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ABSTRACT. Economic and legal pressures on the structural engineers force them to consider un-
certainty in the domains interacting, through boundary impedances, with their design structure.
A probabilistic model of this impedance is constructed around a mean hidden state variables
model using a nonparametric method. This mean model is constructed using only deterministic
tools. The methodology is applied to the design of a gas tank on a layered soil.

RÉSUMÉ. Des facteurs économiques et réglementaires poussent les ingénieurs à prendre en
compte les incertitudes existant dans les domaines en interaction, via des impédances de fron-
tière, avec les structures qu’ils modélisent. Un modèle probabiliste de ces impédances est
construit par une méthode non paramétrique, autour d’un modèle moyen à variables d’état
cachées identifié à partir de calculs déterministes. L’approche est appliquée au dimensionne-
ment sismique d’une cuve de stockage de gaz sur sol stratifié.
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1. Introduction

In aeronautics, hydrodynamics and geodynamics, engineers have to deal with un-
bounded domains - atmosphere, sea or soil - interacting through boundary impedance
matrices with the structures they are designing (Wolf 1985). More generally, domain
decomposition techniques make use of impedance matrices when the entire Finite El-
ement (FE) model of an engineering system is too large to be built all at once. Let
us consider an unbounded domain Ω, coupled through boundary Γ to a structure (fig-
ure 1). The impedance of Ω through Γ will be denoted Z. At the continuous level, it is
the classical Dirichlet-to-Neumann operator, and the impedance matrix once numeri-
cal approximation is applied. It links - for the local harmonic boundary value problem
defined on Ω at a frequency ω- the displacement vector u and the stress vector t,
defined on a given basis of interface functions on the boundary Γ.

Z(ω)u(ω) = t(ω).

Figure 1. Uncertain unbounded domain Ω coupled to a structure through a boundary
Γ

The balancing of security and economic issues require that the engineers be able
to compute, as precisely as possible, those impedance matrices. Unfortunately, that
required accuracy is often out of reach. In soil mechanics, for example, the scarcity
of the available data on the mechanical parameters, their spatial variability, the errors
introduced by the measuring procedures, and the important errors due to the simplis-
tic models used (Favre 1998), make the achievement of an exact estimation of an
impedance matrix illusory. In that case, a probabilistic model has to be constructed
and the probability density function of the impedance - rather than a single mean value
- estimated.

In that purpose, many different stochastic methods have been developed (Schuëller
1997). They all share the same characteristic that they try to identify the uncertainty
on the parameters of the problem, and propagate that uncertainty to the response of
the system through the resolution of a system of stochastic differential equations. The
most classical of those parametric methods is the Stochastic FE method (Cornell 1971,
Ghanem et al. 1991) which works fine for the construction of the probabilistic model



Probabilistic model of impedances 133

of the impedance of a bounded domain but cannot be extended to unbounded domains.
Even when coupled with the (deterministic) Boundary Element (BE) method (Savin et
al. 2002), only a bounded subdomain is considered to have uncertain characteristics.

In this article, a method is presented to construct the probabilistic model of an
impedance matrix, avoiding the construction of the probabilistic model of the dy-
namic stiffness matrix of the unbounded domain. The link between the value of the
parameters of the mechanical model and the value of the impedance matrix is therefore
not explicitely given, and the parametric methods cannot be used. A nonparametric
method, recently introduced (Soize 1999, Soize 2000), is chosen. It is based on the
maximum entropy principle (Jaynes 1957), constrained only by the unquestionable
information on the model.

The causality of the impedance matrix being one of these constraints, a mean
model has to be constructed which enforces it (cf. section 2). The principle of the non-
parametric method of random uncertainties in linear structural dynamics is then briefly
recalled, followed by the construction of the probabilistic model for the impedance
matrix (cf. section 3). The required identification of the mean model from experimen-
tal or computational results is then described (cf. section 4). Finally, this construction
is applied for the design under seismic loading of a gas tank resting on a pile founda-
tion (cf. section 5).

2. Mean model of the impedance matrix

As any physical quantity, the impedance matrix must verify, in the time domain,
the causality condition. It states only the natural law that no effect should take place
without a cause, or mathematically written:

u(t) = 0 , ∀t < 0 ⇒ (Ẑ +×u)(t) = 0 , ∀t < 0,

where t → Ẑ(t) is the inverse Fourier transform of the impedance matrix in the
frequency domain ω → Z(ω). Any model, mean or probabilistic, for the impedance
matrix should enforce that relation. In the frequency domain, three methods may be
used: the Kramers-Kronig relations (Kronig 1926, Kramers 1927); the expansion of
the impedance matrix on a basis of Hardy functions (Pierce 2001); or the construction
of the impedance matrix on an underlying system ensuring causality (Chabas et al.
1987).

2.1. Kramers-Kronig relations

The first method was originally used in electromagnetic problems and relates the
real and imaginary part of any causal quantity in the frequency domain. In the case of
the impedance matrix it states that

<{Z(ω)} =
1

π

∮

R

={Z(ω′)}
ω − ω′

dω′.
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where<{Z} and={Z} are, respectively, the real and imaginary part of the impedance
matrix, and

∮

stands for Cauchy’s integral. This relation is still used in experimental
physics where the imaginary part of a quantity can sometimes be measured indepen-
dently from its real part. Here, it is not constructive as no information is available on
={Z}.

2.2. Expansion on a basis of Hardy function

Another possibility is to expand the impedance matrix on a basis of functions that
are known to span the entire space of causal functions: the Hardy functions space H.
As the family (ω → en(ω))n≥0, defined, for ω ∈ R, by

en(ω) =
1√
π

(

1

iω − 1

)(

iω + 1

iω − 1

)n

,

is an orthonormal basis of H, the impedance matrix can be expanded, for ω ∈ R, in

Z(ω) = −ω2
Z−2 + iωZ−1 + Z0 +

∑

n≥0

Zn+1en(ω),

where Zn is the nth coordinate - frequency-independent - of the pseudo-differential
part of Z in the basis (en)n≥0. Unfortunately, the convergence rate of the approxi-
mation

∑N
n=0

Znen of Z for increasing values of N is not known, and the a priori
unknown signature of the coordinates Zn would require the construction of compli-
cated sets of random matrices at the hour of using the nonparametric method.

2.3. Hidden state variables model

Finally, the impedance matrix can be constructed on an underlying system ensur-
ing that the causality property is verified. It is sought with the same structure as the
impedance matrix of a mechanical system whose vibrations in the time domain are
governed by a second-order differential equation with constant coefficients. For some
systems - a bounded linear elastic system, for example - this approach corresponds ex-
actly to the classical modelling: the impedance is the condensation on the nΓ degrees
of freedom (DOFs) of the boundary of the n × n dynamic stiffness matrix A written
as

A(ω) = −ω2
M + iωD + K. [1]

where M , D and K are the real, frequency-independent, matrices of mass, damping
and stiffness. M is in M

+
n (R), the set of all n × n real positive-definite matrices and

D and K are in M
+0
n (R), the set of all n × n real positive semi-definite matrices.

In the general case, this approach defines an approximation pattern for the
impedance matrix and, although the notation will be kept, A, M , D and K are
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not the actual dynamic stiffness, mass, damping and stiffness matrices. Likewise, the
variables that appear in this model are related to the real DOFs of the physical system
only indirectly. This model of the impedance matrix will therefore be called a hidden
state variables model.

The bloc-decomposition of the dynamic stiffness matrix on the nΓ DOFs of the
boundary and the nh hidden state variables,

A(ω) =

[

AΓ(ω) Ac(ω)
AT

c (ω) Ah(ω)

]

, [2]

leads to an impedance matrix in the form:

Z(ω) = AΓ(ω) − Ac(ω)A−1

h (ω)AT
c (ω), [3]

and the bloc-decomposition corresponding to equation [2] for the mass, damping and
stiffness matrices leads to, with identification to equation [1],

AΓ(ω) = −ω2
MΓ + iωDΓ + KΓ,

Ac(ω) = −ω2
Mc + iωDc + Kc,

Ah(ω) = −ω2
Mh + iωDh + Kh.

where MΓ ∈ M
+
nΓ

(R), DΓ, KΓ ∈ M
+0
nΓ

(R), Mh ∈ M
+
nh

(R), Dh, Kh ∈ M
+0
nh

(R)
and Mc, Dc, Kc ∈ MnΓ,nh

(R).

Equation [3] can be rewritten in the following form:

Z(ω) =
N(ω)

d(ω)
, [4]

where ω 7→ N(ω) and ω 7→ d(ω) are two polynomials with constant coefficients
(matricial for N and scalar for d). The degrees of N and d verify deg N = deg d+2.
The values of the matrices M , D and K of this mean model for the impedance matrix
can be identified from computational or experimental results (cf. section 4).

3. The nonparametric method

The nonparametric method was originally developped in linear structural dynam-
ics (Soize 1999, Soize 2000, Soize 2001a) with applications in vibrations and transient
elastodynamics, and was extended to nonlinear dynamical systems (Soize 2001b) and
to the medium frequency range (Soize 2003). The coupling of structures with dif-
ferent levels of uncertainty has also been considered in (Soize et al. 2003, Chebli et
al. 2004) and a nonparametric-parametric approach has been presented in (Desceliers
et al. 2003) to model each source of uncertainty with the most appropriate method.
Hereafter are only recalled the main ideas, with no proof. The reader should refer
to (Soize 1999, Soize 2000) for more details.
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The main concept of this method is to identify, for each problem, the unquestion-
able information, and to use the maximum-entropy principle to derive a probabilistic
model using only that available information. This information is scarcer than that used
in the parametric methods and includes for example, in linear structural dynamics, the
positive-definiteness of the mass matrix and the existence of the moments of the in-
verse of that matrix. Here the available information is composed of the causality of
the impedance matrix, which is enforced by the hidden state variables model that was
chosen, and the classical information available for the mass, damping and stiffness
matrices. This information consists in their signature, their square-integrability, the
integrability of their inverse and their mean value.

More precisely, let Bn (be it M , D or K) be a n × n random matrix such that:

1) Bn is a random matrix with values in M
+
n (R), almost surely;

2) Bn is a second-order random variable: E{‖Bn‖2
F } < +∞;

3) The mean value Bn of Bn is given in M
+
n (R): E{Bn} = Bn;

4) Bn is such that: E{ln(det Bn)} = ν , ν < +∞;

where ‖Bn‖F = (tr{BnB∗
n})1/2 is the Frobenius norm of Bn, E{·} is the mathe-

matical expectation, and the fourth condition is that which enforces the integrability
of the inverse of Bn. Using the maximum entropy principle, the probability density
function pBn

of Bn, constrained only by this information, can be calculated analyti-
cally, with respect to a measure d̃Bn on M

S
n(R), the set of all n × n symmetric real

matrices.

The parameter ν which is introduced in this fourth condition is usually replaced
by a dispersion parameter δ which arises naturally in the computation of pBn

of Bn

and is the actual dispersion on Bn (Soize 2000).

δ =

(

E{‖Bn − Bn‖2
F }

‖Bn‖2
F

)1/2

. [5]

The estimation of δ depends on the type of information available:

– when no objective information is known about δ, a sensitivity analysis must be
performed with δ as the parameter and its value estimated depending on the level of
stochastic fluctuations (level of uncertainty);

– when experimental data is available, mathematical statistics give the value of δ;
– when a parametric model has been constructed in the low-frequency range,

where data uncertainties are, in general, more important than model uncertainties,
δ can be estimated through statistics on the first eigenfrequency;

– when the uncertain system pertains to a class of systems for which δ has already
been studied, the same value can be re-used.

A method was devised to compute efficiently Monte-Carlo trials of such a random
matrix Bn, given its mean value Bn and a dispersion parameter δ. It can also be shown
that, if no correlation is explicitely introduced as a constraint in the maximum entropy
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method between the elements of a set of random matrices, then they are independent
variables. This proves that the matrices M , D or K, each one with its own mean
value (M , D and K) and dispersion parameter (δM , δD and δK) can be drawn
independently. For each triplet of Monte-Carlo trials [M , D, K], a realization of the
dynamic stiffness matrix A is computed using equation [1] and, finally, a realization
of the impedance matrix Z is obtained with equation [3].

The construction of this probabilistic model of the impedance matrix therefore
requires the knowledge of the mean values M , D and K and dispersion parameters
δM , δD and δK . The identification of the dispersion parameters is described in (Arnst
et al. 2005, Soize 2005, Ratier et al. 2005), and that of the mean matrices is described
in the next section.

4. Identification of the matrices M , D, K of the mean model

The identification of the mean values M , D, K of the mass, damping and stiffness
matrices in the hidden state variables model of the impedance matrix is performed in
two steps:

1) The algebraic form [4] of Z is considered, and the value of the coefficients
of the polynomials N and d are sought so as to minimize an error function between
Z = N/d and a given impedance matrix Z̃, that was either measured experimentally
or computed. The first step is then an interpolation of a given (matricial) function by
a (matrix) rational function. Since the degree of N and d is a priori unknown, an iter-
ation on the number of hidden state variables has to be set to obtain an approximation
sufficiently accurate.

2) Given the coefficients of the polynomials N and d in [4], the second step con-
sists in finding the mass, damping and stiffness frequency-independent matrices M ,
D, K giving rise in equations [1-3] to such coefficients. No approximation is per-
formed in that step, although, as will be seen, more than one solution may arise.

The interesting feature of that methodology is that it separates the problem into
one very generic approximation problem that can be solved by virtually any of many
existing methods (Guillaume et al. 1996, Allemang et al. 1998, Pintelon et al. 2001),
and one more specific identification problem that does not involve any approximation.
Particularly, the error function of step 1 can be adapted to the type of mean impedance
available: experimental or computational. For the purpose of the example in this arti-
cle (cf. section 5), a linear least squares approximation with orthonormal polynomial
vectors was used but it will not be described here and the reader is refered to (Pintelon
et al. 2004, Bultheel et al. 1995). For the remainder of this section, only step 2 of the
identification will be considered.
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Let Φ an orthogonal nh × nh real frequency-independent matrix, Mc a nΓ ×
nh real frequency-independent matrix and U the n × n real frequency-independent
matrix, defined by

U =

[

InΓ
−Mc

0nΓ,nh
Φ

]

[6]

where InΓ
is the nΓ × nΓ real identity matrix, and 0nΓ,nh

the nΓ × nh real null
matrix. It is obvious from equation [3], that the sets of matrices [M , D, K] and
[UMUT , UDUT , UKUT ] lead to the same impedance matrix, and therefore that
they are equivalent sets if only the impedance is given.

Starting from a set [M , D, K], if Φ is chosen as the matrix of the eigenvectors of
the generalized eigenvalue problem for Mh and Kh, normalized with respect to Mh

(by hypothesis, Φ also diagonalizes Dh), and Mc = Mc, then we have

UMU
T =

[

mΓ 0nh,nΓ

0nΓ,nh
Ih

]

, [7]

and

UDU
T =

[

dΓ dc

dT
c dh

]

, UKU
T =

[

kΓ kc

kT
c kh

]

, [8]

where dh and kh are diagonal matrices which, as is customary in structural vi-
brations, are written in terms of eigenfrequencies and modal damping dh =
diag(2ζkωk)1≤k≤nh

and kh = diag(ω2
k)1≤k≤nh

. Since for any matrix U in the form
of equation [6], the sets [M , D, K] and [UMUT , UDUT , UKUT ] are equivalent,
we freely choose to perform the identification on a set in the form of equations [7-8].
The impedance matrix can then be written

Z(ω) = −ω2
mΓ + iωdΓ + kΓ −

nh
∑

k=1

(iωdc + kc)(iωdc + kc)
T

−ω2 + 2iζkωkω + ω2
k

[9]

On the other hand, the matricial rational function ω → N(ω)/d(ω) can be ex-
panded in a unique pole-residue form:

Z(ω) =
N(ω)

d(ω)
= −ω2

R−2 + iωR−1 + R0 +

2nh
∑

k=1

Rk

iω − pk
. [10]

In the general case, the poles and the residue are complex, but can be paired as they are
present with their complex conjugate. Let us denote two elements of a pair with α and
β, so that the Rα

k + R
β
k and Rα

k pβ
k + R

β
kpα

k are real. Equations [9-10] yield obvious
identifications for mΓ, dΓ, (ωk)1≤k≤nh

and (ζk)1≤k≤nh
and lead to the following

system of equations for the kk
c , the dk

c and kΓ:










d
k
ck

kT
c + k

k
c d

kT
c − 2ζkωkd

k
cd

kT
c = −(Rα

k + R
β
k ) , 1 ≤ k ≤ nh

kk
c kkT

c − ω2
kdk

cdkT
c = (Rα

k pβ
k + R

β
kpα

k ) , 1 ≤ k ≤ nh

kΓ +
∑nh

k=1
dk

cdkT
c = R0
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The first 2nh equations can be solved by diagonalization and, finally kΓ can be com-
puted from the knowledge of the dk

c .

5. Seismic design of a gas storage tank on a layered soil

The method presented in this paper is applied in this section to the seismic design
of a concrete gas storage tank set on a circular rigid superficial foundation on a layered
soil. The tank is 80 meters-wide and 38 meters-high and is modeled deterministically.
The soil is constituted of a 50 meters-deep soft layer (mass density ρ = 2000kg/m3,
Young’s modulus E = 5.33× 109N/m2, Poisson coefficient ν = 0.33 and hysteretic
damping coefficient β = 0.001) on top of a stiffer half-space (ρ = 2500kg/m3,
E = 6.0 × 109N/m2, ν = 0.33 and β = 0.001). The mean soil impedance matrix
is computed using the BE method (Miss3D program (Clouteau 2003)). The tank is
modeled using the FE method (figure 2). The Frequency Response Function (FRF) of
the horizontal displacement of the highest point of the structure for a unit plane shear
wave excitation propagating from infinity is considered. The real and imaginary parts
of that FRF are drawn in dashed line on figure 3.

Figure 2. FE model of the gas storage tank

The hidden state variables model of the mean impedance matrix is constructed,
yielding a correct approximation of the BE result with only one hidden variable, and
the corresponding FRF is drawn on figure 3 in dash-dotted line (it is almost perfectly
covered by the solid line). Finally, the probabilistic model of the impedance matrix
is approximated using 1000 Monte-Carlo trials (the mean and the covariance of the
impedance matrix converge after a few hundred trials) for equal dispersion parameters
for the mass, damping and stiffness matrices: δM = δD = δK = 0.1. They have
been chosen here by analogy with previous works on bounded structures, but should
in the future be identified directly form experiments. For each impedance matrix,
the corresponding displacement of the top of the building is computed and drawn on
figure 3.
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Figure 3. Real and imaginary parts of the FRF of the highest point of the tank to a
unit plane shear wave excitation: FE-BE deterministic model (dashed line); Mean
hidden variables model (dash-dotted line); envelope of the Monte-Carlo trials (grey
patch); mean of the trials (solid line)

6. Conclusion

The method presented in this paper allows to construct a nonparametric probabilis-
tic model of the soil impedance matrix that takes into account both the data uncertain-
ties and the modelling errors. The only required knowledge is a mean impedance ma-
trix and a set of dispersion parameters that can be identified from experiments (Arnst
et al. 2005, Soize 2005) or that one can vary in a parametric study (Ratier et al. 2005).
The mean impedance matrix can be either computed or measured, and is approximated
by a hidden variables model that ensures its causality. The way to draw the realizations
of the random impedance matrix is given and the response statistics are computed by
the Monte-Carlo method. Although the method was presented in the case of seismic
engineering, it is useful for a very broad range of applications: any problem involving
an unbounded domain is eligible. It may prove interesting even for large bounded
domain, as the reduction of the analysis to boundary impedance matrices reduces the
computational costs compared to classical parametric methods where the entire un-
certain domain has to be modeled. The application showed the applicability of the
method for an industrial design problem.
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