions are today 
unresolved. One of these open problems is the treatment of incompressibility which as well 
known impose some restrictions on the choice of the approximation spaces. The accurate 
treatment of incompressibility is a key point in the simulation of forming processes because 
the plastic flow can be in fact considered as incompressible. This paper introduces the 
problematic as well as some possibilities for taking into account the incompressibility in the 
context of mixed formulations, making special emphasis in a kind of Hermite approximations.  

RÉSUMÉ. Les méthodes sans maillage semblent bien adaptées à la résolution de problèmes en 
grandes transformations, mais à cause de leur jeunesse quelques difficultés subsistent. Une 
de ces difficultés concerne la prise en compte de l’incompressibilité qui induit des contraintes 
sur le choix des espaces fonctionnels d’approximation. La prise en compte de 
l’incompressibilité est fondamentale dans le cadre de la simulation des procédés de mise en 
forme. Dans ce travail nous présentons la problématique liée à l’incompressibilité matérielle 
ainsi que différentes possibilités pour sa prise en compte dans le cadre des formulations 
mixtes, où des approximations de type Hermite sont particulièrement adaptées. 
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1. Introduction 

Meshless methods are an appealing choice for constructing functional 
approximations (with different degrees of consistency and continuity) without a 
mesh support. Thus, this kind of techniques seem to be specially appropriated for 
treating 3D problems involving large displacements, due to the fact that the 
approximation is constructed only from the cloud of nodes whose positions evolve 
during the material deformation. In this manner neither remeshing nor fields 
projections are a priori required. 

Other important point lies in the easy introduction of some known information 
related to the problem solution within the approximation functional basis. For this 
purpose, different reproduction conditions are enforced in the construction of the 
approximation functions. This approach has been widely used in the context of the 
moving least squares approximations involved in the diffuse meshless techniques 
(Nayroles et al., 1992) as well as in the element free Galerkin method (Belytschko et 
al., 1996).  

Meshless approximations seem to be an appealing choice for simulating forming 
processes involving large transformations because they allows alleviating the mesh 
constraints. However, because the novelty of these techniques a lot of questions are 
today unresolved. One of these open problems is the treatment of incompressibility 
which as well known impose some restrictions on the choice of the approximation 
spaces. The accurate treatment of incompressibility is a key point in the simulation 
of forming processes because the plastic flow can be in fact considered as 
incompressible. This paper introduces the problematic as well as some possibilities 
for taking into account the incompressibility in the context of mixed formulations, 
making special emphasis in a kind of Hermite approximations. 

2. Reproducing Kernel Particle Approximation 

The Reproducing Kernel Particle Method is based in the following 
approximation:  

 

( ) ( , ) ( )af x x s h f s dsφ
Ω

= −∫  [1] 

 
where h defines the size of the support of the kernel function, which approaches the 
delta distribution as 0h → . 

If one want to reproduce polynomials up to a certain degree the kernel function 
must be constructed in an appropriate manner. For the sake of simplicity we consider 
the 1D case and second degree reproducing conditions, which imply: 
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As usual kernel functions do not verify the reproducing conditions [2] (Liu et al., 

1995) proposed to introduce a correction in the form: 
 

( ) ( , ) ( , ) ( )af x C x x s x s h f s dsφ
Ω

= − −∫ ��� 

 
with the correction function given by: 
 

( , ) ( ) ( )TC x x s H x s b x− = − [4] 

 
where   
 

2( ) 1,  ( ),  ( )TH x s x s x s − = − −   [5] 

 

and the components of ( )b x  must be determined for verifying the reproduction 

conditions. 
 

The discrete form of Equation [3] results: 
 

( ) ( , ) ( , ) ( )a
J J J

J

f x C x x x x x h f xφ= − −∑  [6] 

 
with 
 

( , ) ( ) ( )T
J JC x x x H x x b x− = −   [7] 

 
Thus, the reproduction conditions result: 
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 [8] 

 
that can be written in the following matrix form: 
 

( ) ( ) ( ) ( , )  ( )T
J J J

J

R x R x H x x x x h b xφ = − −  
∑      [9] 

 
or  
 

( ) ( ) ( )R x M x b x=  [10] 

 

where R denotes the reproduction vector and ( )M x the moment matrix. Thus, it 

results: 
 

1( ) ( ) ( )b x M x R x−=  [11] 

 
and  
 

1

( , )

( ) ( ) ( ) ( ) ( , ) ( )

( ) ( )
J

Ta
J J J

J
C x x x

J J
J

f x H x x M x R x x x h f x

N x f x

φ−

−

= − − =

=

∑

∑

�����������

  [12] 

 
where ( )JN x  denote the approximation shape functions that do not verify the delta 

property.  

REMARK 1. — This procedure can be generalized for reproducing arbitrary functions 
related to the problem solution (Trunzler et al., 2005). 

REMARK 2. — In the 2D case the reproduction vector results 
2 21, , , , ,R x y x xy y =    for the same degree of reproduction. 

REMARK 3. — The integration weights are not present in Equation [6] because they 

are implicitly considered in the expression of ( )b x . 
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REMARK 4. — The trial and test functions related to the variational formulation of a 
generic problem can be approximated using the scheme [6] from which the discrete 
problem is derived as in the usual finite element method. However due to the non 
polynomial character of the kernel function richer integration rules must be 
considered.  

The main drawbacks related to this kind of discretization technique is the 
difficulty to impose essential boundary condition (the shape functions related to 
internal nodes don’t vanish on the domain boundary) as well as the difficulty to 
control the shape function support when the nodal distribution evolves significantly 
(as encountered for example in forming processes simulations). 

Moreover, when this kind of approximation is considered for treating 
incompressible media one must verify the LBB stability conditions which implies, 
when a mixed variational formulation is considered, richer approximation in the 
velocity or displacement fields than in the pressure one (which is in fact the 
Lagrange multiplier related to the incompressibility restriction).  

In the context of our former works, we have proved that by changing the 
reproduction condition (second degree for the richer field and first degree for the one 
related to the Lagrange multiplier) the derived approximation is not stable. The same 
conclusion was obtained by changing simultaneously the shape functions support. 
Specific strategies have been proposed for solving some kind of problems, as the 
Stokes one for example, but its generality is limited. For this reason we introduce in 
this paper richer approximations based on the use of Hermite-RKPA 
approximations.    

3. Efficient Hermite – RKPM approximations 

In order to derive a more general H-RKPA approximation, we consider (in the 
1D case for the sake of simplicity): 
 

( ) ( )
 ( )( )

a
JN

a
J

J

f x f x
C df xdf x

dxdx

φ
   
   =       

∑ [13] 

 
If we are looking for second degree reproduction condition, we can write: 
 

22

 
22

N
J J

J J

a bx cxa bx cx
C

b cxb cx
φ
   + ++ +

=    ++   
∑ [14] 

that implies: 
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or 
 

2 2

1 0 1 0

1   1  

2 2

N
T

J
J

J J

x x C

x x x x

φ
   
   =         

∑ [16] 

 
Defining now the reproduction matrix  
 

2

1 0

( ) 1

2

R x x

x x

 
 =    

[17] 

 
the correction matrix is expressed by: 
 

T TC H b= [18] 

 
with  
 

( )2

1 0

( ) 1

2( )
J J

JJ

H x x x x

x xx x

 
 

− = − 
 − − 

[19] 

 
Thus, from Equations [16] and [18] it results: 

 

( )   ( )   
N

T
J

J

R x R x H b M bφ = =  
∑ [20] 

 

which allows to compute b , 
-1  ( )b M R x= . Thus, we can finally write: 

 

T
( ) ( ) ( )

 ( ) ( )( )

a
J JN N

a
J J

J J

f x f x f x
b H Ndf x df xdf x

dx dxdx

φ
     
     = =           

∑ ∑ [21] 
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REMARK 5. — It is easy to verify that the derivatives involved in the previous 
expression are diffuse derivatives that can be employed in collocation discretization 
schemes but not discretization schemes operating on the variational formulation. 
However, usual collocation schemes using the nodes as collocation points lead to a 
rectangular discrete linear system, because there are several dof at each node. 

4. Numerical results 

4.1. Approximation tests 

In this section we analyze the approximation of the polynomials. Firstly, we 
consider an approximation with third degree of consistency, i.e.  
 

2

3 2

1    0

    1
( )

2

3

x
R x

x x

x x

 
 
 =
 
 
 

        
involving two degrees of freedom at each node, one related to the unknown field and 
the other one to its derivative. When the approximated polynomial has a degree 
lower or equal to the one considered in the reproduction conditions, that polynomial 
is approximated with the machine precision. Figure 1 depicts the approximated 
(stars) versus the exact (solid curve) solutions related to the polynomial: 
 

2 3( ) 5 5exactf x x x x= − +

Figure 1. Approximation of polynomial 2 3( ) 5 5f x x x x= − +  
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Figure 2 depicts similar results concerning the derivative.  

Figure 2. Approximation of the derivative of 2 3( ) 5 5f x x x x= − +  

As the polynomial and its derivative are exactly reproduced, the diffuse 
derivative corresponds to the exact one, which justifies the excellent accuracy 
obtained in the derivatives. Errors are of the order of the machine precision. 

Finally, we are analyzing the convergence of the approximation when a 

polynomial that cannot be exactly reproduced: 
4 5( )f x x x= − + . Figure 3 depicts 

the computed solution versus de exact one. 

Figure 3. Approximation of polynomial 4 5( )f x x x= − +  
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If we compute the approximation error using the L2 norm, we obtain fourth order 
convergence with respect to the log of the total number of degrees of freedom. 

4.2. Second order PDE 

In order to analyze the behavior of the H-RKPM approximation just defined 
when it is used for solving second order partial differential equation, we first 
consider the 1D problem defined in [0,1]: 

 
2

2
2

12 6
d f

x x
dx

= − + ���� ( 0) 0f x = = 	
� ( 1) 0f x = =  

 

whose exact solution results 
4 5( )f x x x= − + .  

 
The approximation is built from the reproduction matrix:  
 

2

1 0

( ) 1

2

R x x

x x

 
 =    

 

 
Figure 4 depicts de exact and the computed solution when 20 nodes are 

considered, each one involving 2 degrees of freedom: the field and its derivative.  

Figure 4. Computed (stars) versus exact (solid curve) solution 
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The convergence order obtained was only first order, significantly lower than the 
third order expected when the L2 norm is considered, may be induced by the 
numerical integration. 

REMARK 6. — The boundary conditions have been imposed by removing the rows of 
the linear system related to the first degree of freedom of the first and last nodes, 
imposing at its place the Dirichlet boundary conditions. If these conditions are 
imposed by using Lagrange multipliers the solution improvement is inappreciable. 

REMARK 7. — The variational formulation can be integrated with or without 
integration by parts. Obviously, due to the approximation continuity and derivability no 
integration by parts is required. In the case of integration by parts the boundary 
integrals must be considered because the test functions do not vanish on the domain 
boundary. In both cases the solution accuracy does not exhibit significant differences. 

REMARK 8. — When a regular distribution of quadrature points is used for 
integrating the variational formulation the shape function derivatives can be 
computed from the value of the shape functions at the integration points using finite 
differences. In practical applications the accuracy is not significantly degraded.  

REMARK 9. — When the variational formulation is considered, as argued previously, 
we can not use for defining the field derivative its diffuse derivative given by the 
second row of Equation [21]. 

REMARK 10. — This technique can be applied directly for solving fourth order PDE 
which requires the extra imposition of some field derivative on the domain boundary 
with either collocation or Lagrange multipliers.  

We consider now the 2D problem defined in [0,1]2:  

4f∆ = ����
2( 0, )f x y y= = �

2( , 0)f x y x= = �

2( 1, ) 1f x y y= = +
	
�

2( , 1) 1f x y x= = + � ���� ��	�� �����
 �� ����
 ��
2 2( , )f x y x y= + �

In this case the reproduction matrix results 
 

2

2

1   0   0

  1   0

 0   1
( , )

2 0

 

0  2

x

y
R x y

x x

xy y x

y y

 
 
 
 

=  
 
 
   

 
which has three nodal degrees of freedom: the unknown field and its first derivatives 
with respect to both space coordinates. The Dirichlet conditions are imposed, as 
previously, via collocation. Figure 5 depicts the numerical versus de computed 
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solutions. As both solutions coincide (at the machine precision) they are 
indistinguishable in the representation. 

Figure 5. Computed and exact solutions: both are perfectly superposed 

4.3. Accounting for incompressibility: the Stokes problem 

This approximation can be applied for stabilizing the discretization of the Stokes 
problem in [0,1]2: 

 

0

0

0

p
u

x
p

v
y

u v

x v

∂ + ∆ =∂
∂ + ∆ =∂

∂ ∂+ =∂ ∂

[22] 

 
whose variational formulation (without integration by parts) results:  
 

*

*

*
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 0

 0
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u u

x

p
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y
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p

x v

Ω

Ω

Ω

 ∂ + ∆ =  ∂ 
 ∂ + ∆ = ∂ 
 ∂ ∂  + = ∂ ∂ 

∫

∫

∫

[23] 
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u and v being velocity vector v  components. We consider the driven cavity problem 
which implies the following boundary conditions: 

 

2

( 0, ) (0,0)

( 1, ) (0,0)

( , 0) (0,0)

( , 1) ( ,0)

T

T

T

T

v x y

v x y

v x y

v x y x x

 = =


= =


= =
 = = −

[24] 

 
If all the unknown fields are approximated using standard RKPM with second 

degree of consistency, with a single degree of freedom by node, spurious oscillations 
are found in both the velocity and the pressure field. Figures 6, 7 and 8 depict both 
velocity components as well as the pressure field. 

Figure 6. x-component of the velocity field in the driven cavity problem 

Figure 7. y-component of the velocity field in the driven cavity problem 

These results were computed by using 15x15 nodes and 900 integration points 
uniformly distributed. 
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Figure 8. Pressure field in the driven cavity problem 

To avoid this spurious effects one could try to impose different degree of 
reproduction for both fields: second and first degrees for the velocity and pressure 
respectively. However, this alternative does not remove the instabilities [3]. The use 
of different support sizes of the shape functions is also inefficient [3]. For this 
reason, we analyze the behavior associated with the use of a Hermite-RKPM 
approximation, being the reproduction matrix for both velocity components: 

 

2

2

1   0   0

  1   0

 0   1
( , ) ( , )

2 0

 

0  2

u v

x

y
R x y R x y

x x

xy y x

y y

 
 
 
 

= =  
 
 
   

 
being the pressure approximated using standard RKPM, whose reproduction vector 
results:  
 

2 2( , ) (1, , , , , )
TpR x y x y x xy y  =   

 
which implies 3 degrees of freedom at each node for each velocity component, and a 
single degree of freedom at each node for the pressure field. Figures 9, 10 and 11 
depict the computed velocity and pressure fields. We can notice that the use of the 
H-RKPM allows stabilizing the discretization. The convergence order is only first 
order, possibly due to the numerical integration. 
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Figure 9. x-component of the velocity field in the driven cavity problem 

Figure 10. y-component of the velocity field in the driven cavity problem 

Figure 11. Pressure field in the driven cavity problem 
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5. Conclusions 

In this paper we have proposed and applied an original Hermite reproducing 
kernel particle approximation (H-RKPM) for solving second order PDE. The only 
interest of using this kind of approximation is the possibility to reduce significantly 
the size of the shape functions support. Even if the support is slightly higher that the 
inter-nodal distance, the reproduction order can be increased by increasing the 
number of nodal degrees of freedom (that are the successive field derivatives). 

However, its interest in mixed formulations that must verify the LBB stability 
condition is out of discussion. A centered formulation, as usually used in moving 
least squares framework, could be more suitable, simplifying the computational 
aspects and may be reducing the numerical errors. This is a work in progress. 
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