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ABSTRACT. The harmonic balance method is widely used for the analysis of strongly nonlinear
problems under periodic excitation. The concept of hypertime allows for the generalization of
the usual formulation to multi-tone excitations. In this article, the method is applied to a system
involving a nonlinearity which cannot be explicitly expressed in the multi-frequency domain in
terms of harmonic coefficients. The direct and inverse Discrete Fast Fourier Transforms are
then necessary to alternate between time and frequency domains in order to take into account
this nonlinearity. The results show the efficiency and the precision of the method.

RÉSUMÉ. La méthode de l’équilibrage harmonique permet l’analyse de problèmes fortement
non linéaires sous excitation périodique. En utilisant le concept d’hyper-temps, il est possible
de généraliser la formulation usuelle à des excitations apériodiques. Dans cet article, cette
méthode est appliquée à un système impliquant une non-linéarité qui ne s’exprime pas de façon
explicite dans l’espace multi-fréquentiel des coefficients harmoniques. Les Transformées de
Fourier Rapides directe et inverse sont alors nécessaires pour alterner domaines temporel et
fréquentiel afin de prendre en compte cette non-linéarité. Les résultats montrent l’efficacité et
la précision de la méthode.
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1. Introduction

It is well known the the Harmonic Balance Method (HBM) is one of the most com-
monly used approaches for analyzing strong nonlinear systems. It offers an alternative
to time-domain methods for the analysis of equations where a periodic steady-state is
sought and has been used for years in electrical engineering for studying nonlinear
circuits (Gilmore et al. 1991). The usual 1-dimensional HBM is limited to predicting
periodic vibrations only whereas aperiodic (quasi-periodic) solutions made up with
incommensurate tones are frequent. For the first time in (Lau et al. 1983), the HBM
applied to mechanical systems was extended to the multi-tone free response of a non-
linear beam with cubic terms considering the concept of hypertime. Unfortunately,
the main drawback of this approach, which requires a complicated algebraic formula-
tion as a preliminary, lies in its inability to consider nonlinearities, such as unilateral
contact, that can not be directly evaluated in the frequency domain. A major break-
through was proposed by (Cameron et al. 1989) as the Alternating Frequency/Time
domain method (AFT). It was realized that strong nonlinearities can be accurately
analyzed in the time domain and transformed back in the frequency domain so as to
form a set of nonlinear equations which can be handled by a nonlinear solver. Based
on a pioneering work (Ushida et al. 1984), an extension of the AFT to aperiodic sys-
tems was proposed in (Kim et al. 1997) for the study of the internal resonant vibration
of a nonlinear Jeffcott rotor with contact terms using multi-frequency Fourier Trans-
forms. In a recent work, Pušenjak (Pušenjak et al. 2004) has extended the method to
handle general multi-degree of freedom externally excited and autonomous dynamical
systems.

This article finds its motivation in a study concerning the rotor-stator "modal" in-
teraction explained in (Legrand 2005). According to this work, for a tiny range of
rotational velocities and under certain circumstances, a travelling wave speed coinci-
dence (Schmiechen 1997) will occur between the nodal diameter modes of the bladed-
disk and the casing through direct contact, leading to an aperiodic limit cycle. Time
integration including inherent difficulties like time-step size and initial conditions, it
has been found interesting to use the presented n-dimensional HBM for a clearer in-
sight and an intrinsic description of this phenomenon.

2. n-dimensional harmonic balance method: theoretical statements

Nonlinear mechanical problems generally involve equations of motion which can
be written in the following generic form:

MẌ + DẊ + KX + Fnl(X, Ẋ) = Fext [1]

where X, Ẋ and Ẍ respectively stand for the position, velocity and the acceleration
vectors expressed in generalized coordinates. The external excitation is given in Fext

and the nonlinear terms are gathered in Fnl(X, Ẋ). The mass, damping and stiffness
matrices of the mechanical system are respectively named M, D and K. Follow-
ing (Pušenjak et al. 2004), the extension of the HBM to multi-tone systems requires
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the construction of an hypertime domain. First, Ms pseudo-time variables τm = ωmt
for m = 1, 2, . . . , Ms within the hypertime domain 0 ≤ τm ≤ 2π are introduced,
where ωm represent the incommensurable frequencies of the steady-state response
sought. Assuming that the aperiodic solution for the generalized coordinate Xj (jth

coordinate of X for j = 1, 2, . . . , N ) exists where N represents the total number of
DOF of the system, the solution is sought in the form of truncated multiple Fourier
series:

X =

Nh
∑

j1=−Nh

Nh
∑

j2=−Nh

· · ·

Nh
∑

jMs=−Nh

[

aj1 ,j2,...,jMs
cos

(

Ms
∑

m=1

jmτm

)

+bj1,j2,...,jMs
sin

(

Ms
∑

m=1

jmτm

)] [2]

where Nh denotes the highest order of the harmonic terms in the truncated Fourier
series. In equation [2], the various combination tones are expressed by means of
the arguments

∑Ms

m=1 jmτm, where jm are positive or negative integers. Vectors
aj1,j2,...,jMs

and bj1,j2,...,jMs
include all the Fourier coefficients of the frequency-

discretized displacement along with the different tone combinations. Because of the
parity of the cos and sin functions, only the terms at positive combination frequencies
meeting the following constraint need to be kept:

Ms
∑

m=1

jmτm ≥ 0 [3]

In spite of the above restriction on the positive combination frequencies, the total
number of harmonic terms in the solution will become very high at greater values of
Nh. To keep the smallest total number of harmonic terms, additional constraints on the
combination frequencies are assumed if possible. Once the selection of combination
frequencies and harmonics has been performed, the solution can be constructed by
following equation [2] which makes possible to express the aperiodic displacement
Xj conveniently in a matrix form as:

Xj = T · uj , j = 1, 2, . . . , N [4]

where T = [Tcos, Tsin], uj = {uj
cos, uj

sin}
T and superscript T denotes matrix transpo-

sition. At this level, it is worth mentioning that uj is a non-redundant rearrangement
of the harmonic coefficients aj1,j2,...,jMs

and bj1,j2,...,jMs
defined in equation [2] and

consistent with the row vector T, combination of two subvectors Tcos and Tsin of the
form:

Tcos =

[

cos

(

Ms
∑

m=1

j1
mτm

)

, cos

(

Ms
∑

m=1

j2
mτm

)

, . . . , cos

(

Ms
∑

m=1

jNcos

m τm

)]

[5]

where ji
m (i = 1, 2, . . . , Ncos and m = 1, 2, . . . , Ms) are integers satisfying con-

straint [3]. Subvector Tsin is analogously combined of Nsin elements of sine terms.
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The total number of harmonic terms Nh is equal to Ncos + Nsin. Considering that
the constant component can be interpreted by the corresponding cosine term at the
zero frequency in matrix T and that no sine term at the zero frequency in matrix T is
needed yields: Ncos = Nsin + 1. By introducing the Kronecker product ⊗ such as:

Y = T ⊗ IN and u = [u1
T , u2

T , . . . , uN
T ]T [6]

vectors X, Ẋ and Ẍ are expressed as follows :

X = Y · u, Ẋ =

(

Ms
∑

n=1

ωn
∂Y

∂τn

)

· u and Ẍ =

(

Ms
∑

m=1

Ms
∑

n=1

ωmωn
∂2

Y

∂τm∂τn

)

· u [7]

and plugged into equation [1] before a Galerkin procedure is applied over the entire
hypertime domain [0, 2π]Ms , resulting in a vector of nonlinear equations in u that are
to be solved simultaneously:

R = H · u + F
u
nl

(u) − F
u
ext

[8]

Notations in equation [8] are given below:

H =

〈

Y,

[

Ms
∑

m=1

ωm

(

Ms
∑

n=1

ωnM
∂2

Y

∂τm∂τn
+ D

∂Y

∂τm

)

+ KY

]〉

F
u
nl

(u) =
〈

Y,Fnl(X, Ẋ)
〉

F
u
ext = 〈Y,Fext〉

[9]

with the inner product 〈· , ·〉 defined as follows:

〈Y1, Y2〉 =
2

(2π)Ms

∫ 2π

0

∫ 2π

0

· · ·

∫ 2π

0

Y1
T Y2 dτ1dτ2 . . . dτMs

Vanishing of the residual vector R with a nonlinear solver means that the equilibrium
steady state is reached. Usually, the iterative procedure takes the following form:

u
(k+1) = u

(k) −H
−1

R

(

u
(k)
)

[10]

where H is a numerical estimation of the Jacobian matrix (Flechter 1987). Vector
F

u
nl

(u) in equation [8] is generally not an explicit function of the unknown vector u

except for particular nonlinearities, such as cubic restoring forces for instance.

3. Application to simple cases

3.1. Algorithm and implementation

For the sake of generality, a program capable of taking into account any kind of
nonlinearities in a systematic way has been developed. The cornerstone of the method
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is to accurately evaluate the nonlinear terms directly in the time domain. To this end,
n-dimensional discrete direct (n-FFT) and inverse (n-iFFT) Fast Fourier Transforms
are performed at each iteration of the nonlinear resolution in order to alternate between
the frequency domain, where the nonlinear set of equations is solved, and the time
domain, where the nonlinear terms are considered. Figure 1 illustrates the general
algorithm. When the equations of motion are projected onto the frequency domain,
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Figure 1. General implementation of the n-Harmonic Balance method

the notion of time has vanished. For a periodic signal, the hypertime domain collapses
to one period. For an aperiodic behavior, it can be interesting to visualize true time
going through the hypertime domain. Satisfying the relationship between true time t
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Figure 2. Schematic of the path of time t through the hypertime domain [τ1, τ2]

and pseudo-time variables τi yields in two dimensions:
{

τ1 = ω1t
τ2 = ω2t

⇒ τ2 =
ω2

ω1
τ1 [11]
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True time t can be represented by the line τ2 = ω2

ω1

τ1 in the (τ1, τ2)−plane. As it
is periodic according to τ1 and τ2, it fulfils the light grey square [0, 2π]2 depicted in
figure 2. Indeed, the line segments numerated 2, 3 and 4 represent an interpretation
of the mapping defined by: t ∈ [0, +∞[→ (τ1, τ2) ∈ [0, 2π]2 such as equation [11]
is verified. By construction, two points infinitely close to each other in [0, 2π]2 may
be completely different true instants in [0, +∞[. This geometric interpretation can of
course be generalized to a cubic hypertime domain or more.

3.2. Cubic nonlinearity

In order to check the implementation of the mentioned algorithm, a simply sup-
ported beam connected to a cubic nonlinear spring at x = L/2 as depicted in figure 3
(L is the length of the beam) is subjected to the following aperiodic external load
fext = 100

(

cos(πt) + cos(e1t)
)

. The displacement field is discretized by the usual
Euler-Bernoulli functions. When the steady state is reached, figure 4 confirms the
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Figure 3. Schematic of the beam with a cubic restoring force

accuracy of the HBM dealing with cubic nonlinearities. The maximum difference
between time integration (namely the central finite difference scheme) results and 2-
HBM results are of order 10−14 m. As explained in (Nayfeh et al. 1995), only odd and
odd-combination (odd sum of indexes in τ1 and τ2) harmonics appear in the solution.
The residual error is obviously due to the truncation of the double Fourier series up to
the number of harmonics Nh kept. Trivially the higher the number of harmonics, the
smaller the error. It has to be noted that a comparison of the CPU costs between the n-
HBM and the time marching procedure is difficult: because of the aperiodic behavior
of the motion and the mapping between true time t and the hypertime domain, results
given by the n-HBM are valid for t ∈ [0, +∞[ that would require an infinite amount of
time for the computation directly in the time domain. An analytical analysis is given
below for comparison. For the sake of simplicity, the displacement is considered up
to the first harmonic only (u = [a1 a2 b1 b2]

T ):

v|x=L/2 = a1 cos τ1 + a2 cos τ2 + b1 sin τ1 + b2 sin τ2 [12]

Then, projecting the cubic nonlinear term onto the multi-frequency domain and per-
forming the Galerkin procedure gives the respective components of F

u
nl

(u) (see ta-
ble 1).
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Figure 4. Displacement of the beam in x = L/2: time integration (—) and 2-HBM
(- -) for Nh = 7

harmonic cubic force
combinations components

cos τ1 3knl/4
(

2a1b2
2 + 2a2

2a1 + a1b1
2 + a1

3
)

cos τ2 3knl/4
(

a2
3 + a2b2

2 + 2a2a1
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sin τ1 3knl/4
(

2b2
2b1 + a1

2b1 + 2a2
2b1 + b1

3
)

sin τ2 3knl/4
(

a2
2b2 + b2

3 + 2a1
2b2 + 2b2b1

2
)

Table 1. Analytical calculation of the cubic nonlinear restoring force expressed in the
frequency domain for Nh = 1

harmonics nonlinearity computed
directly in the frequency domain using the n-FFT technique

a1 1.190871824484995 · 10−3 1.190871824485002 · 10−3

a2 1.191004700829494 · 10−3 1.191004700829497 · 10−3

b1 1.159230995878226 · 10−6 1.159230995878233 · 10−6

b2 1.340061751905898 · 10−6 1.340061751905895 · 10−6

Table 2. Comparison between 2-HBM results with (1) the cubic nonlinearity expanded
directly in the multi-frequency domain and (2) using the n-FFT technique

Reading table 2 shows the perfect agreement between the n-FFT technique and the
analytical results for an explicit nonlinearity in the frequency domain. The precision
of the alternating frequency/time domain approach is left to the reader’s appreciation.
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3.3. Contact constraint

The model of the previous section is considered now with a contact constraint
(instead of a cubic spring) on v|x=L/2 as depicted in figure 5. The new equation of
motion becomes:

{

MẌ + DẊ + KX + Fnl(X, Ẋ) = Fext

v|x=L/2 ≤ vmax, ∀t ≥ t0
[13]

The contact is treated as follows: the contact reactions are not explicitly calculated but

PSfrag replacements

fext

vmax

v(x)

x
θ

Figure 5. Schematic of a beam constrained by a wall

if a penetration is detected in the time domain, the displacement v|x=L/2 is corrected
such as to be equal to vmax. This can be considered as an exact contact law where
no penetration is allowed, equivalent to a dual formulation using Lagrange multipliers
which is a straightforward extension. This approach is more accurate from a physical
point of view than the one presented in (Kim et al. 1997) which only uses a penalty-
based technique for taking contact constraints into account. This new displacement
is then transformed back to the multi-frequency domain: this procedure is depicted
in figure 6. The 2-HBM results are compared to the time-integration results in fig-
ure 7. In order to get an accurate solution using the 2-HBM, a relatively high number
of harmonics is needed. Unfortunately, the necessary number of spectral components
that would guarantee an accurate solution is not known in advance. In fact, it is well
known that all combinations of harmonics are more or less excited due the presence
of the contact constraint as illustrated in figure 8 for which twelve harmonics for each
frequency component (equivalent to a total of 313 non-redundant harmonic combina-
tions) have been kept for the computation. Figure 7 shows that the solution from time
integration and its counterpart from HBM are nearly indistinguishable. Further cal-
culations would show that five harmonics for each frequency component represent a
good compromise between CPU costs and accuracy. Indeed, the use of discret Fourier
Transform techniques requires an estimation of 2N lg2 N computations if N stands
for the number of evaluated points. Consequently, the number of computations greatly
increases if a 2-dimensional (or more) domain is considered: this represents the main
drawback of the proposed approach.

Yet an effective incremental harmonic balance with two time scales for computing
the response of the previous model with such a strong nonlinearity in time domain has
been validated.
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Figure 6. Partial description of the 2-HBM algorithm dealing with a contact con-
straint. Displacement v|x=L/2 is depicted. White harmonic combinations in subfig-
ures (a) and (d) are redundant. For this specific case, the contact pressure is directly
considered by correcting the displacement field in the hypertime domain as illustrated
in subfigure (c)

4. Rotor-stator modal interaction phenomenon

4.1. Basic background

Under certain conditions related to the rotational velocity of an aircraft engine,
an energy exchange via direct structural contacts can lead to a wave speed coinci-
dence between the n-nodal diameter modes of both structures. This very specific
phenomenon is explained in details in (Schmiechen 1997). It features a limit cycle
associated to an aperiodic self-excited oscillating behavior of the entire structure even
if any external load has disappeared (Legrand et al. juin 2004). Very simple geomet-
rical and linear considerations state that a unique critical rotational velocity Ω can be
dangerous in terms of amplitude of vibration:

ωc

n
= Ω −

ωbd

n
[14]
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Figure 7. Displacement v|x=L/2: time integration (—) and 2-HBM (- -) for Nh = 12
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Figure 8. Normalized absolute values of harmonic coefficients for Nh = 12

where ωbd and ωc respectively stand for the bladed disk’s and the casing’s eigenfre-
quencies. In simple words, this condition stipulates that there is a rotational velocity
for which the velocity in a stationary frame of a resonant backward wave travelling on
the bladed disk (Ω − ωbd

n ) equals the velocity of a resonant forward travelling wave
on the casing ( ωc

n ). An illustration of this phenomenon for n = 3 is given in figure 9.
The black square � follows the forward wave propagating on the casing whereas the
black blade illustrates the motion of the bladed disk. The aperiodic behavior is shown
by the fact that after one round of the wave on the casing, the black blade is away from
its initial position.
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However, a numerical investigation using a finite element model including a con-
tact law in conjunction with a time marching procedure showed that equation [14] is
too restrictive and cannot precisely predict the interaction phenomenon (Legrand et
al. juin 2004). Moreover, in order to overcome both the influence of initial conditions
and the time-step size problem due to the contact detection, the frequency-domain
method described in this paper can be helpful in giving a intrinsic description of the
phenomenon.
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Figure 9. Snapshots of the bladed disk - casing model after three periods Tc

4.2. Autonomous systems

Because the limit cycle explained above and which is of interest in this study oc-
curs even when any external forcing has disappeared, it is solution of an autonomous
set of equations. Tackling such a system of nonlinear equations, where the zero so-
lution is trivial, relies on a modified version of the generalized harmonic balance de-
scribed. In order to find a non-trivial aperiodic solution, Ms incommensurate frequen-
cies ωm are included in the unknown vector. The well-posedness of the problem holds
by prescribing Ms harmonic coefficients among the u components. Because the sys-
tem is autonomous, this has no influence on the almost periodic response except in the
appearance of the phase shift. Equation [8] is then rewritten in the following manner:

R(u, ω) = H(ω)u + F
u
nl(u, ω) [15]

such has the unknown vector u is diminished of Ms harmonic coefficients that are
replaced by the Ms incommensurate frequencies to be sought in order to find a non-
zero solution and arranged in ω. Convergence is obtained when the residual vector
R(u, ω) is smaller than a given value.
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5. Conclusions and prospects

The harmonic balance method has been adapted to solve systems with strong non-
linearities in a systematic way. Two simple cases, namely (1) a beam connected to a
cubic nonlinear spring and (2) a beam constrained by a wall, showed the efficiency
and accuracy of the n-dimensional HBM. Work are in progress to apply this method
to a rotor-stator system undergoing an aperiodic motion under very particular circum-
stances. It is believed that this technique will give a description of the motion close to
the concept of nonlinear normal mode.
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