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ABSTRACT. The eXtended Finite Element Method (X-FEM) was used with success in the past
few years for Linear Elastic Fracture Mechanics. In this paper one proposes to extend this
method to fatigue crack growth analysis in the case of confined plasticity with treatment of
frictional contact on the crack faces. A new plastic enrichement basis is therefore extracted
from HRR fields and introduced in X-FEM coupled with an augmented Lagrangian formulation
and a radial return method for plastic flow. Comparisons are made for mode I and mixed mode
loading with a finite element code and show good agreements.

RÉSUMÉ. La méthode des éléments finis étendus (X-FEM) a été utilisée avec succès dans le cadre
de la mécanique élastique linéaire de la rupture. Nous proposons de l’étendre à la propagation
de fissure en fatigue dans le cadre de la plasticité confinée avec traitement du contact et du
frottement sur les lèvres de la fissure. Une nouvelle base d’enrichissement élasto-plastique est
extraite des champs HRR et couplée avec une formulation de type Lagrangien augmenté et un
algorithme élasto-plastique incrémental. Les résultats en mode I et mode mixte sont en bon
accord avec ceux obtenus dans un code élément fini classique.

KEYWORDS: non-linear fracture mechanics, extended finite element method, HRR fields, contact,
friction.

MOTS-CLÉS : mécanique non linéaire de la rupture, méthode des éléments finis étendus, champs
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1. Introduction

This paper presents an augmented Lagrangian formulation in the framework of the
eXtended Finite Element Method (X-FEM) for fatigue fracture analysis of cracks in
elastic-plastic two-dimensional solids subject to mixed mode in the case of confined
plasticity with treatment of contact and friction on the crack faces. This method is
based on the elastic-plastic asymptotic crack tip fields also known as the Hutchinson-
Rice-Rosengren fields (cf. (Hutchinson 1968) and (Rice et al. 1968)), from which a
plastic enrichment basis, similar to the one presented in (Rao et al. 2004), is extracted.
A mixed Augmented lagrangian - XFEM formulation is used to treat at the same time
the material plastic non-linearity and the frictional contact problem.

2. Problem formulation

2.1. General formulation

Consider the body Ω ⊂ R
2 containing an internal boundary Γ representing a crack

as depicted in Figure 1. The crack faces are denoted by Γ+ and Γ− such that Γ =
Γ+ ∪ Γ−. The boundary of Ω is denoted by ∂Ω and can be split in two sets: ∂1Ω on
which the displacement field ud is enforced (Dirichlet boundary conditions) and ∂2Ω
on which the surface traction Fd is enforced (Neumann boundary conditions). One
assumes quasi-static loading of the body Ω and absence of body forces. The stress
and displacement fields are denoted by σ and u respectively. One also introduces the
equivalent quantities on the crack faces: traction t and displacement w denoted by +
on Γ+ (t+,w+) and − on Γ− (t−,w−). For convenience the notations w (respectively
t) will be used when referring to both w+ and w− (respectively t+ and t−). At this
point no assumption on the material law is done and it can therefore be non-linear
(elastic-plastic for example). The interfacial constitutive law is expressed in terms of
displacement and traction on the crack faces:

C(t+, t−, w+, w−) = 0 [1]

As in Ref (Dolbow et al. 2001) the form of the C operator depends on the constitutive

+Γ

−Γ

ud

1∂  Ω

∂  Ω2

Ω
Γ

Fd

Figure 1. Notations for the reference problem
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law considered and can be multivalued in the case of unilateral contact with friction.
The C operator includes the following conditions:























(w− − w+).n ≥ 0
t+.n ≤ 0 t−.n ≥ 0

t+.n = −t−.n
PT t+ = −PT t−

{t+.n}{(w− − w+).n} = 0

[2]

where n is the outward normal to Γ+ and PT is the tangential projection operator such
that any vector quantity v expressed on the crack faces can be written v = (v.n)n +
PT v. For frictionless contact the following condition is added:

PT t+ = −PT t− = 0 [3]

In the case of unilateral contact with friction, the incremental approach used in
(Ribeaucourt et al. 2005) to update the tangential quantities is used as it can deal
with non-monotonous loading conditions. The set of kinematically admissible fields
Uad is defined as:

Uad =
{

(u, w) ∈ U : u |∂1Ω= ud, u |Γ+= w+, u |Γ−= w−
}

[4]

where the space U is related to the regularity of the kinematic fields. The set of
kinematically admissible to zero fields U0 is defined as:

U0 =
{

(u, w) ∈ U : u |∂1Ω= 0, u |Γ+= w+, u |Γ−= w−
}

[5]

In absence of body forces and considering quasi-static loading, the set of statically
admissible fields Tad is defined as

Tad =

{

(σ, t) ∈ T : σT = σ verifiying

∫

Ω

σ : ε(u?)dΩ =

∫

∂2Ω

Fd.u
?dS +

∫

Γ+

t+.w? +dS +

∫

Γ−

t−.w? −dS ∀(u?, w?) ∈ U0

}

[6]

where u? and w? are the virtual displacement fields located in the space of kine-
matically admissible to zero fields. Taking into account the compact notation intro-
duced earlier, the last two integrals in the principle of virtual work in Equation [6] can
be rewritten:

∫

Ω

σ : ε(u?)dΩ =

∫

∂2Ω

Fd.u?dS +

∫

Γ

t.w?dS ∀(u?, w?) ∈ U0 [7]

Let us consider the continuity of the kinematic fields in Ω given by the following
relation between u and w:

u |Γ+= w+ and u |Γ−= w− [8]
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This equation is enforced by introducing a Lagrange multiplier Λ on Γ. The space that
Λ belongs to is defined by (Simo et al. 1992, Belytschko et al. 2002):

L0 = {Λ ∈ L} [9]

where the space L is related to the regularity of Λ.
Equations [7] and [8] become:

∫

Ω

σ : ε(u?)dΩ =

∫

∂2Ω

Fd.u
?dS +

∫

Γ

t.w?dS +

∫

Γ

Λ?.(u |Γ −w)dS

+

∫

Γ

Λ.(u? |Γ −w?)dS ∀(u?, w?) ∈ U∗
0 , ∀Λ? ∈ L0 [10]

The space U∗
0 is defined as U0 without the compatibility condition given by Equation

[8] since Λ is introduced to enforce it.

In this equation, the primary unknowns are u, w and Λ, the secondary unknowns
are σ and t which can be obtained from the primary unknowns by using the material
constitutive law for σ and the interfacial constitutive law for t.

2.2. Iterative formulation

Due to the part associated with contact, the former equation is non-linear, and so
far the material law has not been expressed and can be non-linear as well. An iterative
strategy is therefore necessary to solve the problem. Equation [10] is rewritten using
the following notation: u is replaced by u

(i)
n where the superscript (i) corresponds to

the i-th iteration and the subscript n corresponds to the n-th computational time step:
Z

Ω

σ
(i)
n : ε(u?)dΩ =

Z

∂2Ω

Fd.u
?
dS +

Z

Γ

t
(i)
n .w

?
dS +

Z

Γ

Λ?
.(u(i)

n |Γ −w
(i)
n )dS

+

Z

Γ

Λ(i)
n .(u? |Γ −w

?)dS ∀(u?
, w

?) ∈ U∗

0 , ∀Λ? ∈ L0 [11]

This equation can be rewritten to gather the terms depending on u?, w? and Λ?:

0 = −
∫

Ω

σ(i)
n : ε(u?)dΩ +

∫

∂2Ω

Fd.u
?dS +

∫

Γ

Λ(i)
n .u? |Γ dS

+

∫

Γ

t(i)n .w?dS −
∫

Γ

Λ(i)
n .w?dS

+

∫

Γ

Λ?.(u(i)
n |Γ −w(i)

n )dS ∀(u?, w?) ∈ U∗
0 , ∀Λ? ∈ L0 [12]

Looking at the second part of the previous equation, one can notice that when con-
vergence is achieved Λ = t. This result could be forseen since the equation enforced
by the Lagrange multiplier is equivalent to a Dirichlet boundary condition: the La-
grange multiplier is then supposed to be equal to the force developed on the con-
strained boundary, which are the contact tractions t in the present case. Following the
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work done in (Simo et al. 1992, Belytschko et al. 2002), a penalty regularization of
the contact problem is done. Two penalty parameters are introduced, a normal one
denoted by αn and a tangential one denoted by αt. If one choses to express the inter-
facial quantities in the normal and tangential coordinates, a diagonal penalty matrix α
can be defined. Equation [12] is replaced by:

0 = −
∫

Ω

σ(i)
n : ε(u?)dΩ +

∫

∂2Ω

Fd.u
?dS +

∫

Γ

Λ(i)
n .u? |Γ dS

+

∫

Γ

(t(i−1)
n + αw(i−1)

n ).w?dS −
∫

Γ

(Λ(i)
n + αw(i)

n ).w?dS

+

∫

Γ

Λ?.(u(i)
n |Γ −w(i)

n )dS ∀(u?, w?) ∈ U∗
0 , ∀Λ? ∈ L0 [13]

Equation [13] represents the augmented Lagrangian formulation of the problem con-
sidered. One can observe than when convergence is achieved the penalty energy is
null because the term

∫

Γ α(w
(i−1)
n − w

(i)
n ).w?dS is equal to zero.

3. Study of the elastic plastic asymptotic fields

3.1. Elastic-plastic singularities

Let us consider a power-law hardening material associated with uniaxial stress-
strain (σ - ε) relationship

ε

ε0
=

σ

σ0
+ α

(

σ

σ0

)n

[14]

where σ0 is the reference stress, ε0 = σ0/E the reference strain, E the Young modu-
lus, α a material constant and n the hardening exponent. For multiaxial stress state, the
Ramberg-Osgood law can be generalized with respect to the strain rate partition. In the
fracture process zone at the vicinity of the crack tip, elastic strain rates are negligible
when compared with plastic strain rates. Therefore Hutchinson (Hutchinson 1968),
Rice and Rosengren (Rice et al. 1968) obtained the asymptotic fields also called HRR
fields:

σij = σ0

(

J

ασ0ε0Inr

)
1

n+1

σ̃ij(θ, n) [15]

εij = αε0

(

J

ασ0ε0Ir

)
n

n+1

ε̃ij(θ, n) [16]

ui = αε0r

(

J

ασ0ε0Ir

)
n

n+1

ũi(θ, n) [17]

where r and θ are the polar coordinates with origin at the crack tip, In is a dimension-
less constant that depends on n, σ̃ij , ε̃ij and ũi are dimensionless angular functions of
θ and n, and J Rice’s integral.
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In (Hutchinson 1968) and (Rice et al. 1968) the angular functions are calculated
under pure mode I. The can be calculated in pure mode II as presented in (Pan 1990)
considering the anti-symmetry conditions. Equations [15] to [17] represent the HRR
plastic fields under mode I and II.

3.2. Fourier analysis
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Figure 2. Approximations of the HRR fields for mode I (a) and mode II (b)

As one has to solve a fourth-order non-linear differential equation to evaluate the
ũi(θ, n) functions, one shall approximate them by simpler functions. For the linear
elastic case, the asymptotic displacement solutions are :

u1(r, θ) =
1

2µ

√

r

2π
(KI cos

θ

2
(k − cos θ) + KII sin

θ

2
(k + cos θ + 2)) [18]

u2(r, θ) =
1

2µ

√

r

2π
(KI sin

θ

2
(k − cos θ) − KII cos

θ

2
(k + cos θ + 2)) [19]
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where k is the Kolosov constant k = 3 − 4ν for plane strain. These functions can be
expanded on the following basis:

{√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

}

[20]

In the case of elastic plastic fields, one performs a Fourier decomposition of the func-
tions ũi(θ, n) for both mode I and mode II. These functions, which are known on
the interval [−π; π], are periodized on [0; 4π] by conserving the symmetry and anti-
symmetry properties of the linear elastic fields, and the variable is taken to be θ/2
instead of θ. It appears that the only non zero harmonics are cos(k θ

2 ) and sin(k θ
2 ) (for

k in N) depending on the symmetry properties of the function considered. This shows
that the HRR fields can be well approximated by using a truncated Fourier expansion
by taking only the first four non zero harmonics for each function. The Fourier expan-
sion are compared to the complete HRR solution in Figure 2 for pure mode I and pure
mode II under plane strain conditions for three types of material (n = 3.7, n = 10,
n = 50).

Therefore one can represent the displacement fields under pure mode I and pure
mode II by expanding the HRR functions on the following basis:

r
1

n+1

{(

cos
kθ

2
, sin

kθ

2

)

; k ∈ [1, 3, 5, 7]

}

[21]

4. Discretization

4.1. The eXtended Finite Element Method - linear elastic case

In the eXtended Finite Element Method, presented in (Moes et al. 1999), an en-
richment basis is added to the classical finite element basis approximation. This is
done using the Partition of Unity Method (Babuška et al. 1997). The enriched basis
shape functions are associated to new degrees of freedom and the displacement field
can be written :

U =
∑

i∈N

Ni(x)Ui +
∑

i∈Ncut

Ni(x)H(x)ai +
∑

i∈Nfront

∑

α

Ni(x)Bα(x)bi,α [22]

N is the set of the standard finite element nodes, Ncut the set of nodes which belong
to elements completely cut by the crack and Nfront the set of nodes containing a
crack front. Ni are the standard finite element shape functions, H is a function which
value is ±1 and [Bα] is given by Equation [20] in the linear elastic case (Fleming et
al. 1997).

4.2. Plastic case

The Fourier analysis led to the choice of the enrichment basis given by Eq. [21].
The comparison of this basis with the linear elastic one induced one to use trigonomet-
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ric identities in order to have only one function (sin θ/2) with discontinuity between
θ = +π and θ = −π. The existence of high order trigonometric terms in the enrich-
ment basis implies the improvement of the numerical integration scheme. The triangle
partitionning technique used for linear X-FEM calculation (Moes et al. 1999) is re-
placed by the one presented on Figure 3. The elements cut by the crack are subdivided
into 16 subquadrangles with 16 Gauss quadrature points in each subquadrangle. With
this technique the subelements edges are not compatible with the crack faces, and
integration errors may appear because of the enrichment functions that are discontin-
uous on the the crack faces. Therefore on choses to create two sets of subelements
based on the subquadrangles grid (Figure 4): one set (denoted by (a) and (b)), which
is compatible with the crack faces, to calculate the global stiffness matrix ; and another
set (denoted by (c) and (d)), which is independant of the crack faces, to compute the
plastic flow in each element cut by the crack. An eigenvalue analysis of various basis
extracted from Equation [21] and the linear elastic basis is done. The basis that has as
few spurious modes as for the elastic one is chosen:

[Bα] =

[

r
1

n+1 sin
(

θ
2

)

r
1

n+1 cos
(

θ
2

)

r
1

n+1 sin
(

θ
2

)

sin(θ)

r
1

n+1 cos
(

θ
2

)

sin(θ) r
1

n+1 sin
(

θ
2

)

sin(3θ) r
1

n+1 cos
(

θ
2

)

sin(3θ)

]

[23]

Elements

Crack

Node support
Nodal

(a)
Subquadrangles

(b)

Figure 3. (a)Nodal support cut by a crack. (b)The subquadrangles associated with
elements cut by the crack

4.3. Contact treatment

To construct the integrals on the crack surface, it is necessary to discretize Γ. Due
to the fact that the crack does not conform a priori to the finite element mesh, Γ is
subdivided into one-dimensional elements with a technique equivalent to the one pro-
posed in (Dolbow et al. 2001). The curve Γ is composed of a set of one-dimensional
segments. For each segments, one determines the intersection of these segments with
the subelement mesh, which results in a set of one-dimensional subelements also
called interface elements (Figure 5).
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(a) (c)

(b) (d)

crack

Figure 4. Partitioning for the evaluation of (a) Discontinuous Stiffness Matrix, (b)
Tip Stiffness Matrix. Partitioning for plastic flow computation for (c) Discontinuous
element, (d) Tip element.
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Nodal supportEnriched node

Interface
elements

Figure 5. (a) zoom on a finite element with interface elements (b) definition of the
pairs (t+,w+) and (t−,w−) associated with Gauss quadrature points on each side of
the crack (Γ+ and Γ−).

4.4. Discrete iterative procedure

Introducing the approximation for the X-FEM displacement field and the dis-
cretized quantities on the crack faces in Equation [13] and rewritting things in a
Newton-Raphson iterative procedure, one can obtain the following linear system:

2

4

K 0 −Kc

0 Kα KI

−KT
c KT

I 0

3

5

2

6

4

∆∆u
(i)
n

∆∆w
(i)
n

∆∆Λ
(i)
n

3

7

5
=

2

6

4

Fextn − Fint
(i−1)
n + KcΛ

(i−1)
n

KI(t
(i−1)
n − Λ

(i−1)
n )

KT
c u

(i−1)
n − KT

I w
(i−1)
n

3

7

5
[24]
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where K is the X-FEM stiffness matrix, Kα the penalty stiffness matrix and KI and
Kc are coupling matrices; Fext and Fint are the classical finite element external and
internal forces and with the incremental notation:











u
(i)
n = ∆∆u

(i)
n + u

(i−1)
n

w̃
(i)
n = ∆∆w

(i)
n + w

(i−1)
n

Λ
(i)
n = ∆∆Λ

(i)
n + Λ

(i−1)
n

[25]

The internal variables and stresses are computed with a classical iterative plastic flow:
(

σ(0)
n , var(0)

n , ∆u(i)
n = u(i)

n − u(0)
n

)

=⇒
(

σ(i)
n , var(i)

n

)

[26]

For the update of the local quantities in harmony with the interfacial constitutive law
the same approach as in (Dolbow et al. 2001, Ribeaucourt et al. 2005) is used:

(

w̃(i)
n , w(i−1)

n , t(i−1)
n

)

=⇒
(

w(i)
n , t(i)n

)

[27]
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Figure 6. Comparison for the displacement jump [u] for n = 3.7(a) and n = 30(b)
in plane strain pure mode I

5. Numerical examples

First, comparisons were made without unilateral contact for a pure mode I SE(T)
and a mixed mode SE(T) between X-FEM with a coarse mesh and Finite Element
Method (FEM) with a fine mesh. For two materials (n = 3.7 and n = 30), one
compares the displacement jump [u] between the crack faces and the J-integral. For
the mode I test, the specimen is monotically put in tension with an increasing load
and then monotically brought back to zero load with the same number of steps. The
results are shown on Figure 6 for [u] and Figure 7 for J. The results are very close
even when the load is decreasing. One can see the residual opening of the crack due
to plastic strains when the load comes back to a zero value. For the mixed mode



Elastic-plastic X-FEM with contact 165

test, the two computations compare also quite well with less than 2.5% of variation
in all cases. Second, the same mode I SE(T) specimen was submitted to a cyclic
tension compression loading. The contact consitutive law on the crack faces is chosen
to be frictionnless for this example. The aim of this example is therefore to show the
influence of the plasticity at the crack tip on the contact behaviour under a compressive
state. One can notice on Figure 8 that the crack remains open near the tip due to
plasticity while the lips are closed far from the tip due to the global compressive state.
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Figure 7. Comparison for the J-Integral for n = 3.7(a) and n = 30(b) in plane strain
pure mode I
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Figure 8. (a) Amplified deformed configuration of the specimen (zoomed on the crack
tip) in a compressive state, (b) Displacement jump on the crack faces

6. Conclusion

A method has been presented for enriching finite elements approximations in the
framework of Elastic Plastic Fracture Mechanics with frictional contact. The main
hypothesis of this study is that one only considers the case of confined plasticity i.e.
one only enriches the element containing the crack front. A new plastic enrichment
basis, that captures well the Hutchinson-Rice-Rosengren plastic singularities, is pre-
sented in the framework of the eXtended Finite Element Method, and coupled with
an original mixed augmented Lagrangian / X-FEM formulation. The results presented
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show very good accuracy for numerical evaluation of standard fracture parameters
such as J-integral when the load is increasing (which shows that the plastic solution
is well captured by the new tip enrichment basis) as well as when unloading appears.
This last result coupled with the ability to model unilateral contact with friction on the
crack faces shows the ability of the presented method for fatigue crack analysis. This
improvement in X-FEM fracture calculation will be applied to predict mixed mode
fatigue crack growth with frictional contact.
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