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ABSTRACT. In this work, we propose a field transfer operator based on diffuse approximation. The
key point of such an operator is to guarantee the conservation of relevant mechanical quantities
related to the strutural state and to ensure the verification of some of the problem equations.

RÉSUMÉ. Dans ce travail, nous présentons un opérateur de transfert de champs basé sur les
techniques d’approximation diffuse. Le point-clé de l’opérateur proposé est de conserver des
grandeurs mécaniques relatives à l’état de la structure ainsi que d’assurer la vérification d’une
partie des équations du problème.
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1. Introduction

The high predictivity required for the computation by Finite Element Methods
of the behavior of complex structures imposes to resort to adaptive remeshing tech-
niques. it is especially the case when dealing with problems involving material and/or
structural non linearities. In such cases, in order to ensure an acceptable quality of the
solution it is necessary to adapt the domain discretisation to make it optimal as regards
the representation of the solution.

Inherent to such adaptive remeshing techniques, the development of field transfer
operators is a key point allowing to continue the calculation on a new mesh: the predic-
tivity of the computation is then highly dependent on the effectiveness and reliability
of the field transfer operator.

Ideally, a field tranfer operator has to provide the reconstruction, on a new mesh, of
mecahnical fields verifying in a FE sense all the equations of the problem (Perić et al.,
1996): the equilibrium equation, the stress admissibility, the kinematic compatibility
of the displacement field, boundary conditions... in order to guarantee the quality
of the solution computed on the new mesh. field transfer operators based on Finite
Element interpolations do not verify, in general, such conditions. The continuation of
the computation can then become difficult, in a lot of cases, the succession of field
transfer operations leading to non predictive solutions. It is all the more the case since
we work with highly non linear material laws.

In this context, a main objective in the development of field transfer operators is
to reach the best compromise between the computation cost and the quality of the
solution. The field transfer proposed here aims at reconstructing the mechanical fields
of interest, not only by using a simple approximation or interpolation, but also by
ensuring the conservation of local and/or global mechanical quantities representative
of the state of the structure such as, for instance, the dissipated energy, the strain
energy or the stress admissibility.

In the following, we will focus on the presentation of the field transfer operator in
the case of small perturbations for non linear material behaviors. The proposed oper-
ator is based on diffuse approximation techniques (Nayroles et al., 1991; Breitkopf et
al., 2002).

In a first part, we present an overview of the continuum models considered in this
work. In a second part, we focus on the presentation of the field transfer operator
proposed for this type of models. Finally, in a third part, we give some numerical
examples.

2. Continuum models

In order to define precisely the notations and the framework of this work, we
present here a brief overview of the type of material laws used in this work. We con-
sider the framework of the thermodynamics of continuum media and we consider more
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precisely associated material laws with internal variables. In this framework, we can
define the evolution of the internal laws and the complementary Kuhn-Tucker condi-
tions (also known as loading/un loading conditions) (also known as loading/unloading
conditions) by appealing to the principle of maximum dissipation.

In the following, we give the main ingredients of the construction of such a model
(Simo et al., 2000). We consider only continuum models with isotropic hardening.
The variables of the model are, then, decomposed in a classic way, into state variables
and dual or associated variables summed up in Table 1.

Table 1. Internal and associated variables of the model

state variables associated variables
ε σ

ξ q
v A

where v is the vector composed of the internal variables other than the scalar
variable associated to hardening ξ. A denotes the vector of dual variables associated
to the state variables of vector v, A is supposed to be written in terms of σ.

For a classical plasticity model with isotropic hardening, v = ε
p and A = σ. For

an isotropic damage model (Mazars, 1984), v = D (D denotes the compliance of the
material), A = 1

2σ ⊗ σ.

We consider here yield functions written in a generic form as:

φ(σ, q) =
√

σ : A : σ − (σy − q) [1]

where A is a symmetric definite positive forth order tensor. In those conditions, the
evolution of internal varaibles can be written, by appealing to the principle of maxi-
mum dissipation as:

ξ̇ = γ
∂φ(σ, q)

∂q
and v̇ = γ

∂φ(σ, q)

∂A(σ)
[2]

The complementary loading/unloading conditions (or Kuhn-Tucker conditions) are
written as:

γ ≥ 0 , φ(σ, q) ≤ 0 , γφ(σ, q) = 0 [3]

where γ is a Lagrange multiplier.

The expression of the instantaneous dissipation can, then, be written as:

Dinst = v̇ ·A(σ) + ξ̇q [4]

and the total dissipation between time t = 0 and time t:

Dtot =

∫ t

0

Dinst dt [5]
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Even if the hypothesis considered seem to be limitative, this framework allows
to deal with a large range of material laws used in numerical simulations, such as
plasticity models driven by von Mises criterion or isotropic damage laws (Mazars,
1984).

3. Field transfer strategy

For material laws without history variables, the continuation of the computation
can be performed by the knowledge on the new mesh of the displacement field. For
non linear material laws with history variables, the continuation of the computation
requires the reconstruction on the new discretisation of the displacement field but also
of the internal variables fields defining the local state of the structure.

In the case of the continuum models such as the ones presented in Section 2, the
continuation of the computation requires the projection on the new discretization of:

– the scalar internal variable ξ defining the state of the material;

– the stress state;

– and , finally, the displacement field.

The field transfer operator has, then, to provide the reconstruction of those three
fields. Moreover, in order to facilitate the continuation of the computation after the
field transfer, the projection operator proposed guarantees:

– the conservation of the total dissipated energy from the old discretization to the
new one;

– the admissibility of the reconstructed stress field as regards the yield function
φ(σ, q);

– the verification for the reconstructed stress field of the equilibrium equation;

– the kinematic compatibility and the boundary conditions for the displacement
field.

It has to be noticed that, in order to write correctly the stress admissibility con-
straint it is necessary to reconstruct an additional variable: γ (see Equation [3]) to
which the conservation of the instantaneous dissipation is imposed. The field transfer
operator can then be decomposed into three steps:

– step 1: reconstruction of the scalar variables ξ and γ in order to determine, on
each point of the new discretization, the material state and its evolution. This step is
performed by imposing the conservation of total and instantaneous dissipations;

– step 2: reconstruction of the stress field by imposing the stress admissibility
(defined from the previous step) and local equilibrium equation;

– step 3: reconstruction of the displacement field by imposing boundary conditions
and kinematic compatibility equation. In the following, we detail each of those steps.
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3.1. Step 1: transfer of the internal variables and of their evolution

As described previously, the first step of the transfer consists in the reconstruction
on the new discretization, of the two scalar variables ξ (variable associated to hard-
ening defining the anelastic state of the material) and γ (Lagrange multiplier defining
the evolution of the material state).

This reconstruction is performed by using a diffuse approximation projection
(Nayroles et al., 1991; Breitkopf et al., 2002). Given x a point of the new discretiza-
tion where the reconstruction of the previous scalar variables is needed (we will de-
velop in the following considering only the reconstruction of the scalar variable ξ, an
identical strategy is used for the reconstruction of γ). The variable ξ is known on a
cloud of points composed of the Gauss points denoted as xg,old of the old discretiza-
tion. The scalar filed ξnew to be transfered on x is approximated locally on a basis of
approximation of any a priori degree (we work here with a degree one basis) as:

ξnew =
[
1 x y

]





a0

a1

a2



 = pT (x)a [6]

where x et y denote the coordinates in the reference system centered on x. The a com-
ponent on the basis of approximation p is then determined by solving the optimisation
problem: Find a such that Jx(a) be minimal with:

Jx(a) =
1

2

∑

i∈V (x)

W (xg,old
i ,x)||pT (xg,old

i − x)a − ξold(xg,old
i )||2 [7]

V (x) denotes a neighborhood of the point of approximation x, this neighborhood has
to contain a sufficient number of Gauss points x

g,old
i of the old discretization in order

to ensure the unisolvance of the previous optimisation problem (we chose here V (x)
such that it contains at least 4 Gauss points of the old discretization).

The function W (·,x) corresponds to a weight function being 1 on x and 0 outside
of V (x). The choice of this function allows to ensure any continuity order of the
approximated field. This function can be interpreted as the contribution of point xg,old

i

for the approximation on point x. The solution of the optimisation problem [7] can be
written for every point x as:

a = A−1B [8]

with:

A =
∑

i∈V (x)

W (xg,old
i ,x)p(xg,old

i − x)pT (xg,old
i − x)

and

B =
∑

i∈V (x)

W (xg,old
i ,x)pT (xg,old

i − x) ξold(xg,old
i )

[9]



576 REMN – 15/2006. Alleviating mesh constraints

The variable ξnew on point x is then given by:

ξnew = pT (0) a [10]

From the variable ξnew reconstructed on each Gauss point of all the elements of the
new discretization, it is possible to determine, for each element of the new mesh, the
value of the total dissipated energy per unit area, we denote Dnew

e this quantity. The
equivalent mean quantity Dold can be evaluated on the old mesh. In order to limit the
diffusion inherent to the transfer, elements for which Dnew

e ≤ c ∗ Dold are considered
as undamaged and the variable ξnew is set to zero for this element (c corresponds to a
yield defined a priori). The final point of this step consists in the conservation of the
total dissipation. This is performed by renormalizing the variable ξnew. The associated
variable qnew can then be deduced on each point of the new discretization.

A strictly identical strategy is used for the reconstruction of the variable γnew, the
instantaneous dissipation is considered instead of the total one.

At the end of this step of the field reconstruction, the fields ξ and γ are known on
each point of the new discretization, defining the state of the material and its evolu-
tion. The knowledge on each point of the variable γ also allows to define the stress
admissibility from the loading/unloading conditions.

3.2. Step 2: reconstruction of the stress field

The second step of the field transfer operator proposed consists of the the recon-
struction of the stress field on the new discretization by imposing the stress admissi-
bility and the local equilibrium equation verification. We have to treat two different
zones:

– the zone for which the state of the material is evolving. This zone is defined by
γ 6= 0, the stress admissibility is then written as φ(σ, q) = 0;

– the zone for which the state of the material is not evolving. This zone is defined
by γ = 0, the stress admissibility is then written as φ(σ, q) ≤ 0.

3.2.1. Treatment of the local equilibrium

The verification of the local equilibrium equation for the stress field rebuilt on the
new mesh is ensured by the choice of the polynomial basis of approximation (Villon
et al., 2002). The latter is chosen so that the reconstructed stress field verifies, locally
around the point x, div σ = 0. The stress field reconstructed is then approximated on
x by:

σ
new =





1 0 0 x 0 y 0
0 1 0 0 x 0 y
0 0 1 −y 0 0 −x










θ1

...
θ7




 = PT (x)θ [11]
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The local equilibrium equation is then verified in the diffuse derivative sense (the evo-
lution of θ with x is not taken into account). θ, component of σ

new on the polynomial
basis of approximation P, is here a vector of dimension 7.

3.2.2. Treatment of the stress admissibility

The reconstruction of the stress field on the new discretization can be performed
by imposing the stress admissibility given as φ(σ, q) ≤ 0 in non evolving zones and
φ(σ, q) = 0 in evolving zones.

Noting that the first step of the field transfer operator has provided the definition
on each point of the new mesh of the associated variable q, the stress admissibility is
written only on the stress field σ.

A first technique of reconstruction of the stresses consists of imposing the previous
stress admissibility constraint to the function to optimize. The optimization problem
can, then, be written as:

Find θ such that Jx(θ) be minimal under the constraint of admissibility with:

Jx(θ) =
1

2

∑

i∈V (x)

W (xg,old
i ,x)||PT (xg,old

i − x)θ − σ
old(xg,old

i )||2 [12]

where the stress admissibility constraint is written as φ(σnew, qnew) = 0 if γnew 6= 0
and φ(σnew, qnew) ≤ 0 if γnew = 0

Noting that for the zone defined by γ = 0 in which the state of the material is not
evolving, if the minimization constraint is active, solving the previous optimization
problem is similar to solving the problem on the zone defined by γ 6= 0, only two
cases have to be treated:

– resolution of the optimization problem without constraint;

– resolution of the optimization problem under the constraint; φ(σnew, qnew) = 0.

We are then brought to the resolution of a quadratic optimization problem under
equality constraint. Moreover, noting that the stress admissibility φ(σnew, qnew) = 0
can be written under a quadratic form, the determination of θ can be reduced to the
resolution of a quadratic optimization problem under a quadratic constraint.

As we have seen in Section 2, Equation [1], the yield functions considered can be
written as:

φ(σnew, qnew) =
√

σ : A : σ − (σy − qnew) [13]

In the following, we denote C the matrix form of the fourth order tensorA. The matrix
C is symmetric of rank 3 (A is symmetric definite poisitive). The stress admissibility
constraint can then be written on x as:

(σnew)T · C · σnew = (σy − qnew)2 [14]
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With the approximation of σ
new chosen (equation [11]), we can rewrite the stress

admissibility as:

θ
T · P(0) ·C ·PT (0) · θ = (σy − qnew)2 [15]

Denoting:

C = P(0) · C · PT (0)/(σy − qnew)2 [16]

C is a matrix of dimension (7 × 7) of rank 3. The stress admissibility can then be
written as:

θ
T · C · θ = 1 [17]

In the following, we detail the resolution of the quadratic optimization problem
under quadratic constraint:

Find θ so that:

min
θT Cθ=1

Jx(θ) =
1

2

∑

i∈V (x)

W (xg,old
i ,x)||PT (xg,old

i − x)θ − σ
old(xg,old

i )||2

[18]

This problem can be rewritten:

min
θT Cθ=1

1

2
θ

TAθ − bT
θ [19]

where:

A =
∑

i∈V (x)

W (xg,old
i ,x)PT (xg,old

i − x)P(xg,old
i − x)

and

b =
∑

i∈V (x)

W (xg,old
i ,x)PT (xg,old

i − x) σ
old(xg,old

i )

[20]

The matrix C being of rank 3, it is similar (considering the transformation matrix P)
to a diagonal matrix D written:

D =

[
04,4 04,3

03,4 D

]

[21]

where D is a diagonal matrix of dimension (3 × 3) and 0i,j denotes the null matrix
of dimension (i × j).
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In the following, we denote ζ = PT
θ = ζ1 +ζ2 where ζ1 = PT

1 θ is the projection
of θ on KerC and ζ2 = PT

2 θ is the projection of θ on KerC⊥. With this decomposition
of ζ, the problem [19] can be rewritten as:







min
ζ

(
1

2
ζT
1 PT

1 AP1ζ1 +
1

2
ζT
2 PT

2 AP2ζ2

+ ζT
1 PT

1 AP2ζ2 − bTP1ζ1 − bTP2ζ2

)

under the constraint ζT
2 Dζ2 = 1

[22]

In order to simplify the notations, we will denote Aij = PT
i APj with i = 1, 2

and j = 1, 2 and bi = PT
i b. The optimality system associated to the optimization

problem [22] is then written, by denoting λ the Lagrange multiplier associated with
the admissibility constraint:







A11ζ1 + A22ζ2 = b1

A12ζ1 + (A22 + λD) ζ2 = b2

ζT
2 Dζ2 = 1

[23]

Noting that A11 is invertible (A is symmetric definite positive), ζ1 can be deduced
from the first equation, it remains then to solve the system:

{ (

Ã + λD

)

ζ2 = b̃

ζT
2 Dζ2 = 1

[24]

with Ã = A22 −A12A−1
11 A12 and b̃ = b2 −A12A−1

11 b1.

The matrix Ã is symmetric definite positive, D is symmetric, we can so reduce si-
multaneously those two matrices: we can conclude to the existence of a rotation matrix
R such that: RT ÃR = I and RT

DR = D̃ where D̃ is a diagonal matrix. Denoting
η = RT ζ2, the resolution of the previous problem is reduced to the resolution of the
following problem:

{ (

I + λD̃
)

η = RT b̃

ηT D̃η = 1
[25]

D̃ being diagonal, the determination of η is performed by the resolution of an alge-
braic equation of degree 6. The resolution of such an equation is carried out by using
the root finder algorithm involving the companion matrix. θ is computed from η by
considering transformation matrices.

At the end of this step, the Gauss points variables needed for the continuation of
the computation are known.
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3.3. Step 3: reconstruction of the displacement field

The reconstruction of the displacement field, final step of the transfer operator
proposed, is performed by imposing:

– the verification, in a strong sense, essential boundary conditions;

– the verification at best of the kinematic compatibility condition.

The displacement field unew is then searched in the Finite Elements subspace asso-
ciated to the new discretization as the solution of the following optimization problem
under constraint:

min
u|Γ=ū

1

2

(
w1||unew − pAD(uold)||2 + w2h

2||∇sunew − ε
new||2

)
[26]

pAD(uold) denotes the projection by diffuse approximation of the displacement
field known on the old discretization on the new discretization. The coefficients w1

and w2 allow to fix the quality with which the two conditions: "closeness of the dis-
placement rebuilt by diffuse approximation" and "verification of the kinematic com-
patibility condition" are verified. h corresponds to the mean length of elements and ū

corresponds to the displacement prescribed on the boundary Γ of the domain.

The problem [26] is then solved in the finite element subspace associated to the
new discretization. The determination of the displacement field on the new mesh
consists of the determination of the nodal displacement vector.

4. Applications

We present here some results obtained for a damage model. We compare the results
obtained by the proposed transfer operator with the ones obtained from a standard
transfer based on FE interpolation shape functions (Perić et al., 1996).

4.1. Continuum model used

We briefly present here very the different ingredients of the material model used for
the different tests presented in the following. The model used is an isotropic damage
model (Mazars, 1984). This model is of the form presented in Section 2. The couples
of state variables of the model are, in the case considered here:

– (ε, σ): strain and stress field;

– (ξ, q): internal variable and dual variable associated to hardening;

– (D,Y): material compliance tensor (eventually damaged) and dual variable. Y

is written as: 1
2σ ⊗ σ.

The evaluation of the variable ξ alone provides the determination of the compliance
D and of the dual variable associated with hardening: q = −Kξ where K is the
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hardening modulus. The yield function φ(σ, q) used is written as (Brancherie et al.,
2004):

φ(σ, q) =
√

σ : De : σ
︸ ︷︷ ︸

||σ||De

− 1√
E

(σf − q) ≤ 0 [27]

where De denotes the compliance of the undamaged material (that is the inverse of
the Hooke tensor), E is the Young modulus and σf the elastic limit of the material.

4.2. Coherence of the proposed field transfer operator

In order to verify the coherence of the field transfer operator, a transfer is per-
formed considering a new discretization equal to the old one and the computation is
continued from the rebuilt field. The test considered is a traction test on a notched
beam (see Figure 1).
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Figure 1. Traction test on a notched beam

We present here the results obtained performing a standard transfer and the pro-
posed transfer compared to the one obtained from a direct computation. The results
in terms of the error on the damage field obtained after the transfer operation and the
equilibrium recovery and at the end of the computation compared to the damage field
obtained from the direct calculation are given on Figures 2 and 3.

We can note that the proposed transfer reaches error levels in terms of the predicted
damage field much lower than the one obtained locally by using a standard transfer.
The standard transfer suffers from numerical diffusion, this point could lead to a bad
prediction of the evolution of the damage state when continuing the calculation.
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The global results given in terms of load/prescribed displacement curve are given
on Figure 4. We can note, in this case, that global results for the given test are quite
close to the one obtained by direct computation after the proposed transfer as well as
after the standard transfer even if the standard transfer seems to be less effective.
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(a) Error on ξ after the proposed transfer
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Figure 2. Map of the error on the variable ξ after transfer and equilibrium recovery

0 10 20 30 40 50 60 70 80 90 100
80

90

100

110

120
erreur approximation diffuse fin calcul

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a) Error on ξ after the proposed transfer
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Figure 3. Map of the error on the variable ξ at the end of the computation

4.3. Comparison with a standard field transfer operator

The test considered in this part is the same as previously used for testing the co-
herence of the field transfer operator. In this example, two remeshing of the domain
are performed during the loading process. The remeshing is, in this case, performed
when the evolution of the state of the material reaches a limit value.
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Figure 4. Load /displacement response
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Figure 5. Different discretizations used for the computation



584 REMN – 15/2006. Alleviating mesh constraints

The indicator of remeshing is based on the value of the dissipation at each point
(which is a scalar quantity defining the evolution of the state of the material). The new
element length map associated to an optimized discretization is defined by consider-
ing the latter quantity and by imposing locally an element length ensuring a uniform
instantaneous dissipated energy per element. The Figure 5 represents the different
meshes used for each step of the computation. We compare here the results obtained
after the proposed field transfer operator and after a field transfer based on FE in-
terpolation shape functions (Perić et al., 1996) with the results obtained by direct
computation (computation carried out on the chosen discretization from the beginning
of the loading process). The Figure 6 gives the results in terms of the error on the
damage variable compared with the solution obtained from a direct computation for
the first remeshing and the first transfer operation. The amount of error is calculated
just after transfer and at the end of the computation that is when the second remeshing
is decided.
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(a) Error on ξ after the proposed transfer

0 10 20 30 40 50 60 70 80 90 100
80

90

100

110

120
erreur transfert standard retour equilibre

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Error on ξ after a standard transfer
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Figure 6. Error map on the variable ξ after transfer and at the end of the computation
for the proposed strategy and after a standard transfer for the first remeshing
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The same types of results are given for the second remeshing on Figure 7. We
can note that the quality of the local results here evaluated on the value of the damage
variable on each point of the structure is better after the proposed transfer then after
a standard transfer. We note in particular a numerical diffusion with the standard
transfer which is brought up to the end of the computation, this diffusion is limited in
the case of the proposed transfer.
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(b) Error on ξ after a standard transfer
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Figure 7. Error map on the variable ξ after transfer and at the end of the computation
for the proposed strategy and after a standard transfer for the second remeshing

Moreover, the error level obtained in the most sensible zones of the structure (here
the notch) by the proposed transfer are much lower than by the standard transfer,
allowing to envisage the use of such a technique for the local description of crack
propagation.

Some global results given in terms of load/displacement curves are presented on
Figure 8. We can note that the proposed transfer gives global results very close to
the results obtained by direct computation for the intermediate and fine meshes. The
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solution is not being degraded all along the remeshing process as it is the case when
using a standard field transfer operator.
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Figure 8. Load/displacement response

5. Conclusion

The field transfer operator proposed is based on the diffuse approximation tech-
niques. The key point of the proposed operator is to ensure the conservation of me-
chanical quantities representative of the state of the structure such as the total or in-
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stantaneous dissipated energy but also the verification of the problem equations such
as stress admissibility, local equilibrium equation or kinematic compatibility of the
displacement field with the state variables. The comparisons carried out between
the results obtained after a standard transfer and the proposed field transfer oper-
ator have shown that the quality of the results is better in terms of global results
(load/displacement curve) as well as local variables (internal variables). Moreover,
the proposed strategy is applicable to a large range of materials in numerical simula-
tions. In the presented work, the remeshing operation is driven by a criterion based on
the evolution of the internal variables, a remeshing criterion based on the evaluation
of the error by the diffuse approximation techniques could also be considered.
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