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ABSTRACT. In this article, we present an adaptive method for solving transfer equations. The
method consists in projecting the discretized problem on a basis we have defined in order to ob-
tain a reduced model that can be quickly and accurately solved with classic numerical schemes.
The originality of the methods stays in the way of the basis is constructed. At each iteration
of computation, the basis is adapted: first the old basis is improved using a Karhunen-Loève
decomposition whereas in a second phase the improved basis is expanded with Krylov vectors.
The example we study is the one-dimension Burgers’ equation. The results we obtained were
compared to the Newton-Raphson method: whereas the accuracy is not better than the Newton-
Raphson method, we show that the computationnal time is drastically reduced. In addition,
the basis we obtain shows a great ability to represent the long-time dynamics of the system, as
shown in the last part of the paper.

RÉSUMÉ. Dans cet article, nous présentons une méthode adaptative pour la résolution des équa-
tions de transfert. La méthode consiste à projeter le problème discrétisé sur une base que l’on
a définie afin d’obtenir un modèle réduit qui peut être résolu rapidement et précisément avec
des schémas numériques classiques. L’originalité de la méthode réside dans la façon dont la
base est construite. A chaque itération de calcul, la base est adaptée : dans un premier temps
l’ancienne base est améliorée à l’aide d’une décomposition de Karhunen-Loève tandis que,
dans un second temps la base améliorée est enrichie avec des vecteurs de Krylov. La méthode
a été testée sur le cas simple de l’équation de Burgers 1-D et les résultats ont été comparés à
ceux obtenus avec la méthode de Newton-Raphson : la précision de la solution obtenue n’est
pas meilleure mais le temps de calcul est considérablement réduit. De plus, nous montrons éga-
lement la capacité de la base obtenue à décrire le comportement dynamique de la solution de
l’équation de Burgers.

KEYWORDS: model reduction, Krylov subspace, proper orthogonal decomposition, low-order dy-
namical system, Burgers’ equation.

MOTS-CLÉS : réduction de modèle, sous-espace de Krylov, décomposition orthogonale aux va-
leurs propres, système dynamique d’ordre faible, équation de Burgers.
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1. Introduction

In various fields of mechanics, fine discretizations employed to treat non-linear
problems lead to very large non-linear systems to solve. Even if the solution one ob-
tains is very accurate, solving these large systems is very computationally expensive
that is why Reduced Order Models (ROM) are more and more used for this purpose.
In the field of Computational Fluid Dynamics, two important categories of computa-
tional methods are very employed.

As a first category we find the Krylov subspace methods which are iterative meth-
ods for solving large linear systems Ax = b. They are projecting methods which con-
sist in finding an approximation xm of the solution from an affine subspace x0 +Km

where Km is the Krylov subspace of dimension m. More details about the different
classes of Krylov methods are given in (Saad, 1996) and (Van der Vorst, 2003). They
also explain which method must be employed depending of the problem we have to
treat. For example, for symmetric positive definite matrices, the Conjugate Gradi-
ent is the best method. For non-symmetric systems arising from discretizations of
partial differential equations, it is common to use the General Minimal RESidual al-
gorithm (GMRES) because it is known as the most robust one. But methods which
combine non-linear outer and linear inner iterative procedure are also studied tu solve
non-linear problems (Brown et al., 1990; Knoll et al., 2000). These methods, called
Newton-Krylov methods, consist in mixing Newton algorithm and Krylov iterations at
each Newton iterations, and are reviewed in (Knoll et al., 2004).

Then, the second important method in CFD is a ROM called Proper Orthogonal
Decomposition. Introduced in 1967 by Lumley (Lumley, 1967), it has been intensively
used since the 80’s in many applications such as optimization (Kunisch et al., 1999),
particle dispersion (Allery et al., 2005) or even aeroelasticity (Beran et al., 2004). This
method, also known as the Karhunen-Loève decomposition in other domains, is based
on the fact one can extract an optimal basis of the field. In order to obtain this basis,
one need samples of the studied field, either numerical (DNS or LES), or experimental
ones (PIV). The principle of the method is at the same time its most important disad-
vantage because one requires the knowledge of the flow over a short time interval to
compute the POD basis. To get this sampling of solution, both numerical and experi-
mental ressources are very expensive.

In order to avoid this limiting step, the method we propose consists in combining
projections phases with improvements of the projection basis. Thus, one is assumed
to get a representative basis without knowledge of the flow and at the same time, the
algorithm provides us the solution of the problem. Furthermore, one can treat different
configurations by changing control parameters such as the Reynolds number. Indeed,
with a POD basis corresponding to a given configuration, one can not obtain solu-
tion when any of the control parameter is changed whereas with our algorithm, one
is assumed to be able to adapt quickly our original basis to this change of parameter.
Hence, with this basis one is supposed to be able to compute the solution for further
times by constructing a dynamical system, as the same manner as we usually do with
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the POD basis. The methods have already been implemented in (Ryckelynck, 2005)
in a symmetric case that is why the case we treat here is non-symmetric: the Burgers’
equation, which contains the difficulty arising from the non-linear convective term. Its
one-dimensional expression is recalled here:

∂u

∂t
= ν

∂2u

∂x2
− u

∂u

∂x
[1]

Because one can find analytic solutions for certain boundary and initial conditions,
this equation is a good first step for testing new numerical methods.

In the following sections of the article, we present the Proper Orthogonal De-
composition and the method we have implemented. Then, the results obtained for the
one-dimensional Burgers’ equation are compared to those calculated with the Newton-
Raphson method and the POD. The influence of many parameters is tested before
discussing the future improvements and applications of the method.

2. The Proper Orthogonal Decomposition

2.1. Formulation of the problem

The main aim of the POD (Proper Orthogonal Decomposition) is to find a set of
orthogonal basis which describe as best as possible a random field. Let u(x, t) be
this random process in the bounded domain Ω. We will now try to express u as a
decomposition of orthonormal spatial functions ψn and the corresponding temporal
coefficients an. The problem of the POD can be formulated in the sense that the
seeking functions must represent the field as best as possible in a energetical sense,
that is why we can express the following maximization problem:

max
ϕ∈H

〈|(u, ϕ)|2〉
(ϕ, ϕ)

=
〈|(u, ψ)|2〉

(ψ, ψ)
[2]

where H is a Hilbert space, 〈•〉 is a mean operator and (•, •) is the scalar product on
H , namely if we work in the space of square integrable functions H = L2(Ω), we can
define the associated scalar product as follows:

∀f, g ∈ L2(Ω) (f, g) =
∫

Ω

f(x) · g∗(x)dx où x ∈ Ω [3]

where g∗(x) represents the complex conjugate of g(x). In our study, we will work in
the real case.

The maximisation problem [2] leads, after some variational calculus (for further
details, see (Holmes et al., 1996)), to the following problem:

∫

Ω

R(x, x′)ψ(x′)dx′ = λψ(x) [4]
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which is known as the Fredholm equation. In Equation [4], R(x, x′) is the correlation
tensor and is defined as R(x, x′) = 〈u(x)u∗(x′)〉.

From Hilbert-Schmidt theory, it is well known that it exists a denumerable infinity
of solutions of the Fredholm equation. Furthermore, because the correlation tensor is
non-negative, these eigenvalues are semi-positive definite. Hence we can write each
realization u of the flow as its proper orthogonal decomposition:

u(x, t) =
∞∑

i=1

ai(t)ψi(x) [5]

where the temporal coefficients {ai}i=1,··· ,∞ verify:

〈ai(t)a∗j (t)〉 = δijλi [6]

This technique is widely used in many configurations because it has lots of advantages
in practice and the most important are surely its optimality (in an energetic sense) and
orthogonality.

2.2. Snapshot POD

Experimental samples provide more temporal informations than spatial ones, in
opposition with samples arising from numerical computations. That is why, in order to
minimize computational times for samples provided by fine numerical computations,
Sirovich (Sirovich, 1987) proposed the Snapshots method in 1987. If we call N the
number of nodes of the discretization, the problem is of size N×N which can become
very computationnaly expensive when increasing N . To avoid this problem, Sirovich
considered that a sampling of M realizations (M ¿ N ) of the flow is sufficient to
describe the problem well.

Consider now the M realizations of the flow. If ψi where i = 1, · · · ,M is a mode
of the decomposition we have:

ψi =
M∑

k=1

aku(x, tk) [7]

Assuming that the ergodicity1 condition is true, we can write the temporal mean as
the statistical one and, recognizing the definition of the scalar product (uk, ui) =∫

Ω

uk(x′)ui∗(x′)dx′, we obtain the following eigenvalues problem to solve:

1
M

M∑

k=1

(uk, ui)ak = λai pour i = 1, · · · ,M [8]

Hence, the temporal coefficients ak are obtained by solving the Equation [8] and the
spatial modes are determined using [7].

1. i.e. statistical and temporal means can permute.
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3. The method of A Priori Reduction

In this Section, we present the adaptive Reduced Order Model method which was
called A Priori Reduction method. A priori because we build a basis without knowl-
edge of the solution before the computation, and adaptive because the basis is modi-
fied in order to be able to represent the solution.

3.1. Discretization of the equation

Every evolution problem of parabolic type can be discretized to be numerically
solved. We write here symbolically the equation we have to solve:

Ft+∆t(uh) = Gt(uh) [9]

where uh represents the discretised unknown, F and G represent operators which
describe the parts of the discretized equation, respectively at the time t + ∆t and at
the time t.

3.2. Presentation of the method

The method we have developped is separated into two distinct steps: a projection
step which constitutes the reduction phase of the discretized system and the second
step regroups the improvement and the expension of the projection basis in order to
accelerate the convergence to the result. The method is hence adaptive because the
basis is modified at each iteration of our computation. More precisely, we can decom-
pose the algorithm into the following steps which will be described and discussed in
detail in the following paragraphs:

1) initialisation phase: initialise the projection basis,
2) reduction phase: project the non-linear system of equations on the basis and

solve the non-linear reduced system,
3) resolution phase: compute the residuals at each time step and check the conver-

gence criterion, if the criterion is not validated, go to step 4,
4) adaptive phase: (a) Improve the quality of the basis if necessary with a

Karhunen-Loève decomposition and (b) expand the number of basis vectors. Return
to step 2.

3.2.1. Initialisation

In this step, we must define the first space on which we will project our governing
equations. The initial basis is the Krylov subspace of order m associated to an initial
residual vector r0, that is to say:

ψ(0) = Km = {r0,K0r0,K02
r0, · · · ,K0m−1

r0} [10]
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where K0 indicates the jacobian matrix of the system at the initial time. In many
works, it is common to take m = 3 but, for programming considerations, we have
worked with Krylov subspaces of dimension one and the main results presented cor-
respond to m = 1. It is obvious to remark we must avoid to take many basis vectors
if those are too close to each other: the system would lead to a singular matrix and the
computation would break down.

As explained in (Ryckelynck, 2005), the choice of the vector r0 for starting our
computation has no fundamental importance for solving the problem, in other words
we could choose an arbitrary vector for instance a constant vector, but we also ob-
served that taking a good "physical" initial basis increase the convergence speed of
the computation to the result. In all computations we have done, the first basis vector
taken corresponds to the normalized initial condition vector. It is also good to precise
that all basis vectors are normalized during a whole computation.

3.2.2. Reduction phase

The non-linear system [9], of size N × N where N is the number of nodes in
the discretization, can be relatively expensive to solve numerically if the mesh size
is too fine. To reduce the number of equations to solve, the strategy of our method
is based on Krylov methods for large sparse linear systems that is to say we project
the system of equations – non-linear in our case – on a Krylov subspace or modified
Krylov subspace, this will be explained in the following parts of the article. Let us now
call ψ(k) the basis corresponding to the projection subspace at an arbitrary iteration
of computation k, and we call nk the number af basis vectors in ψ(k). We suppose
also that the velocity is known at the time t and must be determined at t + ∆t. If we
project the discretized system onto this basis, we obtain:

uh
(k)
i =

nk∑

j=1

ψ
(k)
ij · a(k)

j [11]

where uhi = uh(xi) and ψ
(k)
ij = ψ

(k)
j (xi). That is, in matricial notations:

uh
(k) = ψ(k) · a(k) [12]

where ψ(k) is the N×nk matrix representing the basis, uh
(k) = u(k) (the subscript is

now ommitting when no confusion is possible) represents the vector of the discretized
velocity and a(k) the vector of the reduced variables. We can write [9] as follows:

Ft+∆t(ψ(k) · a(k)) = Gt(u(k)) [13]

As we said, it is assumed that the solution is known at the time t that is why we can
write Gt(u(k)) as a known second member S:

Ft+∆t(ψ(k) · a(k)) = S [14]

Then, by multiplying [13] by ψ(k)T

where T is the transpose operator, we obtain the
following reduced system, in matricial notations:

ψ(k)T · Ft+∆t(ψ(k) · a(k)) = ψ(k)T · S [15]
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which can be more symbolically expressed as the following non-linear reduced system
of equations:

H(a(k)) = 0 [16]

where a is the new unknown of the problem, of reduced dimension nk.

3.2.3. Resolution and reconstruction

After projecting the global equation, we must solve the reduced system of non-
linear equations at each time step. To do this, we use here a classical Newton-Raphson
scheme, which is robust and very efficient for the size of the reduced system we con-
sidered in our computations. The Newton-Raphson scheme provides us the solution a
of the reduced system at the time t + ∆t. The global solution u, at the time t + ∆t,
is then reconstructed using the relation [12]. Hence, we advance in time using the
calculated solution as the known velocity in the second member of [13] which is again
projected on ψk.

3.2.4. Convergence criterion

After an iteration of computation, one obtains a solution u for each time step. To
check the quality of our method, we have chosen a classical convergence criterion,
namely we consider that the calculation has converged if the difference between two
solutions at two successive iterations, in the sense of the L2−norm, is less than the
value we have fixed.

In practice, between the iterations k and k+1, the following inegality must be true
to have a converged solution for each time step:

||u(k+1) − u(k)||L2 < ε [17]

where ε is the convergence criterion.

If the criterion is satisfied, the computation is stopped and the results are saved;
if not, the basis is adapted as explained in the following section before performing a
new iteration of projection and resolution.

3.2.5. Adaptive phase

If the convergence criterion is not validated, that means that the basis we use for the
projection at the iteration k is not able to represent well enough the solution. Hence,
we have to adapt this basis before performing the next projection. The first step in
this adaptive procedure is what was called in (Ryckelynck, 2005) the improvement
phase. During the kth iteration, we store the Mt vectors a(k) – of dimension nk – for
each time step tl, l = 1, · · · ,Mt and we perform a Karhunen-Loève decomposition
over this set of Mt realisations to extract the most important informations about the
solution. In other words, the eigenvalues problem to solve at the iteration k is the
following:

C(k)Φ(k) = λΦ(k) [18]
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where C(k)
ij =

Mt∑

l=1

a
(k)
i (tl)a

(k)
j (tl)T is the nk ×nk covariance matrix of our problem.

Then, we obtain nk eigenvalues that we sort as follows:

λ1 > λ2 > · · · > λnk
[19]

In order to keep only the most relevant informations provided by the set of vectors a,
only the significant η first eigenvalues are taken into account, in practice η is such as:

λη ≥ µKLλ1 and λη+1 < µKLλ1 [20]

We can also define a selection matrix Vk, composed of the eigenvectors corresponding
to the η selected eigenvalues:

V(k) = [Φ(k)
1 ,Φ(k)

2 , ‘ · · · ,Φ(k)
η ] [21]

The improved basis ψ̃(k) is then defined as follows:

ψ̃(k) = ψ(k) ·V [22]

In the second step, the basis is expanded to take into account the effects of the residu-
als computed during the calculation.

To do this, we construct the Krylov susbspace associated to a residual r(k). Obvi-
ously, the problem consists in selecting the residual which will be at the origin of this
basis. Many choices are possible, but the more physically is to choose the residual rte

at the time step corresponding to the time te whose its L2-norm exceeds a value µR

fixed by the user. Hence, we are able to compute the additionnal basis:

ψ(k)
exp = {rte ,Kterte ,Kte

2
rte , · · · ,Kte

m−1
rte} [23]

where m is always the order of the Krylov subspace.

Finally, the projection basis obtained after the adaptive procedure, what we called
the modified Krylov subspace is the concatenation of the improved basis and the ex-
panded one:

ψ(k+1) = {ψ̃(k), ψ(k)
exp} [24]

4. Low-order dynamical system

When the convergence of the of the computation is reached, one have a basis which
describes the solution of Burgers’ equation over a time interval supposed to be long
enough to be representative of the evolution of the considered system, but short in
comparison with the total time interval we want to compute. Hence, we use the de-
composition of the flow we have obtained during the reduction procedure to perform
a Galerkin projection of the equation on the corresponding basis.
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Galerkin projection

The decomposition of the field over the computed basis can be written as:

u(x, t) =
N∑

i=1

ai(t)ψi(x) [25]

Using the expression [25] of the velocity, the Burgers’ Equation [1] can be rewritten
as follows:

N∑

i=1

dai

dt
ψi = ν

N∑

i=1

ai
d2ψi

dx2
−

N∑

i=1

N∑

j=1

aiajψi
dψj

dx
[26]

At this point we can precise that the modes in the basis we have calculated are normed
but not necessarily orthogonal. To ensure the orthogonality of the basis vectors, we
performed a Gram-Schmidt algorithm to obtain an orthonormal basis. After projecting
this equation on this basis, and because the basis vectors are orthonormal, we obtain :

dai

dt
= ν

N∑

j=1

Bijaj +
N∑

j=1

N∑

k=1

Cijkajak for i = 1, · · · , N [27]

where we introduced Bij =
(

ψi,
d2ψj

dx2

)
and Cijk = −

(
ψi, ψj

dψk

dx

)
.

Then, we just need to compute Bij and Cijk just once to solve this system of differ-
ential equations over the time interval we desire.

5. Numerical results

In this part, we present the results obtained with the A Priori Reduction (APR)
method on the example of the one-dimension Burgers’ equation.

5.1. Test case

The method was implemented to solve the Burgers’ equation which is recalled
here:

∂u

∂t
= ν

∂2u

∂x2
− u

∂u

∂x
[28]

Under the following initial and boundary conditions:




u(x, 0) = sin(πx) for 0 < x < 1

u(0, t) = u(1, t) = 0 for t > 0
[29]
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We can express an analytical solution in terms of Fourier series as follows:

u(x, t) = 2πν

∞∑
n=1

ane−n2π2νtn sin(nπx)

a0 +
∞∑

n=1

ane−n2π2νt cos(nπx)

[30]

where the Fourier coefficients are defined by the following expressions:

a0 =
∫ 1

0

exp{−(2πν)−1[1− cos(πx)]}dx

an = 2
∫ 1

0

exp{−(2πν)−1[1− cos(πx)]} cos(nπx)dx

The Burgers’ equation was discretized using a finite difference upwind scheme. All
the solutions were computed in time with the Crank-Nicholson scheme, the parameters
for the residual selection µR and for the selection of the relevant eigenvalues µKL

were respectely fixed for the test case at the following values:

µR = 10−6 and µKL = 10−10 [31]

At last, we fixed the convergence criterion at ε = 10−5.

5.2. Results and discussion

As a first test, we computed the solution over 0.1s with a number of nodes
Nx = 50 and a time step fixed at ∆t = 10−4s. The Figure 1 shows the solution
obtained with the A Priori Reduction method in comparison with the analytical so-
lution at the times t = 0.05s and t = 0.1s. The method is then able to compute a
solution which seems to be qualitatively quite good.
In order to check more precisely the accuracy of the method, we have computed solu-
tions for a number of discretization nodes Nx from 50 to 200, and calculated the error
with the analytic solution, in the sense of the L2−norm, defined as follows:

e = max
t∈T

||uAPR(t)− uan(t)||L2 [32]

Table 1 compares the errors with the analytic solution for the A Priori Reduction
(APR) and the Newton-Raphson method applied to the global system (GNR).
As a first inreresting result, we observe that the APR method has an accuracy of
the same order as the NR one which is what we expected. Indeed, the goal of
our method is to find a priori a basis, which is able to accurately represent the so-
lution of the transfer equations, but at the same time with a small computational effort.
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x

u(
x)

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A Priori Reduction
Analytic solution

t = 0.1 s

t = 0 s
t = 0.05 s

Figure 1. Solution of Burgers’ equation at different times for ν = 0.1, Nx = 50

Table 1. Comparison of the precision of the method with Newton-Raphson in the sense
of the L2−norm (×10−2)

Nx error APR error GNR

50 0.543 0.538

60 0.451 0.446

70 0.386 0.381

80 0.337 0.332

90 0.3 0.295

100 0.269 0.264

150 0.179 0.174

200 0.134 0.129

That is why we show in Figure 2 the evolution of the computational times be-
tween the APR and NR methods when increasing the number of nodes. For small
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Number of nodes

C
P

U
tim

e
(s

)

50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

A Priori Reduction
Newton-Raphson

Figure 2. Comparison of CPU time between Newton-Raphson and the A Priori Re-
duction method for Nx = 50, · · · , 200 over 0.1s

discretizations, computational times are of the same order but, from Nx = 60, when
we increase the number of nodes, the difference between the computational time nec-
essary for each method grows very fast. Then, the APR method is less computationally
expensive and for example, a APR computation requires 15 times less time than the
corresponding NR one for Nx = 200 which represents a very important gain of time
for a one-dimension problem.

To ensure the quality of the method we have tried to compute the solution for
longer times, namely over 3s.

The solution we obtain is represented in Figure 3 compared to the analytic solution
for any values of t. In addition, Figure 4 shows the corresponding error. We can see
that the maximum error is obtained around t ≈ 0.394s.

In Figure 4 for t from 0s to 0.394s, we can remark that the error increases when
the convective effects are dominant, whereas after t = 0.394s, the diffusion become
more important and the error decreases asymptotically to zero. Finally, we were able
to obtain accurate solutions of the Burgers’ equation even for long times with a few
computational effort, but computing the solution over 3s for Nx = 100 and with a
time step equal to ∆t = 10−4 requires 2980.17s of computational time which is al-
ways too expensive.

But the interesting part of the method is that it provides us a basis of the solution
which is supposed to be able, like POD modes, to describe the long-term dynamics
of the system. Hence, we have constructed the dynamical system associated to the
modes provided by APR method. Then, the dynamical system is solved over times
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Figure 3. Solution of Burgers’ equation at different times for ν = 0.1, Nx = 100
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Figure 4. L2−norm of the difference between the APR solution and the analytic solu-
tion
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longer than the sample time interval, namely we solved the dynamical system over 3s
whereas the sample interval was chosen equal to 0.1s.

Because solving the dynamical system consists in solving a small set of partial
differential equations, even with a very small time step, the solution is computed very
fastly. Then, we have chosen ∆t = 10−4 and the results show that the APR basis is
able to predict accurately the solution for t ∈ [0s, 3s].

For this test case, we found a maxium error of around 0.23.10−3 at t = 0.35s and
the computational time necessary to get the solution for the whole time interval is 6s,
which is a considerable gain of time.

In order to check the quality of the APR modes, we have computed a POD ba-
sis over T = 0.1s with datas from the analytic solution and we have constructed the
coresponding dynamical system.

Then the dynamical system is again solved with the same parameters as before over
t = 3s. Figure 5 compares the modes from the APR method and from the POD
whereas the results in terms of L2 error are reported in Figure 6.

We easily remark that the three first modes are quite identical, whereas the fourth
and fifth – even if there are not identical – have the same structure. Without any math-
ematical proof yet, we can just say that the modes obtained with the APR method tend
to be indentical to the POD modes. It is an interesting result because the POD basis
is the most optimal basis, and with the APR method, one can also construct a very
energetic basis without prerequisite knowledge of the flow.

We observe in Figure 6 that the POD associated with a dynamical system is the
most accurate method we present. However, to compute the POD basis, we need a
sample of solution over a small intervall whcih is very computationaly expensive. The
APR method associated with the dynamical system is also a very fast and accurate
solution for the numerical resolution of the Burgers’ equation up to 3s. Indeed, with
a time step of ∆t = 10−4 we have computed the APR basis in 189s and obtained the
solution over t = 3s in 6s with the dynamical system constructed from the APR basis,
that is the whole computation last around 200s whereas one needed 1230s with the
NR method to solve just 0.1s of the flow.

As a last result, we present how the APR method is able to adapt its basis to a
change in the control parameters. Indeed, we have changed the viscosity from ν = 0.1
to ν = 0.05 and computed the solution over 0.1s with our method taking the basis ob-
tained for ν = 0.1 as initial basis for the new computation.
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Figure 5. Comparison between the modes obtained with the APR method and those
from the POD for Nx = 100

In just 6 iterations and for a computational time of around 15s, the APR method
is able to reach the convergence and the basis is modified in consequence. Further-
more, the maximum error obtained for t = 0.1s is around 0.29 · 10−2 which is very
satisfaying.
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Figure 6. L2−norm of the difference between the APR solution and the analytic solu-
tion

6. Conclusions and perspectives

In this article, we have presented an original numerical method for solving transfer
equations which consists in a a priori construction of a basis of the solution.

The algorithm was tested on the Burgers’ equation and it has proved its effenciency
in terms of accuracy and computational time. Furthermore, the obtained basis was
used to build a dynamical system for solving the equation for longer times. The basis
has shown the ability to describe well the long-term behavior of the flow, which seems
to be natural when comparing the APR modes with the POD ones. The modes are
indeed very similar to each other, at least for the three first modes, and the APR basis
is supposed to have more or less the same energetical properties as the POD which
explains the efficiency of the basis.

Further tests are planed to test the method on other configurations and future works
will be dedicated to adapt the algorithm to solve the two-dimension Navier-Sokes
equations for standard benchmarks.
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