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ABSTRACT. When modelling the buckling phenomenon of thin plates in presence of an 
obstacle, we obtain a variational inequality with two unknowns that are the buckling load 
and the corresponding buckling mode. Using the finite elements method, the continuous 
problem is approximated by a discrete problem. Then, an algorithm for computing the 
buckling critical load and the corresponding unilateral buckling mode of the plate is 
suggested. The last part of the paper is devoted to some numerical results obtained for the 
same rectangular plate but three different kinds of obstacle. 

RÉSUMÉ. On s’intéresse, dans ce papier, au flambement unilatéral d’une plaque mince en 
présence d’un obstacle. Après approximation par éléments finis, un algorithme est proposé 
pour calculer la charge critique de flambement ainsi que le mode correspondant. La fin du 
papier est consacrée à des résultats numériques obtenus pour la même plaque rectangulaire, 
et trois différents types d’obstacle. 

KEYWORDS: unilateral buckling, buckling critical load, buckling mode, finite element method, 
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1. Introduction 

Consider a thin plate of thickness 2 ε occupying a two-dimensional open setω . 

Assume that it is supported on the whole of its edge γ , clamped on a part 0γ  of its 

edge whose Lebesgue measure is not zero, and simply supported on
0

γ γ . 

Furthermore, the plate is subjected to a one-parameter plane compressive load λ on 

another part 1γ of its edge (see figure 1). 

 

 

Figure 1. A rectangular plate is in presence of an obstacle 

It is well known, if there are no obstacles in the neighbourhood of the plate, that 
there exists an increasing sequence of strictly positive real numbers ( )nλ escaping to 

the infinity and such that each load .n hλ  involves an instability of the plate 

manifested by a large vertical displacement (see (Ayadi et al., 1990; Ciarlet et al., 
1977; Destuynder, 1990; Timoshenko, 1966)). Such a physical displacement is 
proportional to the so-called buckling mode of the plate corresponding to the so-
called buckling load .n hλ . 

In this paper, we suppose that the plate is in presence of a rigid fixed plane 
obstacle that lies just above it (see figure 1). The contact between the plate and the 
obstacle is supposed to be without friction. If the obstacle is not initially in contact 
with the plate, the problem becomes classical, in the sense that it has the same 
solution as the linear one. The unilateral buckling and even the unilateral post-
buckling of thin plates have been tackled and investigated by many authors since the 
late seventies. Let us cite, in particular, (Cimetière, 1980, 1985; Do, 1975, 1976), 
and (Riddell, 1977). In this paper, we do not claim deeply studying the unilateral 
buckling problem. We just contribute to compute numerically the critical state of 
unilateral buckling problem. We so concentrate on developing a new algorithm in 
order to avoid the numerical instabilities of the penalization method. 

The paper is organized as follows. The second section is devoted to the 
description of the unilateral buckling model. In the third section the adequate 
framework, so that the critical state of unilateral buckling exists (see (Do, 1975, 
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1976; Riddell, 1977)), is recalled. Then, in the fourth section, the approximation of 
the continuous problem, by the finite element method, leads to a discrete “nonlinear 
eigenvalue problem” that is mathematically well posed. The fifth section, where our 
contribution is the most significant, is devoted to both construction and convergence 
justification of the suggested algorithm. In order to test our algorithm and validate 
the unilateral buckling model proposed, the same rectangular plate and three 
different kinds of obstacle are considered in the sixth section. Some related 
numerical results, obtained with the Mindlin’s plate model and the Macneal’s finite 
element, are then exhibited. For each kind of obstacle, first, is given the unilateral 
buckling mode; then, the shape of the obstacle as well as the sections of the buckling 
modes on the largest principal axis of the plate are plotted in the same figure. 

2. Mathematical modelling of unilateral buckling 

When taking into account the unilateral contact condition and considering a 
nonlinear elastic constitutive law, we obtain a very difficult mathematical problem 
(see (Ciarlet, 1986), (Ciarlet et al., 1977; Duvaut et al., 1972)). Nevertheless, we 
know a particular solution to the latter. It is the linear elasticity solution, obtained 
with linearized strains, for which the vertical displacement is zero and the plane 
displacements are solution to the following variational equation: 
 

1

2 2

, , , 1 1

pu v
E d H v d v V

x x

ν α
αβνµ α αω γ

α β ν µ αµ β

ω λ γ
= =

∂ ∂
∀ ∈

∂ ∂
=∑ ∑∫ ∫ � [1] 

 
where Eαβνµ  is the membrane stiffness tensor for the linear elastic constitutive law 

(depending on Young’s modulus and the Poisson’s ratio), 
  

{ }3 , 1,2H h dx
ε

α αε
α

−
= ∈∫ , 

 
and 
 

V = { }1 2
0( ) : 0V v H v onω γ= ∈ = . 

 
The following usual assumptions are made. 
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for all symmetric tensor θ  of order two, that is the ellipticity property. It is shown in 
(Ciarlet, 1986) and in (Duvaut et al., 1972) that problem [1] admits a unique 
solution pu V∈ . Moreover, the tensor of membrane efforts is, (see for instance 
(Ayadi et al., 1990; Ayadi, 1993; Ciarlet et al., 1977)), expressed by: 
 

{ }
2

, 1

. , , 1, 2
p

p hu
n E n

x
ν

αβ αβνµ αβ
ν µ µ

λ α β
=

∂
= = ∈

∂∑ . 

 
Looking for a non-trivial solution to the nonlinear problem described above, we 

need the linearizing technique: set pu u w= +  and show that the deflection 3w  of 

the plate is solution to the following inequality: 
 

( ) ( )222 2
3 33 3

, , , 1 , 1

hv w v ww w
D d n d

x x x x x xαβνµ αβω ω
α β ν µ α βν µ α β α β

ω λ ω
= =

∂ − ∂ −∂ ∂
≥

∂ ∂ ∂ ∂ ∂ ∂∑ ∑∫ ∫  [2] 

 
for all admissible deflection v, where Dαβνµ  denotes the bending rigidity tensor of 

the plate. The other components 1w  and 2w , of the displacement w , are related to the 

deflection 3w  by Kirchhoff-Love formulae (see (Ciarlet et al., 1977)). 

3. Mathematical framework and existence results 

Let us start by defining the adequate framework used in this paper so that the 
problem [2] admits at least one solution. 

 

( )1
0H H ω= , 

( )2
0: 0 0

v
W v H v on and onω γ γ

ν
∂ = ∈ = = ∂ 

, 

{ }: 0 cK v W v in ω= ∈ ≤ , 

 

cω being a subset of ω where the contact between the obstacle and the plate could 

occur. 
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The Sobolev spaces H and W are respectively equipped with the following 

norms: 
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1
2 22

1,
1

u
u

xω ω αα =
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The bilinear forms b and a are obviously continuous in the spaces H and W 

respectively. Assume now that the bending rigidity tensor Dαβνµ satisfies the 

ellipticity property (iii) so that the bilinear form a is coercive (see (Ciarlet et al., 
1977), (Destuynder, 1990; Duvaut et al., 1972)). That means there exists a positive 
constant α  such that 
 

( ) 2

2,
, , .a v v v for all v Wωα≥ ∈  

 
Within the framework defined above, problem [2] is mathematically well posed 

as stated by the following theorem. 

Theorem 3.1. There exist 0λ >  and nonzero vector 3w K∈ such that 

( ) ( )3 3 3 3, ,a w v w b w v w v Kλ− ≥ − ∀ ∈ . [3] 

 
Moreover, λ  is the minimum of the Rayleigh quotient over the closed convex 

cone K , which is realized on 3w : 

 

{ }
( )
( ) ( )3 3

0

,
min ,

,v K

a v v
a w w

b v v
λ

∈ −
= = . [4] 

 
Proof: See (Riddell, 1977). 

4. Numerical approximation 

The discrete unilateral buckling problem  

We shall approximate the nonlinear eigenvalue problem [3] by using a conformal 
finite element method. More precisely, because the functions of the space W are at 
least continuous inω , we should need, for instance, continuous differentiable finite 
element schemes. Let then hW  be a finite dimensional subspace of the space W and 

let hK  be a nonempty closed convex cone of hW . The discrete “nonlinear eigenvalue 

problem”, supposed to approach the continuous one [3], consists in finding pairs 

( ) { }( )3, 0h h hw IR Kλ +∈ × −  such that 
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( ) ( )3 3 3 3, , ,h h h h h h h h ha w v w b w v w for all v Kλ− ≥ − ∈ . [5] 

 
Equivalently, if we let , 1k k Nϕ ≤ ≤ , denotes a basis in the space hW , the 

discrete problem consists in finding h IRλ +∈  and { }0U C∈ −  such that 

 

( ) ( ), , ,h h hA U V U B U V U for all V Cλ− ≥ − ∈ � [6] 

 

where (.,.) denotes the inner product in NIR , C denotes a non-empty closed cone 

convex subset of NIR , and the symmetric and positive definite matrices hA  and hB  

have respectively for expressions ( ),k la ϕ ϕ  and ( ),k lb ϕ ϕ ,1 ,k l N≤ ≤ . In fact, we 

are not interested in all pairs ( ) { }( ), 0h U IR Cλ +∈ × −  satisfying the variational 

inequality [6]. We only would like to focus on the smallest eigenvalue and the 
corresponding mode satisfying problem [6], which are respectively the approximated 
buckling critical load and the approximated first buckling mode. Consequently, the 
smallest eigenvalue, denoted by 1hλ , is expressed by the minimizing problem: 

 

{ }
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( ) { }

( )
( )1
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min min

, ,h h

h h h
h

v K V Ch h h

a v v A V V

b v v B V V
λ

∈ − ∈ −
= = . [7] 

 
It is shown in (Dixmier, 1981) that the minimum of problem [7] exists and occurs 

at both 
 

( ) { } { }3 11,
0 0

N

i h i i hii N
U u C and w u Kϕ==
= ∈ − = ∈ −∑  

 
which also are solutions to problems [6] and [5] respectively (Ciarlet, 1978). 

REMARK. —Observe that, in general, the convex set hK  is not a subset of the 

convex set K. So, we cannot compare the approximated buckling critical load 1hλ  to 

the exact buckling critical loadλ . 

5. The numerical algorithm 

5.1. The nonlinear eigenvalue problem to be solved 

Consider two real, symmetric and positive definite matrices A and B. The 
nonlinear eigenvalue problem we are dealing with is: Find the smallest 0λ >  and 

( ) { }0i ju IR IR−∈ × − such that 
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( ) ( ) ( ), , ,
i jAu v u Bu v u v IR IRλ −− ≥ − ∀ ∈ ×   [8] 

 
where *i j N IN+ = ∈ . 
 

Let ( , )R A B be the mapping, Rayleigh quotient, associated with matrices A and B: 

 

( ) { } ( )( ) ( )
( )

,
, : 0 ,

,
N Av v

R A B v IR R A B v
Bv v

∈ − → = . 

 
Then, solving problem [8] is equivalent to solving the minimizing problem: 

 

( ) { }
( )( )

0
min ,

i jv IR IR
R A B vλ

−∈ × −
= . [9] 

 
It is well known, (see (Dixmier, 1981)), that problem [9] has at least one solution 

( )i ju IR IR−∈ × such that
2

1u = . 

The main goal of the paper is: how to compute the approximated unilateral 
buckling critical load λ  and the corresponding approximated unilateral buckling 
mode u  at minimum cost? After showing that the solution of problem [9] is also 
solution to a certain linear eigenvalue problem, and being inspired by an idea of H. 
Ben Dhia (see (Ben Dhia et al., 2004)), an algorithm, which consists in computing 
the smallest eigenvalue of each of a finite number of linear eigenvalue problems, is 
suggested. This means, at least, that the convergence of the algorithm is guaranteed. 
Then, there is a direct relation between the number of mesh nodes in the contact 
region cω  and that of linear eigenvalue problems to be solved. Indeed, the smaller 

the former is, the smaller the later will be. Moreover, the computation of these 
problems may be done in parallel if we dispose of parallel machines. 

5.2. The linear problem associated with the nonlinear one 

In order to give a very interesting characterization of the pair ( ),uλ , solution to 
problem [9], we need the following definitions and notations: 

 

( ) { }{ }1, 2,..., ; 0kI u k i u= ∈ = , 

( ) ( )( )p u card I u= , 

( ) ( ) ( ){ }: 0
i

kE u x IR x if and only if k I u−= ∈ = ∈ , 
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( )A u  denotes the sub-matrix of A obtained by eliminating rows kA and 

columns kA , ( )k I u∈ , while *u  denotes the sub-vector of u obtained by eliminating 

the null components. Thus, we have 
 

( ) ( )* * .
i p u ju IR IR
−

−∈ ×
 

 

For all ,0 ip ≤≤ { }( )1,2,...,p i℘ denotes the set of all subsets, containing p 

elements chosen in the set{ }i,...,2,1 . It is convenient to recall that { }( )1,2,...,p i℘  

is finite and its cardinal is equal toC
p
i

. 

Lemma 5.1. The pair ( )*,uλ is solution to the unidentified linear eigenvalue 

problem: 
 

( ) { }
( ) ( )( )( )

( )
0

min ,
N p u

v IR
R A u B u vλ

−∈ −
= . [10] 

 
Proof: From the double inequality: 
 

( ) ( )( )( )
( )

( ) ( )( )( )
( )

*, min ,
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R A u B u u R A u B u v
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And 

( ) { }
( )( )

( )
( )( )

0
min , min ,

i jj v E u IRv IR IR
R A B v R A B v

− ∈ ×∈ × −
≤ , 

 
we deduce the new minimizing problem: 
 

( ) ( )( )( )
( )( )

min ,
i p u jv IR IR

R A u B u vλ
∗ −
−∈ ×

= . 

Because ( ) ( )* i p u jIR IR
−

− ×  is an open subset of
( )N p uIR −

, it follows, (see (Ciarlet, 

1982)), the first Euler’s optimality condition:  
 

( ) ( )( )( ) ( ) ( )* * *' , 0R A u B u u A u u B u uλ= ⇔ = , 

 
as well as the second optimality condition: 
 

( ) ( )( )( )( )* ( )" , , 0 N p uR A u B u u w w for all w IR −≥ ∈ . 
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But the above second optimality condition can be otherwise expressed as 

follows: 
 

( ) ( )( )( ) ( ) ( )( )( )* ( ), , , N p uR A u B u u R A u B u w for all w IR −≤ ∈ . 

Consequently, the pair ( )*,uλ satisfies the linear eigenvalue problem [10]. 
        
 
REMARK. —As long as the buckling mode u is unknown, the linear eigenvalue 
problem [10] is unidentified. This is why we are going to solve a finite number of 
identified linear eigenvalue problems. 

Theorem 5.2. In order to solve problem [9], according to lemma 5.1, we should 
solve a finite number of identified linear problems of type [10]. This number is at 

most equal to 2i . 
 
Proof: We can easily show the following partition: 
 

( ) ( )
0

ii j j

p
IR IR E p IR− =

 × = ∪ × 
 

, 

 
where 
 

( ) ( ){ }: .
i

E p x IR the number of null components is exactly equal p−= ∈  
 

But each set ( )E p , 0 p i≤ ≤ , is in its turn union of a finite number of sets as 
exemplify the following formula: 
 

( )
( ) { }( )

( )( )
1,2,...,

,
pM p i

E p E p M p
∈℘

= ∪ , 

 
where 
 

( )( ) ( ) ( ){ }, : 0kE p M p v E p v if and only if k M p= ∈ = ∈ . 

Thus, the minimizing problem [9] rewrites as follows: 
 

( ) { }( ) ( )( )
( )( )

0 1,2,..., ,
min min min ,

j
pp i M p i v E p M p IR

R A B vλ
≤ ≤ ∈℘ ∈ ×

  
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. 
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According to lemma 4.1, there exists an optimal pair ( )( )* *,p M p such that 

 

( ) { }
( )( ) ( )( )( )( )

*

* * * *

0

min , , ,
N p

v IR

R A p M p B p M p vλ
−∈ −

= , 

 

where ( )( )* *,A p M p denotes the sub-matrix of A  obtained by eliminating *p rows 

kA  and *p columns ,kA  ( )*k M p∈ . Because the optimal pair ( )( )* *,p M p is 

ignored, we shall search for the solution of problem [9] by solving a certain number 
of linear eigenvalue problems among the following: 
 

( ) { }( )
( )( )

( ) { }
( )( ) ( )( )( )( )

0

0 ,

1, 2,..., ,

, min , , , ,
N p

p

v IR

p i

M p i

p M p R A p M p B p M p vλ
−∈ −


≤ ≤

 ∈℘


=


 [11] 

 

whose number is equal to
0 1

... 2
i i

i i iC C C+ + + = . 
 

In order to give more details, regarding the number of linear eigenvalue problems 
to be solved, we need the following definition. 

Definition 5.3. Let, for all 0 ,p i≤ ≤  M(p) be the set of all subsets 

( ) { }( )1,2,...,pM p i∈℘  for which 

 

( )( ) ( )( ) ( )( )( )( ) ( )*, , , , ,
i p jp M p R A p M p B p M p x such that x IR IRλ
−

−= ∈ ×

 

( )
( )

( )( )
M(p) 

min , .
M p

p p M pλ λ
∈

=  

 
REMARK. —Although the convergence of penalized problems is theoretically 
justified, the penalization method still remains unstable. Indeed, because the penalty 
parameter is supposed to approach zero, the penalization method yields very ill-
conditioned matrices and consequently leads to inaccurate results. In order to avoid 
and overcome these numerical instabilities, a direct method is suggested. Its greatest 
advantage is, in my knowledge to the penalization method (Ayadi, 1990), the 
accuracy of its results.  

The reader might think that the large number of linear eigenvalue problems [11] 
to be solved, which may reach 2i, is a drawback of the algorithm. However, this 
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number can be noticeably reduced. Indeed, according to several computations, we 
have observed that if ( )pλ and ( )qλ exist, for 0 , ,p q i≤ ≤  then we have: 

 

( ) ( ).p q p qλ λ≤ ⇒ ≤  

 
How to interpret that very interesting result? From the mechanical point of view, 

if the number p of fixed points in the contact region cω  gets larger, the thin plate 

gets more rigid and therefore, the buckling critical load gets larger. Besides, the 
linear problems [11] can always be handled independently if parallel machines are 
available. Indeed, our algorithm represents a typical example of parallel 
computations. 

5.3. A flow chart of the algorithm 

Hereafter the different practical stages of the algorithm: 

0,and qλ = +∞ =    

For 0p to i=  

 For 1
p

i
m to C=  

         ( )( ) ( )( ) ( )( )( )( )*, , , ,p m p R A p m p B p m p wλ =  

  If ( )( )* * i p jw IR IR
−

−∈ ×  

   ( )( )( )min , ,p m pλ λ λ=  

    If ( )( )( ),p m pλ λ= , then *q w=  

    End if 
  End if 

End 
If ( )0q ≠ then the algorithm has converged. Break 

 End if   
End 

6. Numerical results 

In order to test our algorithm and validate our numerical unilateral buckling 
model, three numerical tests corresponding to the same rectangular plate but three 
different kinds of obstacle are achieved (see figure 2 below). 
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Figure 2. The rectangular plate is in presence of the obstacle 

Occupying the two-dimensional domain ] [ ] [0.1,0.1 0.05,0.05ω = − × − , the plate is 
simply supported on the whole of its edge and compressed on the part 1γ  of its edge 
by a uniform load 2ελ . Furthermore, the plate is supposed to have a 
thickness 2 0.006mε = and to be made of a homogenous and isotropic material 
whose mechanical features are: the Young’s modulus E = 1.000e+09Pa, and the 
Poisson’s ratio 0.3ν = . 

In order to minimize the number of degrees of freedom, the Kirchhoff-Love’s 
plate model is replaced by the Mindlin’s plate model. The later satisfies the exact 
three-dimensional boundary conditions, but does not allow representing three-
dimensional singularities. Boundary layer models based on Kirchhoff-Love theory, 
at the opposite, permit to point out the existence of such stress singularities (see 
(Davet et al., 1985)). Fortunately, the two theories are suitable for computing the 
critical state of buckling. The Mindlin’s plate model involves, as unknowns, the 
deflection 3w  and the two rotations 1θ  and 2θ  of the mid plane of the plate, which 

are related by the formulae (see (Ciarlet et al., 1977), (Destuynder, 1990)): 
 

3 , 1, 2.
w

xα
α

θ α
∂

= − =
∂

 

 
Because the Mindlin’s model involves at most first order partial derivatives, a 

continuous finite element is used. This is the quadrangle with four nodes, known as 
Macneal’s finite element (see (Macneal, 1978)). Let now ( )hQ be a mesh of the plate 

by regular quadrangles. Then the space W is approximated by the finite dimensional 
subspace: 
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( ) ( )( ) [ ] ( ){ }30
3 1 2 3 1, , : , , " . . "h h h h h hQ h QW v r r C v r X Y for all Q Q and BC SQαϖ= ∈ ∈ ∈  

 
where “B.C.S” is the abbreviation of boundary condition satisfied, and 

 

[ ] { }1 1 00 10 01 11,X Y Q a a X a Y a XYQ = = + + +  

 
is the set of polynomials which are linear with respect to each variable. We likewise 
approximate the convex set: 
 

( ) ( ) ( ){ }3 1 2 3, , : , 0 , cK v r r W v x y for all x y ω= ∈ ≤ ∈  

 
by 
 

( ){ }3 1 2 3, , : ( , ) 0, ( , )h h h h h h i j i j cK v r r W v x y for all mesh node x y ϖ= ∈ ≤ ∈ . 

 

For a mesh made up of 400 squares, we obtain the following numerical results. 
 

 

Figure 3. The buckling mode of the plate in the absence of any obstacle 

Consider now the first kind of obstacle occupying the domain: 
 

[ ] [ ]1 0.04,0.04 0.05,0.05cω = − × − . 

The figure 4 shows the unilateral buckling mode of the plate in presence of an 
obstacle involving the contact domain 1c cω ω= . Observe that the buckling mode 

respects the unilateral contact conditions. The buckling critical load is noticeably 
greater than that obtained in the absence of the obstacle.  
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Figure 4. The unilateral buckling mode of the plate in the case: 1c cω ω=  

In the figure 5 below are plotted three curves showing the sections A of the 
buckling modes (in the absence and in the presence of the obstacle) of the plate as 
well as the section A of the obstacle (see figure 2). These curves show the position of 
the plate in relation to the obstacle in both cases: without obstacle and in the 
presence of the obstacle. It is very clear that there is not interpenetration of material, 
which is the goal of this work. 

 

 

Figure 5. The sections A of the buckling modes of the plate in the case: 1c cω ω=  
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The second kind of obstacle, occupying the domain 
 

[ ] [ ]2 0.04,0.04 0.02,0.02cω = − × − , 

 
is then considered. 
 

 

Figure 6. The unilateral buckling mode of the plate in the case: 2c cω ω=  

The noticeable changing of the obstacle has slightly affected the shape of the 
unilateral buckling mode as well as the buckling critical load. 

 

 

Figure 7. The sections A of the buckling modes of the plate in the case: 2c cω ω=  
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Finally, the third kind of obstacle occupying the domain cω ω= (all the plate is a 
contact zone) yields: 

 

Figure 8. The unilateral buckling mode of the plate in the case: cω ω=  

 

Figure 9. The sections A of the buckling modes of the plate in the case: cω ω=  
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7. Conclusion and perspectives 

Because methods based on the penalization technique are unstable, in the sense 
that the unilateral buckling mode completely changes by slightly changing the 
penalty parameter, a direct method is suggested. Implemented with the Mindlin’s 
plate model and the Macneal’s finite element, the algorithm we are proposing has 
allowed to obtain the buckling critical load and the corresponding unilateral buckling 
mode with a good accuracy and a reasonable cost. Indeed, it consists to solve a finite 
number of linear problems of the same kind. To each problem corresponds a couple 
of real, symmetric and positive definite matrices A and B and we have to compute 
the smallest eigenvalue and the correspondent eigenvector for the generalized 
eigenvalue problem Au Buλ= . Fortunately, all these problems can be handled 
independently by using parallel machines. 

The engineering application of the work reported herein is motivated by the fact 
that: in several mechanical situations, the slender structure is not at all tolerated to 
buckle. Therefore, the buckling phenomenon must be very well understood by the 
constructors. 

The future works could deal with unilateral buckling of equilibrium states of 
shells, which involves sufficiently large difficulties both from the theoretical and the 
numerical points of view, such as curvature and stiffness problems. 
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