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ABSTRACT. Based on the strain approach, with the customary two displacement d.o.f at each
corner, a rectangular element is developed for the general plane linear elasticity problems.
The adoption of independent linear variations for direct strains and an independent constant
shearing strain proves to be effective in improving the accuracy of the elements. However any
singularity is eliminated by the use of local axes optimally oriented. From the numerical
examples of a beam under bending and shear, by using the concept of static condensation it is
concluded that the exact solutions can be obtained. Several numerical examples are
presented to show that the present element has high accuracy, excellent computational
efficiency.
RÉSUMÉ. Un élément rectangulaire basé sur l’approche en déformation, possédant les deux
d.d.l essentiels pour chacun des nœuds sommets, est développé pour la résolution des
problèmes d’élasticité linéaire plane en général. L’adoption de variations linéaires pour les
composantes normales de la déformation et une déformation de cisaillement constante
permettent d’améliorer la précision des éléments. Cependant toute singularité est éliminée
par l’utilisation d’un repère local orienté d’une manière optimale. A partir d’exemples
numériques d’une poutre soumise à la flexion et au cisaillement et en utilisant le concept de
condensation statique, on conclut que des solutions exactes peuvent êtres obtenues. Quelques
applications ont été abordées et ont permis de mettre en évidence la fiabilité et la précision
du présent élément.
KEYWORDS: rectangular element, two-dimensional elasticity, strain approach, membrane,
static condensation.
MOTS-CLÉS : élément rectangulaire, élasticité à deux dimensions, approche en déformation,
membrane, condensation statique.
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1. Introduction

In a series of papers (Belarbi et al., 2002, 1999, 1998, Belarbi, 2000) we have
attempted to highlight the strain approach. This approach was originally developed by
Sabir and Ashwell (Sabir et al., 1971a), their search was begun on curved structures,
they concluded that we can have better results with a reduced number of elements,
compared with results given by the displacement model (Sabir et al., 1971b). A new
class of simple and effective finite elements for the problem of general plane
elasticity (Sabir, 1983) was developed. Strains are independent and verify the
criterion of completeness. This approach was later extended to three-dimensional
elasticity (Belarbi et al., 1999), shell problems (Assan, 1999, Djoudi et al., 2003,
2004a, 2004b, Sabir et al., 1996, 1997) and plate bending problems (Belounar et al.,
2005).

Several models such as rectangular plane elasticity elements were developed,
among them the elements of Sabir (Sabir et al., 1996, 1995) SBRIE and SBRIE1,
each of them have two degrees of freedom (d.o.f) at each corner node. The first
element is based on linear variation of direct strains (linear in y for εx and linear in x
for εy) and constant shearing strain. The second element in addition to the corner
nodes an internal node is also used, which is statically condensed. This element is
based on linear variation of all three strain components (linear in y for εx, linear in x
for εy and linear in x,y for γxy).

In this paper, an improved rectangular strain based element will be presented; it
is based on linear variation (linear in x and y) of direct strains and constant shearing
strain. It has two d.o.f at each corner node and an internal node. Through the
introduction of additional internal d.o.f, we managed to develop an element which
proved to be more accurate, however it requires static condensation (Bathe et al.,
1976). This element is used to obtain solutions to general plane linear elasticity
problems.

2. Analytical considerations

Consider the rectangular element shown in figure 1, the three components of the
strain at any point in the Cartesian coordinate system are given in terms of the
displacements U and V:

εxx = U,x [1a]

εyy = V,y [1b]

γxy = U,y+ V,x [1c]
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If the strains given by equations [1] are equal to zero, the integration of these
equations allows obtaining the following expressions:

U =  a1     -  a3  y [2a]

V = a2   +    a3  x [2b]

Equations [2] represent the displacement field in terms of its three rigid body
displacements.

Figure 1. Co-ordinates and nodal points for the rectangular R4BM element

The present element is rectangular with four corner nodes and a central node,
each node has two degrees of freedom. Thus, the displacement field should contain
ten independent constants. Having used three (a1, a2, a3) for the representation of the
rigid body components, thus it is left seven constants (a4, a5,….. ,a10 ) for expressing
the displacement due to straining of the element. These seven independent constants
are apportioned among the three strains as follow:

εxx = a4 + a5 y + a9 x [3a]

εyy = a6 + a7 x + a10 y [3b]

γxy = a8 [3c]

By integrating equations [3], the displacement functions are obtained as follow:

U = a4 x+ a5 xy - 0.5 a7 y2 + 0.5 a8 y + 0.5 a9 x2 [4a]

V= - 0.5 a5 x2 + a6 y + a7 xy + 0.5 a8 x +0.5 a10 y2 [4b]

The final displacement functions are obtained by adding equations [2] and [4] to
obtain the following:

U = a1 – a3 y + a4 x+ a5 xy - 0.5 a7 y2 + 0.5 a8 y + 0.5 a9 x2 [5a]
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V= a2 + a3 x  - 0.5 a5 x2 + a6 y + a7 xy + 0.5 a8  x +0.5 a10 y2 [5b]

Another version of this element having the same strain assumptions as above,
with a rearrangement of the different coefficients, the strain field will be:

εxx = a4 + a5 x + a6 y [6a]

εyy = a7 + a8 x + a9 y [6b]

γxy = a10 [6c]

This version produces rapid convergence of deflection and has the following
displacement field:

U = a1 – a3 y + a4 x+ a6 xy + 0.5 a5 x2  - 0.5 a8 y2 + 0.5 a10 y [7a]

V= a2 + a3 x - 0.5 a6 x2 +a7 y + a8 xy + 0.5 a9 y2 + 0.5 a10 x [7b]

The stiffness matrix is derived without using any tricks, which implies that it is
obtained using exact and not reduced integration.

[Ke] = [A-1 ]T [K0 ] [A-1 ] [8a]

[K0] = [ ] [ ][ ] dydxQDQ
S

T .∫∫ [8b]

With

[Q] =
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For [A] and [K0] see the appendix
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3. Numerical experiments

The numerical results of several quadrilateral plane elements are used and
compared with those obtained from the present R4BM element and they are listed as
follows:

– SBRIE: the strain based rectangular in-plane element (Sabir et al., 1986);

– SBRIE1: the strain based rectangular in-plane element with an internal node
(Sabir et al., 1995);

– Q4: the standard four-node isoparametric element.

Most of the examples dealt with have been proposed at various stages in open
literature to validate element performance. It will be seen that the SBRIE and the
SBRIE1 versions show the same results for all cases.

3.1. An elongated thin cantilever beam subjected to end shear

An elongated thin cantilever beam subjected to end shear is a standard problem
to test finite element accuracy. Young’s modulus and Poisson’s ratio are denoted
by E and ν. These parameters and the mesh division are shown in figure 2, while the
results are presented in Table 1, it should be noted that the R4BM element gives the
most accurate results.

 0.2

6.0

0.5

E=1.0x10 7 , ν=0.3 , thickness=0.1

1x6 elements

0.5

A

Figure 2. An elongated thin cantilever beam subjected to end shear

Table 1. Normalized deflection at point A, of a thin cantilever beam under shear

Normalized tip deflection
Mesh 1x 6

SBRIE 0.903
Q4 0.093

R4BM 0.992
SBRIE1 0.903
Analyt. 1.000 (0.1081)
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3.2. An elongated thin cantilever beam subjected to end pure bending

The tip deflection of an elongated thin cantilever beam under pure bending is
compared using the present R4BM. The geometry, parameters and mesh
discretization of the beam are shown in figure 3. Using four different mesh
divisions, the normalised tip deflections of the R4BM are computed and compared
with those obtained by other elements in Table 2. A pertinent point to note is that
exact solution can be obtained for the R4BM element. The accuracy of the SBRIE
and SBRIE1is quite high.

Figure 3. An elongated thin cantilever beam subjected to end pure bending

Table 2. Normalised deflection at point A, of a thin cantilever beam under pure
bending

Normalised tip deflection

Mesh 1x 6 1x 8 1x 10 1x 12

SBRIE 0.91 0.91 0.91 0.91

Q4 0.093 0.153 0.219 0.285

R4BM 1.000 1.000 1.000 1.000
SBRIE1 0.91 0.91 0.91 0.91

Analyt. 1.000 (0.270)

50َA

50

َ6.

0.
2

1x12 elements

1x10 elements

1x8 elements

1x6 elements

E=1.0x107 , v=0.3 , thickness=0.1
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3.3. Aspect ratio tests for cantilever

Two other tests for the cantilever problem can be conduct here, in the first case
we keep the dimensions of the cantilever constant and we vary the meshes, in the
second we vary the depth and keep the same mesh variation.

Case 1

In addition to the above examples, an extra test is included here to study the
sensitivity of the present element to the variation in aspect ratio. We consider the
response of a cantilever beam to a parabolic distributed shear applied as shown in
figure 4. From the results presented in Table 3, we find that the displacement model
gives bad results, and require more refinements in order to be able to approach the
correct solution, whereas the R4BM performs very well.
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Figure 4. Cantilever beam subjected to parabolically distributed shear, aspect ratio
tests
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Table 3. Normalized deflection at point A, of a cantilever beam

Normalised tip deflection

Element aspect
ratio a/b 1.0 2.0 2.66 4.0 8.0

Mesh 2 x 8 2 x 4 2 x 3 2 x 2 2 x 1

SBRIE 0.972 0.957 0.943 0.905 0.738

Q4 0.888 0.699 0.573 0.378 0.134

R4BM 0.988 0.972 0.958 0.919 0.750
SBRIE1 0.972 0.957 0.943 0.905 0.738

Analyt. 1.000 (0.3558)

Case 2

Sabir proposes tests which are shown in figure 5 involving deep, moderately
deep and thin cantilever beams respectively. The cantilevers under consideration
have a width b = 0.0625 m and length l = 10m, the material properties are taken to
be 100 000 N/mm2 and 0.2 for Young’s modulus and Poisson’s ratio, respectively.
We calculate vertical deflection at the tip of the beam (Table 4), R4BM predicts
displacements which are very close to the theoretical values for all the cases
considered.

Figure 5. Deep, moderately deep and thin cantilever beam

P

4
2

1

E = 105, v = 0.2, thickness = 6.25 x 10-2

10
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Table 4a. Normalized vertical deflection for deep cantilever

Deep cantilever

Mesh 2x2 2x4 6x6 8x8 12x12 10x16

SBRIE 0.913 0.929 0.988 0.992 0.995 0.995

Q4 0.591 0.597 0.926 0.956 0.979 0.971

0.922 0.932 0.989 0.993 0.996 0.995R4BM
SBRIE1 0.913 0.929 0.988 0.992 0.995 0.995

Analyt.                 1.000 (1.105)

Table 4b. Normalized vertical deflection for moderately deep

Moderately deep cantilever

Mesh 2x2 2x4 6x6 8x8 12x12 10x16

SBRIE 0.916 0.923 0.988 0.992 0.996 0.995

Q4 0.275 0.275 0.771 0.856 0.930 0.903

0.925 0.926 0.989 0.993 0.996 0.995R4BM
SBRIE1 0.916 0.923 0.988 0.992 0.996 0.995

Analyt.                 1.000 (8.21)

Table 4c. Normalized vertical deflection for thin cantilever

Thin cantilever

Mesh 2x2 2x4 6x6 8x8 12x12 10x16

SBRIE 0.915 0.920 0.985 0.990 0.994 0.992

Q4 0.087 0.087 0.461 0.602 0.772 0.703

R4BM 0.924 0.922 0.986 0.990 0.994 0.993
SBRIE1 0.915 0.920 0.985 0.990 0.994 0.992

Analyt.                 1.000 (64.52)

3.4. Simply supported beam loaded at mid-span

The deep simply supported beam whose details are given in Figure 6 has been
used in the finite element literature. It is also used here to test the performance of the
present R4BM, and a comparison is made with the existing results given by the use
of elements sited above.



994     Revue européenne des éléments finis. Volume 14 – n° 8/2005

Figure 6. Simply supported beam loaded at mid-span

Tables 5 and 6 show the results obtained for the bending stress at B and the
shearing stress at D respectively. These tables show that the R4BM gives better
results than all the other elements. Even for the coarse mesh this element produces
results which are acceptable within practical engineering accuracy.

Table 5. Bending stress at point B

Bending stress at B

Mesh 4x12 6x12 8x16 10x20

SBRIE 31.673 25.329 24.914 25.072
Q4 30.654 23.830 24.363 24.586

R4BM 31.734 25.378 24.921 25.090
SBRIE1 31.673 25.329 24.914 24.072

Exact 25.2

Table 6. Shearing stress at point D

Bending stress at D

Mesh 4x12 6x12 8x16 10x20

SBRIE 6.023 6.080 6.164 6.217
Q4 5.258 5.454 5.817 5.992

R4BM 6.034 6.081 6.164 6.217
SBRIE1 6.023 6.080 6.164 6.217

Exact 6.3

P

1m

0,
5m

1m
B

D

4m

P = 4.2 KN , E = 20x106 KN/m² , v = 0.2
thickness = 0.5 m
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4. Conclusion

The existing rectangular plane elements based on the strain model are reviewed.
A new strain based element is developed for the analysis of general plane linear
elasticity problems. This element can model beam bending action more closely than
the other strain based elements and the standard displacement based element. It has
only the customary two displacements d.o.f. Numerical examples demonstrate that
the proposed element is both accurate and versatile. Its accuracy seem to be
unaffected by the aspect ratio.
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Appendix
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Where:

H1= b D11a H6=
a D12 b2

2 H11=
a D12 b3

3 H16=
D22 a3 b

3 H21=
a2 D12 b2

4

H2=
a D11 b2

2 H7=
a D11 b3

3 H12= a D22b H17=
D12 a3 b

3 H22=
a D22 b3

3

H3= b D12a H8=
a D12 b2

2 H13=
a2 D22 b

2 H18=
a2 D22 b2

4

H4=
a2 D12 b

2 H9=
a2 D12 b2

4 H14=
a2 D12 b

2 H19= D33a b

H5=
a2 D11 b

2 H10=
a2 D11 b2

4 H15=
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2 H20=
D11 a3 b
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