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ABSTRACT. We present in this paper a highly structured numerical method based on the 
employ of natural neighbour interpolation in a Galerkin framework. It employs an octree 
discretisation of the domain, thus being suitable for numerical simulations in voxelized 
domains, obtained after image processing, for instance, and medical image techniques in 
particular, with nearly no user intervention. The accuracy of the method and computational 
cost are also addressed in this paper. We present some examples that illustrate this 
behaviour. 

RÉSUMÉ. Dans cet article, nous présentons une méthode numérique fortement structurée, 
basée sur l’emploi de l’interpolation de voisinage naturel dans un cadre de Galerkin. Cette 
méthode utilise une discrétisation « octree » du domaine. Grâce à cela, elle est acceptable 
pour des simulations numériques sur des domaines voxélisés qui sont obtenus à partir de 
traitements des images, par exemple, dans les techniques des images cliniques en particulier, 
où l’intervention de l’utilisateur existe à peine. La précision de la méthode ainsi que son coût 
informatique sont discutés dans cet article. Nous présentons quelques exemples illustrant ce 
comportement. 

KEYWORDS: Natural Neighbour interpolation, structured meshes, octree, voxels, R-functions. 
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1. Introduction 

The tremendous success of meshless methods in the last decade has also 
generated a renewed interest on methods based on highly structured meshes 
(Belytschko et al., 2003; Nagashima et al., 2002). This is partly due to the vast effort 
paid in the study of imposition of essential boundary conditions or numerical 
integration, for instance. There are, actually, some problems where the presence of a 
mesh, and even a highly structured mesh, reports many advantages. Examples of 
these problems can be those in which the data are obtained after some kind of image 
processing, such as biomedical simulation of living organs, for instance. 

Surprisingly, meshless methods have helped to improve these structured methods 
in an important way and many of the traditional “meshless” techniques have been 
applied to these highly structured methods. In some sense, in addition, methods that 
lye in a highly structured mesh that is generated automatically can be considered as 
“meshless”, since they avoid the burden associated to the generation of a mesh, and 
this is performed in a process transparent to the user. These are among the first 
characteristics of a meshless method. 

There exist other reasons for the study of methods based on a highly structured 
mesh, such as the speed of computation, for instance. The regularity of the mesh can 
sometimes help to improve the performance of the method. Some methods have been 
developed in order to take advantage of the voxel structure of image data, for instance. 

 

Figure 1. A finite element mesh of a human femur obtained after treatment of the 
image so as to convert each voxel into a finite element 
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In (van Rietbergen et al., 1996) for instance, a method is developed that converts 
each voxel of a medical image (see Figure 1) into a perfectly hexahedral finite 
element. This generates a mesh of finite elements of equal shape, size and 
orientation, whose regularity can be exploited to speed-up computations. The 
obvious drawback of this technique is the non-conformity of the mesh to the actual 
geometry of the domain. Since this technique was employed to analyze bone tissue at 
a micro scale, this lack of conformity was considered to be not much important. 

Another important drawback of this kind methods is that no refinement of the 
mesh can be done. Of course, higher-order FE can be employed, but only if the 
whole mesh is refined. Otherwise, the so-called hanging nodes will appear. 

In this paper we study the possibility of developing a new method that could 
exploit the advantages of the highly structured character of the mesh, while keeping 
the conformity of the mesh to the domain and incorporating the possibility of mesh 
refinement, even in the presence of hanging nodes. The key ingredients of this 
methods are the following: 

– we employ natural neighbour interpolation so as to be able to keep the 
conformity of the method in the presence of hanging nodes that appear in the 
process of mesh adaptive refinement; 

– data is stored in a binary tree (octree) structure in order to perform fast 
natural neighbour search; 

– essential boundary conditions are imposed through R-functions, a special 
class of functions that vanish at the essential boundary. These functions are 
extremely easy to construct. 

The outline of the papers is as follows. In Section 2 we review the basics of 
natural neighbour interpolation. In Section 3 we describe the data structure of the 
method, as presented for the two-dimensional counterpart of this method in 
(Laguardia et al., 2005). In Section 4 we describe the implemented enforcement of 
essential boundary conditions and, finally, in Section 5 we include some examples of 
the performance of the method. 

2. Natural neighbour Galerkin methods 

2.1. Natural Neighbour interpolation 

The NEM (Sukumar et al., 1998; Cueto et al., 2003) is a Galerkin procedure 
based on the natural neighbor interpolation scheme. This interpolation scheme is the 
key ingredient of the method here proposed. It relies on the concepts of Voronoi 
diagrams and Delaunay triangulations (see Figure 2), to build Galerkin trial and test 
functions. These are defined as the Natural Neighbor coordinates of the point under 
consideration, that is, with respect to Figure 3, the value in the point x of the shape 
function associated with the node 1 is (Sibson, 1980; 1981). 
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Figure 2. Delaunay triangulation and Voronoi diagram of a set of points 

In addition, the NEM has other interesting properties such as linear consistency 
and smooth shape functions. These functions are dependent on the position and 
density of nodes, leading to standard FE constant strain triangle shape functions, 
bilinear shape functions or rational quartic functions in different situations 
(see Figure 4 for a typical shape function). These properties permit an exact 
reproduction of linear displacement fields on the boundary of convex domains. 
 

Figure 3. Definition of natural neighbour coordinates 
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Figure 4. Typical Sibson shape function (courtesy N. Sukumar) 

2.2. Governing equations 

The work here addressed is concerned with the problem of linear or nonlinear 
elastostatics. Consider an open, bounded domain Ω∈R3 with boundary Γ=δΩ. The 
equilibrium equations reads: 

0b� =+∇·  in Ω [2] 

where σ represents the Cauchy stress tensor and b the vector of body forces. The 
stress-strain relationship is given by: 

u�
s∇:C=  [3] 

where us∇  represents the symmetric part of the displacement gradient or, 
equivalently, the small strains tensor and C the Hooke tensor. 

Boundary conditions are: 

t�� =  in Γt [4] 

uu =  in Γu [5] 

where Γu∪Γt=Γ and Γu∩Γt=∅, as usual. n represents the outward normal vector to 
the surface of the solid and over-lined magnitudes represent prescribed values. 
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Let { }uH Γ=∈=∈ in  | uuuu 1S  and { }uH Γ=∈=∈ in0|1 vvv δδδ V . The 

weak form of the boundary-value problem can then be stated as: 

∫∫∫
ΓΩΩ

Γ+Ω=Ω
t

dddss tvbvuv ··::)( δδδ ∇∇ C , �∈∀ vδ  [6] 

The discrete form of the problem [6] is obtained by considering suitable 
approximations of u and δv of the form: 

∑=
I

IiI
h
i uu φ  [7] 

∑=
I

IiI
h
i vv δφδ  [8] 

where φI represent the before-mentioned Sibson shape functions, so as to obtain a 
discrete form of the problem Ku=f. 

3. Data structure of the method 

In order to both speedup computations and to link mechanical models to 
geometric models, we have implemented our method in an octree (i.e., a three-
dimensional binary tree) structure. 

3.1. Description of the model’s geometry 

In our method, a model can be described in either voxel or STL formats. STL, or 
stereolithography, format is a file containing a list of triangles describing the surface 
of the model. 

In the first case, the surface of the model could be extracted by taking into 
account the associated voxel’s values of the variable of interest (typically the value 
of density for hard tissue models, for instance) through the marching cubes method 
(Lorensen and Cline, 1987.) This method is based on the assumption that a given 
surface can cut a cube in a limited number of patterns (only 15 in three-dimensional 
cases, see Figure 5). 
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Figure 5. Marching cubes algorithm 

In the STL format, each triangle is assumed to verify the marching cubes 
assumption. In the case of more than one triangle cutting a given cube, the surface is 
simplified so as to verify the before mentioned assumption. 

Whatever the method employed, model’s geometry will be embedded in a cube 
and recursively subdivided by recursion, thus generating an octree. The term octree 
(Samet, 1984) refers to a class of hierarchical data structures based on the principle 
of recursive decomposition of space.  

Following (Samet, 1984), octrees can be classified attending to: 

1) the type of data (in this particular instance, regions of the space); 

2) the principle guiding the decomposition process and 

3) the resolution, that can be variable or not. 

We begin with a cubical volume and recursively subdivide it into eight congruent 
disjoint cubes, called octants, until a prescribed level of refinement is reached 
(in STL format) or an uniform cube is obtained (if we employ a voxel model), see 
Figure 6. In our case, the decomposition process can be guided, for instance, by the 
curvature of the curve representing the boundary, if the STL format is preferred. One 
of the big advantages of using an octree structure for representing the domain is that 
the vast majority of the operations needed for a given cell is performed in a recursive 
manner, see (Laguardia et al., 2005) for further details. In Figure 7 an example of a 
simplified octree description of a human tibia and fibula is shown. 
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Figure 6. Octree decomposition of the space and associated data representation 
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Figure 7. Octree description of the human tibia and fibula. Left, the faceted 
description of the geometry. Right, octree model. Only the (at least partially) filled 
cubes are shown 

3.2. Interpolation within an octree 

One of the main difficulties of establishing a finite element-like interpolation 
scheme within an octree structure is the presence of hanging nodes, i.e., there are 
some nodes that do not verify conformity of the approximation. 

In the work here presented, the proposed approach takes benefits from the 
limited number of neighbouring patterns that are possible for a given two- or three-
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dimensional cell, if the level difference between neighbouring cells is controlled. It 
has been demonstrated (Klaas and Shephard, 2000) that an octree enhanced by 
storing neighbour information at each octant is able to provide neighbour 
information in constant time if the level difference between neighbouring octants is 
controlled. In this work, this difference has been set to one. 
 

 
Figure 8. Possible nodal neighbourhood (3d) for a cell surrounded by other sixt of 
equal or lower level. Only two examples are presented: uniform refinement (left) 
and one of the neighbouring cubes refined (right) 

Thus, given the limited number of possible neighbourhood patterns, it is 
advantageous to store shape functions values at the integration points rather than the 
element stiffness matrix itself. This also allows us to employ non homogeneous 
materials. Consider the possible neighbouring patterns for a given octree cell, 
surrounded by other six of the same or higher level, as shown in Figure 8. If the 
considered cell is surrounded by lower-level cells, similar patterns can be developed. 
The number of shape function’s values to be stored depends, obviously, on the 
quadrature scheme used. Note that the consideration of the possible refinement of 
corner cells is not necessary, since they do not neighbour interior points of the cell 
(see Figure 8). This reduces the total amount of cases to be considered. In three-
dimensional cases, the number of possible neighbourhood patterns is higher than 
in 2d. In this case, one recently developed possibility is to implement natural 
neighbour (Sibson) interpolation in hardware (Park et al., 2005). 

4. Imposition of boundary and interface conditions 

4.1. Essential (Dirichlet) boundary conditions 

In a non-conforming mesh, such as the octree meshes developed so far, the issue 
of imposing essential and interface boundary conditions is of utmost importance. In 
our method we enforce these conditions through a particular instance of the so-called 
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characteristic function method (Babuška et al., 2003). If the domain possesses a 
smooth boundary Γ, there exists a function ω such that 

0>�  in Ω [9] 

0=�  on Γ=∂Ω [10] 

0>≥∇ α�  on Γ=∂Ω [11] 

Then, it is possible to construct an approximation of the solution of the form: 

∑+=
Γ

i
ii

u
a�uu φ  [12] 

that obviously verifies essential boundary conditions. The problem then lies in 
finding such a function ω for a general boundary. In (Rvachev et al., 1995) a 
particular method to construct a particular family of functions ω, called R-functions, 
is developed. 

R-functions behave like a toolkit to construct these functions and are used in this 
work to construct the characteristic functions so as to verify essential boundary 
conditions. An R-function is a real-valued function whose sign is completely defined 
by the sign of its arguments. Such functions encode boolean operations that help to 
construct combinations of simple, basis, functions. For instance, consider the 
following functions (Shapiro and Tsukanov, 1999), that behave like the logical 
operators and and or: 

)( 22 yxyxyx +−+≡∧  [13] 

)( 22 yxyxyx +++≡∨  [14] 

Consider, for instance, the domain shown in Figure 9. The domain is defined by 
means of a set of six inequalities of the general form 

11 yyf ≥=  [15] 

22 xxf ≥=  [16] 

33 yyf ≥=  [17] 
�  

These inequalities can be combined to render a definition of the whole domain as: 

654321 )( ffffff ∧∧∧∧∨=Ω  [18] 
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Figure 9. Definition of the boundary of a given domain as a set of inequalities 

(a) 

 
��� 

Figure 10. Example of arbitrary essential boundary and resultant R-function. (a) A 
two-dimensional example, (b) R-function vanishing at the boundary of a sphere in 
3D 

For non-homogeneous boundary conditions of the type 

0ϕ=
Γu

u  [19] 
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a function ϕ such that trace(ϕ)=ϕ0 can be added to the solution for the homogeneous 
problem. Assuming that ϕ0 is approximated by piece-wise linear functions along the 
boundary, the function ϕ can be obtained by means of 

∑ ∏
∑ ∏

= ≠=

= ≠==
m

i

m

ijj j

m

i

m

ijj ji

1 ,1

1 ,1

ω

ωϕ
ϕ  [20] 

where ϕi represents the prescribed function at each portion of the boundary and ωj 
represents an R-function that vanishes along the boundary. m represents the number 
of segments in the boundary.  

As can be seen in Figure 10, R-functions behave like an approximated distance 
function and this fact can also be exploited to impose interface conditions in piece-
wise homogeneous domains, for instance, through the Partition of Unity method. 

4.2. Natural (Neumann) boundary conditions 

The imposition of inhomogeneous natural boundary conditions deserves a special 
treatment when meshes not conforming to the domain are employed (see Figure 11). 
For cells cutting the boundary with non-homogeneous boundary conditions, the term 

∫
Γ

Γ
t

dtv·δ in Equation [6] should be integrated separately and added to the right-hand 

side (or force) vector. For this we firstly approximate the boundary facet (segment in 
2d) by an appropriate set of triangles (or portion of the planar straight line graph 
in 2d −slash line in Figure 11−) and perform a three-point Gauss numerical 
integration on each triangle. 

Figure 11. A cell cut by the natural boundary 

The integration of the weak form at cells with homogeneous natural boundary 
conditions is straightforward, as proven in (Belytschko et al., 2003). It is only 
necessary to integrate the weak form only in the portion of the cell within the 
domain. 
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5. Numerical results 

5.1. Bi-material beam under bending 

To show the performance of the proposed method we consider here a two-
dimensional example of refinement. This example is composed by a bi-material 
beam subjected to bending. In this case, D = 4 and L = 10, P = 1000. Two distinct 
regions are considered in the beam, with Young's modulus E1 = 10000 and  
E2 = 1000000 respectively, for the right and left parts. 

Figure 12. Geometry of the beam 

In this case, non-uniform quadtree representations were chosen, as shown in 
Figure 13. Note that the proposed discretisation was non-conforming to the 
boundary. A sequence of refined meshes was implemented and analysed in order to 
check the convergence of the method. 

Figure 13. Quadtree models for the beam problem 
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The convergence for this problem is shown in Figure 14, where it can be noticed 
that it is similar to that of the standard NEM procedure. 

Figure 14. Convergence plot for the beam problem 

Figure 15. Computer time for the standard and quadtree versions of the method 

In Figure 15 the computer savings of the proposed method are shown. For a 
deeper insight in this topic, the interested reader is referred to (Laguardia et al., 
2005). 
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5.2. Three-dimensional hollow cylinder under pressure 

To prove the accuracy of the proposed method in three-dimensional problems we 
study the problem of a hollow cylinder under internal pressure, which is classic in 
the literature. The analytical solution to this problem is: 







−

−
= 2

2
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2
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Figure 16. Octree model for the cylinder under pressure problem 
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Where Ri and Re represent, respectively, the inner and outer radii of the cylinder 
and p the applied pressure. The problem is in fact two-dimensional and reproduces a 
state of plane strain. In our case, both ends have been fixed in the axial direction to 
take into account the plane strain assumption. Owing to the symmetry, only one 
quarter of the cylinder has been modelled, as shown in Figure 16. 

The obtained accuracy for this problem is entirely similar to that of the standard 
NEM. The rate of convergence for this particular problem is shown in Figure 17, 
together with the obtained CPU times for standard and octree-based NEM models 
for this problem, in Figure 18. 

Figure 17. L2 error norm for the hollow cylinder problem 

Figure 18. CPU times obtained for the standard (dark line) and octree-based (light 
line) model for the cylinder problem 
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5.3. A biomechanical analysis of a pig’s heart 

As an example of the application of the proposed method to real biomechanical 
problems we consider the analysis of the stress in a pig’s heart under internal 
pressure. The geometry of the heart (see Figure 19) was provided by (Plaza, 2005) in 
the form of a CAD file. After processing, it was converted to a simplified STL 
format (Figure 20). 

 

Figure 19. View of the pig’s heart 

The geometry was processed in order to generate an octree description of the 
heart, shown in Figure 21.  

As boundary conditions we considered the heart clamped at auriculoventricular 
and semilunar valves. Ventricles are under pressure. In the left ventricle we applied 
0.8 kPa and 0.16 kPa for the right one. 

Although the actual structure of the heart tissue is fibrous and highly anisotropic, 
we considered, as a first approximation, a linear elastic, homogeneous and isotropic 
material. A deep discussion about these assumptions and a comparison with some 
more elaborated models can be found in (Plaza, 2005). In this case, Young’s 
modulus is estimated to be around 15Kpa, being Poisson’s ratio 0.3. 

In Figure 22 a contour plot of the displacements of the heart walls is shown. The 
obtained displacements are slightly higer than the corresponding ones for a neo-
hookean model, see (Plaza, 2005). In the before-mentioned work, maximum 
displacements of 2.25 mm were predicted for a linear elastic material, vs. 1.79 mm 
for a neo-hookean model. In our case, maximum displacements of 2.45 were 
obtained. 
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Despite the obvious limitations of the model, mainly from the material’s point of 
view, results are in qualitatively good agreement with other, previous, more 
sophisticated models employing finite element techniques. Note that the proposed 
technique does not impose any limitations on the constitutive equations employed 
for the particular material being considered. 

Figure 20. STL description of the geometry 

Figure 21. Octree model of the heart 
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Z
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Figure 22. Module of the displacements at the heart’s walls 

6. Conclusions 

In this paper we present a novel technique that is able to deal with extremely 
complex geometries arising from image data, either in voxel or STL formats. It is 
based on the employ of not necessarily uniform octree meshes that are conforming, 
in spite of the presence of hanging nodes. This is achieved through the use of natural 
neighbour interpolation, which renders the approximations continuous. 

The method employs R-functions to enforce essential boundary conditions and 
principles arising from PU-methods to deal with holes and natural boundaries. It has 
been implemented so as to be able to store in memory many of the necessary values, 
thus having important savings in computer costs. 

Accuracy of the method has demonstrated to be similar to that of the standard 
NEM, thus slightly better than that of the FEM. 
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