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ABSTRACT.Some biological tissues like the prostate can be considered as a linear isotropic
medium, at least for small strains. An interesting problem - from the medical point of view
- is to detect heterogeneities where the Young’s modulus takes a different value from the back-
ground. A homogeneous medium is considered here, except in some regions where Young’s
modulus takes a different value. A method is proposed to reconstruct an approximation of rela-
tive Young’s modulus, that is the ratio of Young’s moduli. The main tool is a general method for
inverse problems: it is an implementation of Gauss-Newton’s method that uses few memory and
few computations, based on the use of direct and adjoint derivative. This method is illustrated
with experimental results on a gelatin phantom: the regularization property of Gauss-Newton’s
algorithm allows to locate the larger heterogeneities.

RÉSUMÉ.Certains tissus biologiques comme la prostate peuvent être considérés comme un ma-
tériau élastique linéaire et isotrope, au moins pour de petites déformations. Un problème inté-
ressant – du point de vue médical – est de détecter des hétérogénéités où le module d’Young
prend une valeur différente du reste. On se donne ici un matériau homogène sauf dans certaines
régions où son module d’Young prend une valeur différente. On propose une méthode pour re-
construire une approximation du module d’Young relatif, c’est-à-dire le quotient des modules
d’Young. L’outil principal est une méthode générale pour les problèmes inverses : il s’agit d’une
implémentation économe en mémoire et en calculs de la méthode de Gauss-Newton, basée sur
l’utilisation de la dérivation algorithmique en mode direct et en mode adjoint. Cette méthode
est illustrée par des résultats expérimentaux sur un fantôme de gélatine : la propriété de régula-
risation de l’algorithme de Gauss-Newton permet de localiser les plus grosses hétérogénéités.
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1. Introduction

Prostate and breast tumors can have a Young’s modulus much higher than the
surrounding safe tissue, they can be 4 to 10 or more times stiffer (Krouskopet al.
1998), this ratio is called the relative Young’s modulus, or the contrast. The detection
of tumors by clinical palpation requires that the hard nodulus have to be big or near
enough from the skin. Elastography was introduced in (Ophiret al. 1991), it is an
imaging technique that provides a strain image, called elastogram, by comparison of
two sonograms before and after a small external compression. A recent review article
on elastography is (Ophiret al. 2002). Related time-dependent imaging modalities
are dynamic elastography (Gaoet al. 1995), and transient elastography (Cathelineet
al. 1999), we do not adress these issues here.

The inverse problem framework (Kirsch 1996) is used here to provide an image
of Young’s modulus distribution from an elastogram. Gauss-Newton algorithm is a
regularization method for inverse problems, it chooses a perturbation of minimal norm
taking into account information data from the physical model (the Jacobian matrix
and its transpose) to compensate for the lack of measured data. Previous work using
Gauss-Newton algorithm for Young’s modulus estimation are (Kallelet al. 1996),
(Doyley et al.2000), and (Doyleyet al.2005), where interesting results are obtained.
However, in these works a heavy computation load is required and hence only coarse
meshes are used. This limits the size of the heterogeneities to be detected.

We show here that Gauss-Newton method can be implemented thanks to both for-
ward and reverse modes of algorithmic differentiation (Griewank 2000). This imple-
mentation of Gauss-Newton algorithm has the advantage of being no more expensive
than the gradient method and gives a better convergence.

In this paper, the direct problem for elasticity is recalled (section 2). We explain
then (section 3) the strategy of the inverse problem: reconstructing Young’s modulus
from the radial displacement under known boundary conditions. The implementation
of Gauss-Newton algorithm using forward and reverse modes of algorithmic differen-
tiation is then splitted in short algorithms. In the last section, in vitro experimental
results on a gelatin phantom are given.

2. Direct problem

Consider a smooth domainΩ in the plane. The boundary ofΩ is divided into two
parts: ∂Ω = ΓN ∪ ΓD. The domainΩ is filled with an elastic material, subject to
a displacementu ∈ L2(Ω,R2). There are no volume forces, there is a known dis-
placementd onΓD and known forcesf onΓN . The Lamé coefficients of the material
λ = λ(x) = λ0E(x) andµ = µ(x) = µ0E(x) depend on the space variable (this is
equivalent to assuming the Poisson ratioν is constant, and the Young’s modulusE(x)
depends on the space variable). In the numerical application, we will takeν equal to
0.45 (it is the value that proved to fit the best to our measured data).
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The boundary values problem is to find a displacement fieldu and a stress fieldσ
defined inΩ by :

(BP )


σ = λtr ε(u)I + 2µε(u) Ω

−div σ = 0 Ω
σ.n = f ΓN

u = d ΓD

We perform a degree one finite elements method on a triangular mesh withn
nodes: the finite elements version of the mixed boundary problem(BP ) is equiva-
lent to the linear system :

Aq = b,

whereq ∈ R2n is the displacement vector,b ∈ R2n is defined by the boundary
conditions andA is the stiffness matrix.

The stiffness matrixA depends on Young’s modulus distributionE, this matrix is
denotedA(E). Note thatE 7→ A(E) is an affine map, and let̂A be its linear part: for
everyE and everyh, DA(E).h = Â(h).

3. Inverse problem

We look for heterogeneities having Young’s modulusE2 in a material having
Young’s modulusE1. The quantityE2/E1 is called the contrast (or relative Young’s
modulus) of the heterogeneity. We will see in section 4 that the Neumann boundary
conditions are not really known, but are computed up to a choice of a scaling factor.
Changing this factor amounts to changingE1. In practice, the value ofE1 is taken to
be 1. The known measure is the radial displacementumeasur.

r under known boundary
conditions, and the unknown is the location of the heterogeneities and the value of the
contrast.

The radial displacement at a pointM is given byur = L.u, whereL is a linear
operator, called the state-to-observation operator. Then×2n matrix of the discretized
version of this operator can be easily formed, this matrix is also denotedL.

We want to minimize the following quantity :

j(E) =
1
2
‖L.uE − umeasur.

r ‖2 =
1
2
‖F (E)‖2,

whereF (E) = L.uE − umeasur.
r , with uE solution ofA(E)uE = b.

We apply Gauss-Newton algorithm, starting from an homogeneous distribution
E ≡ E1: we shall compute an iterate of NewtonE + d with d solution of:

DFT DFd = −DFT F.
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The vectord will be searched by the conjugate gradient method. Indeed, the conjugate
gradient method requires only to know the product of the given matrix by a vector,
avoiding thus to compute the whole Jacobian matrix, a matrix-matrix multiplication
and the use of memory to store a (non sparse) matrix.

For the computation ofDFT DFx when the vectorx is given, we use the algorith-
mic differentiation rules, and proceed as follows :

1) Computing z = DFx
It is the directional derivative of a vectorial function: we use forward differentiation.

2) Computing DFT z
It is a scalar criterion: we use reverse mode of algorithmic differentiation.

Proposition 1 (Computingz = DFx)

z = Lδ

whereδ is solution of the linear system

A(E)δ = −Â(x)uE ,

whereÂ(x) = A(x)−A(0).

proof : Differentiate the relationA(E)uE = b. �

Proposition 2 (ComputingDFT z) Let vE ∈ R2n be the solution of the linear sys-
tem

AT v = −LT z,

Then for any vectorh ∈ Rn :

(DFT )z.h = [D(FT z)].h =
(
Â(h)uE | vE

)
proof : Consider the Lagrangian

L(E, u, v) = F (u)T z + (A(E)u− b | v).

Then for anyv, F (uE)T z = L(E, uE , v) henceDE(FT z) = D1L(E, uE , v) +
D2L(E, uE , v).DEuE .
Takev = vE satisfyingAT vE = −LT z so that the second term above vanishes, and
obtain(DF )T .z.h = D(FT z).h = D1L(E, uE , vE).h = (Â(h)uE | vE).�

Corollary 1 (Computing DFT F ) LetwE ∈ R2n be the solution of the linear system

AT w = −LT F, (∗)

Then
∀h ∈ Rn, (DFT )F.h = (Â(h)uE |wE).
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Algorithm 1 Finding the Young’s modulus distribution.

input : mesh,E1, ν, boundary conditions,umeasur.
r

• construct the matrixL from mesh data,
• compute the stiffness matrixA assuming homogeneous Young’s mod-
ulusE ≡ E1, compute the direct stateuE ,
• compute the adjoint statewE using(∗),
• computeDFT F using corollary 1,
• solve ford the equationDFT DFd = −DFT F using the conjugate
gradient method, the multiplication of a vector byDFT DF is given by
algorithm 2,
• the estimated Young’s modulus distribution isE + d.

Algorithm 2 Computingy = DFT DFx for a given vectorx.

input : mesh,ν, stiffness matrixA(E), direct stateuE , matrixL

• solve forδ the equationA(E)δ = −Â(x)uE ,
• computez = L.δ (see proposition 1),
• solve forvE the equationAT vE = −LT z,
• the components(yi) of y are given byyi = (A(ei)uE |vE) (see propo-
sition2).

4. Experimental results

We applied the algorithm above to experimental data (Souchonet al.2002). This
experiment was designed to demonstrate the feasibility of generating an image of the
modulus contrast experimentally in a phantom. The imaging system is based on an
ultrasound scanner (Combison 311, Kretz, Austria) equipped with a transrectal probe
(IRW 77AK, Kretz, Austria). The probe was covered by a latex balloon filled with
a coupling liquid that ensured good accoustic coupling between the probe and the
phantom. A hollow cylindrical phantom of gelatin was prepared. It contained six stiff
foam inclusions of length 8cm, width 1cm and various thicknesses, ranging from 0.55
to 2.6mm (see fig.1). The hollow phantom was immersed in water, but it was left free
to move (but for pins at some points): during the inflation sequence, it moved a little
to the right (relatively to the probe).

The phantom was compressed by inflating the balloon: the measures are the radial
displacements between before and after inflation, see (Souchonet al.2003) for details
about data acquisition and strain estimation. At every point of the domain, the mea-
sured data is the radial displacement. When differentiating this radial displacement
along the rays, one obtains a strain elastogram that is shown on figure 2. On the strain
elastogram, the inclusions are visible, but the contrast of Young’s modulus can not be
estimated.

The data are treated as follows :
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Figure 1. Experiment setup. The tip of the imaging probe is covered by a balloon that
fills the whole cavity once it is inflated.

Figure 2. Strain elastogram (measured in %). The largest inclusions are visible but
the contrast is unknown

1) The Poisson coefficientν is taken to be 0.45, and in a first approximation the
domain is assumed to be homogeneous with Young’s modulus equal to 1.

2) The boundary conditions are not exactly known, but reconstructed using an ef-
ficient implementation of Gauss-Newton algorithm similar to the one explained above
(but simpler): we look for Dirichlet conditions on the inner boundary, and Neumann
conditions on the outer boundary.

3) Once the boundary conditions are estimated, algorithm 1 is applied to estimate
the relative Young’s modulus distribution. Indeed, a Tikhonov regularization term is
added to the cost functional:J(E) = 1

2 ||F (E)||2 + α||E||2.
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Figure 3. Young’s modulus contrast estimation

The results are shown in fig.3. We can distinguish four among the inclusions,
the other two inclusions are smaller and do not appear on our results. However, the
values obtained for the Young’s modulus contrast have not been checked by indepen-
dent measurement. Numerical experiments suggest that the value of the contrast is
underestimated.

5. Conclusion

We presented in this paper an implementation of Gauss-Newton algorithm that re-
quires little memory and few computations. As an application, this implementation
has been applied to the problem of relative Young’s modulus identification on experi-
mental data.
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