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ABSTRACTGeophysical problems as forced-fold evolution and fauttppigation induce large
deformations and many localisation. The continuum medsahbes not seem the more appro-
priate for their description and it appears more interestito represent the media as initially
discontinuous. To face both phenomena, a non smooth DésEtement Method is used. Geo-
physical structures are considered as collection of rigiskd which interact by cohesive fric-
tional contact laws. Numerical geophysical formations ewerelated to mechanical properties
of structures through observation and mechanical analysis

RESUME.Les probléemes géophysiques tels que I'évolution des pla mbpagation de failles
induisent de grandes déformations et de nombreuses latalis. Il apparait donc difficile de
décrire le probleme avec les outils de la mécanique des umili®ntinus, et il est donc préfé-
rable de représenter la structure comme initialement éwies deux phénomeénes sont étudiés
via une approche non réguliére par éléments discrets. LestsitieEgéologiques sont considé-
rées comme des collections de particules dont les intenasti€épondent a des lois de contact
cohésif frottant. Les observations des structures géophgs numériques sont corrélées aux
propriétés des structures au travers d’'une analyse mécaniq

KEYWORDSdiscrete element method, non smooth mechanics, granutariaafault, fold.
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1. Introduction

Many mechanical, tribological and geophysical problenisdodifficulties such as
large deformations, fracture, multiple localisations @awv Numerical tools have been
developed and adapted to fill the lack of knowledge and taghiriformations in fields
where experimental approaches are limited (for examplaaobinterface measures).
If for some applications efficient numerical methods arel wedntified, there exist
some problems where no well suited methods have been diptietermined. It is
the case of two geophysical phenomena: propagation fadiftcaned-fold evolution.

Using the continuum mechanics approach, the standardeHiadment Method
(FEM) is not really appropriate to simulate this kind of pberena. Kinematic and
mechanical model used can only predict the zone of loc@isand not represented its
evolution especially when large deformations occur. Itésdy due to the continuous
description of the model. Among the improvements of thedaath method, the well
known X-FEM (Belytschkeet al., 2000) allows to describe localisation phenomena
such as fracture but efficient re-meshing techniques mustbd to follow fracture
with accuracy and preserve CPU time. A solution could be donith mesh-less ap-
proaches such as the Natural Element Method (NEM) (Yvoehat, 2005) which
appears as a good alternative to extended FEM, but as thepsene, it seems dif-
ficult to observe mixing which occurs in forced-fold evoartior surface movements
created by the fault propagation such as avalanches.

Discrete Element Methods (DEM) which consider the mediaulg éliscontinu-
ous appear the well suited to describe these phenomena. WWaeaontinuum me-
chanics is not the more appropriate to describe the prohiteappears more inter-
esting to represent the media as initially discontinuous@mpute the evolution of
each element. Moreover when the medium heterogeneity hesraysnfluence on its
evolution (it is the case of the previous geophysical pnaislg it is important to deal
with the discontinuous feature of the structure.

The aim of the paper is to present the adaptation of granu&hamical tools to
the simulations of fault propagation and forced-folds tlgio a mechanical analysis.
These numerical investigations on geophysical phenonrermesented following the
preliminary study presented in (Renouf, 2004). In the $ac#, the geophysical con-
text and related numerical works are exposed. Different BEMrently used in the
simulation of granular material are exposed (contact fdatmn and time-integration
scheme) in the Section 3. A focus on the held method and tkeaiction law used
is presented in Section 4. In the Section 5 dedicated to gesigdi applications, fold
formation and fault propagation problems, are respegtisldied in Subsection 5.2
and 5.3 and finally the Section 6 concludes the paper.

2. Geophysical context

Earth deformations are the result of motions of large cemiial plates. Their
guasi-static motion produces mechanical solicitatiorthsas traction, compression
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and shear. Combinations of theses solicitations lead aéahth time scale to the
occurring of geophysical structures such as faults angfolthese structures present
a dynamical character in regard of their time evolution. iTHeamatic consequences
on the human environment (Chaatial, 2005) motive a large number of studies to
understand their mechanism and to prevent geophysicaitdisa

Initial researches result first from in-situ and post-martebservations of earth
deformations. Consequently explanations about the istbstructures lay on hy-
pothesis which can be verified with difficulty. The direct sequence is the motiva-
tion of more accurate researches to understand and to negedlde evolution of the
structure. In this aim, experiments on analogue modeladboxmodel) have been
developed (Hubbert, 1951). It consists on the reprodudaifathe studied geophys-
ical structure at the laboratory scale. Dry layers of samdlaid down a large box.
Layers can have or not the same mechanical properties. Ttemal solicitations
are applied on the structure (compaction, shear...). Atjhadeformations similar to
the ones observed in the crust can be reproduced with agcarslogue models are
often limited in the range of problems that they can exangmnar(ular internal friction
coefficients for example (Lohrmarat al,, 2003)).

Fault propagation and forced-folds have been modellediingmatically (Hardy
et al, 1999) and mechanically. In spite of the fact that the mogetvide some
feasible behaviour, they have some limitations. On the amelthe kinematic models
use idealised velocity distributions with or without menoltal validity. On the other
hand mechanical models suppose an idealistic rock behaamnalloading conditions
during folding and do not model fault explicitly.

Some models use FEM for a greater flexibility (Cardetal., 2003; Exadaktylos
et al, 2003) and consider a wider range of rheologies and bourwengitions. How-
ever, these methods have some difficulty in modelling largeunts of deformations
accurately, especially the succession of faults observath@alogue models. Usually
in geophysical applications, FEM models are built aroundratiouity assumption at
some scale of the model that prevents the elements fromagegpand makes large
amounts of strain localisation very difficult.

DEM models have been used to study fold or fault (Burbieigal., 2002; Finchet
al., 2003). Although DEM models take into account structureaiinuity, the ones
used lead to crystalline structures and have few partiolebserve with accuracy fold
phenomena. The interest of these works is underlined by mnezent investigations
on geophysical problem. Different results presented im¢®Ré& 2004) underline also
the feasibility of the non smooth approach. In (Haetyal, 2006) more complex
investigations are performed on the influence of the anglbeopropagation fault.

3. Discrete Element Method

Discrete Element Methodsppear as the most appropriate tool to represent the
evolution of a media considered as a collection of partidRigid multi-body systems
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in virtual reality (Renoutt al, 2005), third-body particle flows in rheology (Fillet
al., 2005) or granular material in soil mechanics or geophy&itgeanget al,, 2005)
refer to the same concept of particle systems. This diyeo$iapplication fields and
related topics motive the permanent improvements of DEMs.

Their developments start with the pioneer works of Cunddlbwleveloped the
Distinct Element Metho{lCundall, 1971). Initially used to simulate rock systerhg, t
method is extended to the simulation of granular media (@lietial, 1979). Contact
interactions are described by compliant model related tdanissible numerical pen-
etration. Then, improvements of the method are proposeHilshifio, 1988) with the
so-calledGranular Element MethadAn incremental formulation, an iterative process
and a convergence criterion are added to respect the majigation not always sat-
isfied in the initial method. The GEM has been used for stuffemint deformation
modes in plasticity (Kishinet al,, 2001).

An other contribution to DEMs is a variant of the Cundall aggoeh, calledviolec-
ular DynamicgMD) (Allen et al, 1987) which consists in simulating the dynamics of
atom and molecule in order to deduce macroscopic prop@tige matter. As Cun-
dall method and GEM, MD resorts to compliant model to degcdbntact between
particles. The motion equations are not always satisfietheuigimulation time step is
kept small enough to ensure integration scheme stabilityreldver, some numerical
artefact can be added, such as numerical viscosity, toadht energy evolution in
the system.

The Contact Dynamicsnethod initially developed by (Moreau, 1988) based on
the convex analysis framework appears as a different appr@ontrary to compliant
models, no regularisation scheme is used to describe lgamieractions: the non
smooth contact feature is preserved according to an inhfdichulation of the global
contact problem solved classically using a projected bémiting algorithm. Further
works lead to the extension of the method to multi-contanugitions of collections
of deformable bodies (Jean, 1999) and the method becomes-itedledNon Smooth
Contact Dynamicsnethod (NSCD). Different strategies must be used to solee th
implicit contact problem: the bi-potential method (de Saetal, 1991), the Newton’s
method (Alartet al, 1991), the Conjugate Projected Gradient algorithm (Réebu
al., 2004), etc.

If the contact description appears often as the most impbprt of DEMs, con-
tact detection and time integration are both two importdrages in this scheme. If
the contact detection is identical for all the DEMs, the tim&gration scheme de-
fers from a method to an other. In smooth DEM, since the comtgularisation
requires small time step, second order schemes are adapedear method for
MD (Allen et al,, 1987), a Newmark scheme for Cundall’ DEM and GEM or a Verlet
scheme (lordanoft al,, 2002). In non smooth DEM, especially when dense granular
assemblies are considered, shocks can be occurred. It setrappropriate to deal
with the second time derivative of the configuration parametspecially when large
time step are used. A non smooth DEM may work with large tinep stnd a first
order scheme as Euler scheme or second order one as thenitad is required.
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The Non Smooth Contact Dynamics approach is well adaptedhtaltaneous
multi-contact problems occurring for instance in grantillaws. It is quite different
from the Event Driven (ED) techniques (Baraff, 1993; Psift al., 1996) for which
the impacts are isolated in time. After catching the impiaogf high order scheme are
used between two impacts to describe with more accuracwtiieten of particles.

Consequently, the comparison of the different numericpt@gaches has to account
for the context of application to provide pertinent conauas in agreement with ex-
perimental results (Laniest al,, 2000; Renouét al, 2005; Renouét al.,, 2005).

4. Contact Dynamics framework
4.1. Local formulation

The approach used in the present paper is based on the CBytaatic frame-
work developed by (Moreau, 1988) and its extensions prapbgdJean, 1999). The
local variables, defined in the local frames, are preferoeithé global ones: the lo-
cal relative velocities,, («, index of the contact number) are concatenated in a large
vectorv, the local impulses,, in a vectorr. The corresponding global variables are
the generalised velocities of the system (collection ofieg)dy, first time derivative
of the configuration parametqr and the contact forcéR applied to all the bodies.

(b)

Figure 1. Representation of: (a) the global and local frames and (l)lthear map-
ping

Local variables are related to global ones via the lineargimadt which transfers
informations computed at the contact points to bodies iniaxinlt can be summarised
by the following system:

(1]

R = Hr
v = H*q

whereH* is the transpose dfi. Then both mapping contain all local informations
such as the local frame defined at each contact point.
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4.2. Global formulation

Since in multi-contact systems, shocks are expected, tloeiyemay be discon-
tinuous and the acceleration can not be defined as the usieddséme derivative of
q. Consequently the classical equation of motion is refoatad in terms of differen-
tial measure equation:

Mdg = F<" (¢, q, §)dt + dR,, 2]

whereM represents the inertia matrix aBd*? the external forcesit is the Lebesgue
measure on the real spaRe dq is a differential measure representing the accelera-
tion anddR is a differential measure of impulses. Aintegration scheme is used to
discrete Equation [2]. Scheme stability condition implieatd remains betweeih/2
and1. The#-method is an implicit scheme, equal to the backward Eut@r&swhen
0=1.

Proceeding to the time discretization, the contact proliesolved over the inter-
val Jt;, t;4+1] of lengthh in the terms previously defined. Then successive approxima-
tions of both Equation [2] and first time derivative of the figaration parameter lead
to the following system:

{ Qi1 =G/ + h(M )Ry [3]
Qit1 =i + h0d4i1 + h(1 —0)q;

with
a"" = & + M h(OFSES + (1 - O)F)

where /"¢ denotes the free velocity (velocity computed without confarces).
Quantities indexed by (resp.: + 1) refer to timet; (resp.t;11). For rigid body sys-
tem, the inertia matri® is diagonal and easily invertible, internal forces vanist a
the external forces are given by a function of time. For defavle bodies, a linearis-
ing procedure via a Newton scheme, allows us to obtain the smnof discretised
equations with account of the stiffness and damping matiidean, 1999).

The second Equation of system [3] is used to update the systghend = 1
the contact detection is performed using the configuratemaipeter at time;. On
the contrary, whefl # 1, the contact detection is performed using a predictionef th
configuration parameter (at timg+ h(1 — 0)). In this case thé-method corresponds
to the well-known predictor-corrector scheme.

Using the Equations [1] in the first Equation of system [3& ¢ifiobal discretization
of the equation of motion and the contact laws can be sumathiisthe following
system:

Whri 1 — Vit = —Viree
ContactLaw[v;y1,T;q1]

(4]

whereW (= H*M~'H) is the Delassus operator, which models the local behaviour
of the solids at the contact points. The right-hand-sideheffirst Equation in [4]
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represents the free relative velocity only accountingtierinternal and external forces
F(t). The second Equation in [4] requires that the contact lawtheasatisfied by
each component of the couple;;1,r;+1). A specification of the general splitting
method dedicated to contact problems is used to solve sydfethe so-calledlock
Non Smooth Gauss-Seidel algoritfiRSGS) a splitting method exposed in (Cottle
al., 1992). The global splitting scheme is written down as fe#idor the first Equation
of system [3]:

Waari+1 _ VZ+1 = _]:fa,free — Zﬁ<a Waﬁrg+1 _ Zﬁ>0‘ Wa[ﬂ‘g

(5]

where the indeX refers to the splitting method iterations andthe number of con-
tacts. The time index is omitted to make pleasant readings Sdiver has proved to
be very robust and efficient on a large collection of heteneges problems (Jeaat
al., 2001; Saussinet al., 2006) and benefits of a parallel version (Renetl., 2004)
to ensure reduced simulation time.

When the system [4] is solved, the contact forces are intredin the first Equa-
tion of system [3] to compute the velocity at tirye ;. Then this last one is introduced
in the second Equation of system [3] to correct the configumgiarameter.

Table 1. Pseudo code of the NSCD approach

[ i =i+ 1 (time step loop)
q(i + 1) prediction
Contact detection
4(%) rree COMputation
k =k + 1 (NSGS iterations)
a = a + 1 (contact loop)
bk (computation)
Local contact problem resolutiofiw®*1, r*+1) solution
Convergence test
q(i + 1)correction

4.3. Frictional and cohesive contact laws

When collections of rigid bodies are considered, the playdiehaviour of the
system is deeply dependent on the interaction law betwesticlpa. As body defor-
mation are not taken into account, it controls the evolutibthe media. The contact
law must be chosen according to the behaviour of the realanedi



556 REMN — 15/2006. Alleviating mesh constraints

Modelling complex phenomena which occur in geological fations (erosion,
fracture, sedimentation) is out the scope of this papereMkeless some rough inter-
action laws provide pertinent indications about geoplalgibenomena. In the present
paper, a frictional and a cohesive laws are used. The friatioontact law combines
a velocity Signorini condition and the Coulomb friction IgRigure 2).

s (a) 4"t (b)

—Hh

Vi ~Hk
Figure 2. Graph of the velocity Signorini condition (a) and the CoulBsrfriction (b)

Both graphs can be summarised by the following system oftemuimvolving the
normal and tangential components of the local unknowns:

>0 v, >0 r,v,=0
If ||7¢]] < pry thenv, =0 [6]
elser; = eur, andev; < 0

wherey is the friction coefficient andtakes the value§—1, +1} according to the
sliding direction.

The second law, the non smooth Lennard-Jones law (FigureBaksponds to a
simplification of phenomena present in a geophysical sirectlt takes into account
water effects and induces cohesion between particles.

r A (a) r A (b) r A (C)

n n

v
v

YJ g Y——rr—-- 9

Figure 3. Graph of the non smooth Lennard-Jones law (a) as a combimatidwo
Signorini graphs with (b) and without (c) &translation along the-,, axis. v repre-
sents the cohesive force whijghe distance between bodies

Two parameters are considered: a cohesive foreéhich represents a constant
force in oposition of body detachment and the distafhcghich defines the attraction
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area of each body. The graph of the non smooth Lennard-Janesdn be seen as
a combination of two Signorini graphs according to the coingéatus (Figure 3b and
3c). If body attraction areas do not overlap then the corgtatus isnon contact
(r, = 0andg > d,). If body attraction areas overlaps and the gap betweerebodi
is not equal to zero, a additional cohesive force interfénes the contact status is
cohesivey < r, < 0 andg < d,,). Finaly the contact status &ick when the gap
vanishes#, > 0 andg < d,). Wheny = 0 thend,, = 0 and the cohesive status
is no more considered. In this case the contact descripgidimei classical Signorini
condition. Note that thaon contactondition appears as a condition of non attraction
between the candidate and the antagonist bodies. If theei@ygl] is reduced to
a single contact and if the cohesive contact law is used, bteres the following
system:

If the previous contact statusi® contact(g > d,,) then
Wrn — Un = —Un,free

[4]©{ ™ >0 v, >0 rp0,=0

else
W(rn +7) — Un = —Un free + Wo

[4](:){ Tn+v>0 v, >0 (rp,+7)v,=0

To close this section, it is important to underline that the & not to investigate
several interaction models. Simple interaction laws aseh, not so far of the real
behaviour, defined by few additional parameters (here fhgdn ., the cohesiony
and the wetting distanag,) to ensure a higher control of the simulation process.

5. Geophysical applications
5.1. Pre- and post-processing

5.1.1. Sample preparation

In granular material, the history evolution plays an impattrole on the evolution
of the media. Uniform bi-axial compression or compactiodemgravity do not lead
to the same sample properties. Consequently the prepacdtsamples and its initial
state appear as an important part of the simulations. In thet oases they are them-
selves given by a simulation process. As it is difficult togicehow is the initial state
of a geophysical formation, it has been obtained after a emtngeometric deposit
using the pre-processor developed by (Tabastda., 2005). A state equilibrium is
reached by a stabilisation phase under gravity forces. Bywihy no initial contact
anisotropy is introduced in the media before the simulati®his process has been
used both for the creation of fault propagation and foragd-€volution samples.
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5.1.2. Macroscopic quantities

In granular material analysis is seems difficult to analysetiehaviour of each
particle especially when the number is large. Macroscagi@bles such as compacity
or fabric tensor (Troadeet al, 2002) are very important to describe the media.

For a sub-domaif of a domain&, for a collection of spherical rigid bodies, the
stress tensor, denoted is defined as:

1

7 = vol(§2) Z Fa®la [7]
139

wherer refers to the contact forcebthe inter-centre vector equal {o; + r;)n for

spherical shapen(is the normal contact vector amgandr; the respective radius of

particlesi and; involved in the contact). Using the stress tensor, the presand the

deviatoric part are defined as:

=L o
{p_g(l'i‘ 2) [8]

q=5(01—02)

whereo; andos are the eigenvalues of. In the same way, the fabric tensbiis
defined as:

1

£ = vol () £

Do @ Nla [9]

The anisotropy of) involves the eigenvalues 6f f; and f,, and is defined as:

0= 5(h~ ) [10]

Contrary to the stress tensor it is difficult to define theisttansor especially for

system where large deformations and localisation are ¢ggeblevertheless, a notion
of strain can be considered by tracking the evolution of soh@acteristic lengths in

the sample. Here the dilatation in the two space directigivisn by:

max(q«(t;)) — min(q.(t;))
max(qx (to)) — min(q.(to))

Ae(ti) = [11]

wherex is the X- or Y- component of the position of each particle.

5.1.3. Trishear model

The model has been introduced by Erslev (1991) to charaetéult evolution.
The model decomposes the fault region in three parts as simathva Figure 4.

Part | has a rigid body motion and its velocity is equal to tetuity of the fault.
Part Il does not move and its velocity field stays equal tmz&he hypothesis made
on part Il are: a constant volumg & cte) which leads taliv(q) = 0, the velocity
along the left side is constant and equal to the fault vefpaitd the velocity along the
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1
div(g)=0

Figure 4. Tri-shear model: geometric decomposition of the fault. tPdras a rigid
body motion (the velocity is equal to the velocity of thetlaplart 1l does not move
and part Il satisfies continuity conditions on both boundari

right side vanishes. The initial hypothesis can be extepskelifor example (Hardst
al., 1999). This model is relevant for the first step of the evolubf a fault and thus
can be used in finite element approach (Cardetzal, 2003). The granular simula-
tions can permit to determine what assumptions stay validnsarge deformations
occur.

5.2. Forced-fold evolution

5.2.1. Simulation parameter

The sample used for the forced-fold simulation is compo$ekB8&00 hard cylin-
ders. Their radius range from42 to 0.56m. Their density is equal t2 800 kg.m 3.
The characteristic lengths (in meter) of the sample preskint the Figure 5a are:
L =1000, D = 300,d =75, H = 80 andh = 30.

Figure 5. (a) Initial state of the sample used for forced-fold evauti(b) definition
of the different cells used for the structure analysis dgitime whole process
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A constant velocity equal t0.5m.s~" is imposed on the left wall during the
whole process. The contact law is a frictional contact law=( 0.4) with inelastic
quasi-shocks (Jean, 1999) and each layer has the same nuatipaoperties. Due
to the fact that in analogue sandbox, the cohesion betwericlpa is avoided, for
this first study, the cohesion is not considered in the nutaemodel. The simu-
lation is decomposed in 20000 time steps2df 10~2s. For the NSGS algorithm,
a minimal number of iterations equal to 100 is imposed to enthe quality of the
solution (Renouf, 2004). To analyze the evolution of theatire, six cells are de-
fined and tracked during the simulation process (Figure Sthe characteristics of
each cell (initial centre position and radius) are: W1=(#8(20), W2=(200,25,20),
W3=(300,15,12), W4=(400,15,12), W5=(500,15,12) and V&686(15,12). Then for
a given set all inside particles are tracked to observe thégesermation.

5.2.2. Fold observations

The sample is decomposed arbitrarily in layers of differexight to analyse what
kind of fold and internal geological structures can be obsgiduring the simulation
process. The Figure 6a gives the nine reference layers initfed configuration.

accretionary wedge

layer: 1,2,3,4,5,6,7,8,9

s ¥ M,
4Ry
e e 5 B e L ,Wl.ﬁwm'“ﬁWH
= e e B Ry o o ALY i e A R

(©)

Figure 6. Different snapshots of the forced-fold evolution: (a) thigial configura-
tion, (b)t = 200 s, (c)t = 350 s and (d) the final state at= 500 s
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An accretionary wedge is located on the left to reproduceettiernal structure
used to constraint the evolution of the structure. In theifédb appear similar folds
which correspond to folds with similar deformation (lay&t6,7 for example). This
formation is due to a vertical propagation of deformatiotiated by the deforma-
tion of the first layer. This last one is submitted to hard ¢@ists: the contact with
the rigid plan, the force generated by the whole structucethe constant velocity
imposed by the lateral wall. The force exerted by the acmnatly wedge minimises
the amplitude of deformations such buckling which occuiityuthe process and are
transmitted to the upper layers. On the front, the forceeles®s and larger deforma-
tions occur.

The Figure 6¢ shows the formation of a fault near the fronhefwedge. The fault
initiates a shear band clearly visible on the layer 3 for gxam Consequently, the
deformation of the first layer is not extended in the absaissection. The Figure 7
represents the evolution of the wedge front compared wéletlolution of the lateral
wall.

dx (back)

0L 1 1 1]
0 100 200 300 400 500
dx (back)

Figure 7. Evolution of the front of the accretionary wedge as a functibthe evolu-
tion of the rear (black curve)

Its evolution does not match with the linear one (red lin¢)s Hue to the plastic
deformation of the wedge and to internal faults and avalasgienerated by the struc-
ture evolution. Faults generate vertical motions with feeidence on the evolution of
the front while avalanches affect the position of the frorthie abscissa direction. Be-
fore the fault, similar folds are always present but theiemtation changes to match
the internal fault direction. In the heads of the wedge, ldgformations occur. Dif-
ferent faults and located avalanches appear but the miXidigferent layers yields to
a difficult analysis. The composition of the whole free scefahanges. It is charac-
terised by surface flows and the emergence of lower layersrgtad by the internal
fault.

This last observation is verified in the Figure 6d. As the argjlthe free surface
increases avalanches occur (layer 9). Similar folds areeromated under the left part
of the wedge where vertical deformations are constrainedth® front of the wedge,
after the fault localisation, the deformation of the firgtdes starts. It generates similar
folds as the ones observed in the Figure 6b. The shear baatedrey the fault is not
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sufficient to support the whole deformation. Then the faegdfion starts to move with
the evolution of the lateral wall and initiated deformasam its right.

5.2.3. Mechanical analysis

To complete fold observations, a short mechanical analypioposed through the
evolution of the pressure and the deviatoric stress. Thigwo of both quantities is
represented in the Figure 9. The evolution of different tmdated in the Figure 5,
is represented starting from their initial configuratiomegi in the column (a) of the
Figure 8. During the process, the stress tensor of a cellrigpoted from particles
initially located in the corresponding cell. Consequerdlyit can be observed in the
Figure 8, there is no reason for the shape of the cell to stayler.

(b) (€) (d)

w1

(a)
- @
@
@
@
@

W3

w4

W5

W6

Figure 8. Shape evolution of the different cells defined in the Figu@pinitial time,
(b) t = 200s, (c)t = 350 and (d) final tim& = 500s
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In addition to the stress evolution in the Figure 9, the langtriations along the
X-axis and Y-axis are plotted in the Figure 10. It is then jjussto obtain a kind of
stress-strain relatiorguantifying the geometric informations on the shape eiahut
of the cells in the Figure 8.

20 T T T T T T T T T T T 20 T T T T T T T T T T
O—O W1 | V—¥ W
O——0 w2 w5
15 F i 15 w3 | *—* we | |
o ™)
[} [
S 10| 4 S 10} E
t) X
o o
24
51 B 51 E
0 n 1 n 1 n 1 n 1 n 1 n 0 n 1 n 1 n 1 n 1 n 1 n
0 100 200 300 400 500 600 0 100 200 300 400 500 600
time time

Figure 9. Evolution of the pressure and the deviatoric stress for tiffergént sets of
particles presented in the Figure 5

0 0
0 100 200 300 400 500 0 100 200 300 400 500
time time

Figure 10. Evolution of A, and )\, for the different set of particles presented in the
Figure 5

Inside the accretionary wedge (W1), the pressure and thiatdee stress have
low variations. Since the wedge is not submitted to larg®wheétions, the stress
exerted on (W1) increases slowly. The increase is due botheaeformation of
the interface between the wedge and the layer 9 and the pessserted by the lateral
wall and the gravity. Contrary to cell (W1), the stress oftb# (W2) decreases during
the whole process while its deformation increases and esagliactor two along the
abscissa direction. The cell (W3) and next cells are smiddiar the first ones. As they
are located in the lower part of the sample, parameters afdthié@ave been chosen to
avoid both wall and surface effects. The front of the acoretry wedge appears as the
most stressed region according to the deformation of (W8) @) and the evolution
of the pressure and the deviatoric stress in both cells. 8tk are submitted to large
hydrostatic pressures and high shears which induce lafggtiibns along the axis.
During the first half process the efforts exerted on the ladit @5) are constant.
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The cell stays out of the influence of the wedge. When (W5)rantthe influence
of the wedge, pressure and deviatoric stress start to groweach values equal to
the one of (W1). The deformations have a small delay with threstraints. The cell
supports the efforts during a short time interval befor@dehtions occur. The efforts
exerted on the last cell (W6) are constant. This last onetisaadly concerned by the
displacement of the accretionary wedge.

5.3. Fault propagations

5.3.1. Simulation parameter

The sample used for the simulation of fault propagation imposed of 15000
hard cylinders. Their radius range froml3 to 0.26m. Their density is equal to
2800 kg.m~3. The characteristic length (in meter) of the sample preskirt the
Figure 11 are:D = 300, h = 30 andd = 30°. The lower plate of the sample
is composed of two block. The first one is fixed and the secordhas a constant
velocity V9 equal t00.325m.s~! in the fault directione during the whole process.
The contact law is a cohesive frictional contact law=€ 0.4) with inelastic quasi-
shocks and as in the fold simulation, each layer has the sasnbhanical properties.
The value ofy range from O N (cohesionless) 16°N. Values ofy have been chosen
according to the gravity force on a particle. The simulai®decomposed in 4 000
time step ofl 10~2s. Precautionary measures for the NSGS algorithm are egmal
to the ones used for fold simulation.

wi

V=V0 ’ o\’ 5

Figure 11. Initial state of the sample used for fault-propagation

A circular cells is defined and tracked during the simulapoocess (Figure 11).
Its characteristics are W1=(85,7.5,6) respectively itsree(x,y) and its radius.

5.3.2. Internal cohesion effects

The influence of the internal cohesignon the profiles of both free surface and
layers is studied. Four simulations have been performediftarent values ofy: (a)
ON, (b)10® N, (c) 10* N and (d)10° N. The final profile of each simulation is repre-
sented in the Figures 12 and 13 which represents respertiveelayer deformations
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and the velocity field. The front of the free surface is repnésd by the arrow, the
fault direction by a continuous line, the left and right limmby dashed lines. The
left limit separates the structure governed by a rigid nofrom the other part. The
right limit separates the undeformed structure from theogiart. A fault area is then
defined between the two limits as developed in the trishealeio

imit surface profile (a) (b)
g / right limit

front

fault direction

Figure 12. Free surface profiles for different valuespf(a) O N, (b)103 N, (c)10* N
and (d)10° N

Different aspects are related to the valueyof The first one is the front of the
free surface. With small values of the fault propagation generates surface flows on
long distance. When increases, the region of surface flow propagation decreases
For the larger value of, the flows do not occur and are replaced by the detachment
of blocks composed of several particles. To summarise, ttarce between the
front and the fault decreases whernincreases. The second aspect is the left and
right limit orientation which can be reduced to the angléFigure 12a). The angle,
initially larger thand, decreases when wherincreases to become smaller thtafor
the higher value ofy. The layer deformation is reduced for cohesive sample amd th
deformation fault is concentrated near its core. MoreoverRigure 12d underlines
the fragility of the structure for strong internal cohesidihne last aspect concerns the
free surface slope. For small values-oits radius is infinite (Figures 12a and 12b)
and wheny increases the radius decreases.

In complement of an analysis of the geometric deformatiotthef structure, a
superposition of the velocity field is done (Figure 13). Adference marks defined
previously stay unchanged. The good approximation of tkbdéar model is clearly
underlined, especially for the cohesionless case. For eash of the Figure 13, the
trishear model defined in the Figure 4 corresponds to an Bieaertheless, two points
must be highlighted. First, the surface area depends dyronghe internal cohesion.
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Figure 13. Velocity fields for different values of (a) O N, (b)103 N, (c)10* N and
(d) 10° N

It decreases whef increases. Secondly, if the continuity of velocity fieldess
correct for cohesionless simulations, whedo not vanishes, the continuity imposed
by the model is no more observed. Internal cohesion and faajfiagation generate
shear between particles assemblies inside the fault areaseQuently, for cohesive
sample, the continuity condition can not be conserved.

5.3.3. Stress and strain analysis

For the different values of, the pressure and the deviatoric stress in the cell W1
are tracked (Figure 14) as well as the evolutionngland )\, (Figure 15).

o—O0o 10e4
/0 10e3 | vV——¥ 10e5

w

N

p (x10e5)
p (x10e5)

Figure 14.Evolution of the pressure and the deviatoric stress in tHewé for dif-
ferent values ofy
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For each case, both pressure and deviatoric stress havdla gwolution due to
the fact that the fault is controlled by a constant velocitizeir evolution seems de-
composed in two phases. The first phase corresponds to greahof time[0, 10].
During this period, the pressure increases quickly whetteasleviatoric stress stays
constant. Then on the time interval of tirfié, 40}, the pressure has a constant evo-
lution while the deviatoric stress increases slowly. No@ the amount of pressure
is similar, except for the highest value gffor which the pressure is twice as high.
For this last ones, the second time interval is decomposéadrphases where the
evolution of the pressure is constant for each phase.

T T T T T T T
1,4 o0—oO0o 10e4 . s
O— 10e3 | &A—A 10e5
L A

12

x
< L
1 - -
08k CAREK _
1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 0 10 20 30 40
time time

Figure 15. Evolution ofA, and A, for cell W1 and different values of

The evolution of deformations observed in the Figure 15esponds to the defor-
mation near the fault. As stress components, their evaluiEm be decomposed in two
phases. During the first phase corresponds, for each)galsas the same evolution
(a slow increase). Theh, continue to increase but with different gradient (high for
high value ofy). It is more difficult to decompose the evolution ®f in two phases
defined previously. Its evolution is clearly in two phasesribg the first one), de-
creases which corresponds to a compression exerted byuitigfapagation. During
the second one), increases which corresponds to the shear initiation insideell
to reach the final state of the simulation represented initner€ 16. This last figure
illustrated the viscosity aspect induced by the cohesion.

Figure 16. Final deformation state of the cell (W1) for different vadue~: (a) O N,
(b) 102 N, (c)10* N and (d)10° N
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6. Ending discussion

There is a good agreement between geophysical observattbthe mechani-
cal analysis. For the forced-fold evolution, the interrta¢sses and the deformation
have a good correlation with the numerical geological $tm&s. The case of the
internal fault is the more relevant. The time of it formaticorrespond to the high
pressure and high shear exerted on the cells (W3) and (W4)setpiently the cells
are crushed in a direction orthogonal to the shear motioermgged by the fault. As
a perspective of these first observations, it should beestig to determine in fur-
ther studies, mechanical models correlated to the formatiayeological structures.
For fault propagation, the influence of the internal cohesias been strongly under-
lined by geometric, kinematic and mechanical aspects.ititésesting to see that the
trishear model is the more relevant for cohesionless simounlaWith a complete para-
metric study (angle of propagation, high of the samplegétas possible to determine
an extension to the model which takes into account the iateahesion.

Although, evolution of mechanical properties agree witbgeysical observations
(fault and fold formations can be related to the deviatattiess and the pressure ex-
erted in the media), the notion of deformation in this kingsticture is not so clear.
During large displacement, mixing induced by fold, fauld@valanches do not match
with a continuous description of the media. Thus the chofd@EM is justified. The
outstanding question iss it necessary to represent the whole media as discontmuou
when phenomena are local® an answer exist, it depends strongly on the study it-
self. Nevertheless combined approach should be a goodmototface this kind of
problem but to be efficient the combination should be evedutiuring the simulation
process to switch from a continuous model to a discontinones
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