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Abstract

The identification of vortices and cores is crucial for understanding airflow
motion in aerodynamics. Currently, numerous methods in Computer Vision
and Machine Learning exist for detecting vortices and cores. This research
develops a comprehensive framework by combining classic Computer Vision
and state-of-the-art Machine Learning techniques for vortex and core detec-
tion. It enhances a CNN-based method using Computer Vision algorithms
for Feature Engineering and then adopts an Ensemble Learning approach
for vortex core classification, through which false positives, false negatives,
and computational costs are reduced. Specifically, four features, i.e., Contour
Area, Aspect Ratio, Area Difference, and Moment Centre, are employed
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to identify vortex regions using YOLOv5s, followed by a hard voting clas-
sifier based on Random Forest, Adaptive Boosting, and Xtreme Gradient
Boosting algorithms for vortex core detection. This novel approach differs
from traditional Computer Vision approaches using mathematical variables
and image features such as HAAR and SIFT for vortex core detection. The
findings show that vortices are detected with a high degree of statistical
confidence by a fine-tuned YOLOv5s model, and the integrated technique
produces an accuracy score of 97.56% in detecting vortex cores conducted
on a total of 133 images generated from a rotor blade NACA0012 simula-
tion. Future work will focus on framework generalisation with a larger and
more diverse dataset and intelligent threshold development for more efficient
vortex and core detection.

Keywords: Computational fluid dynamics, rotor blade, mesh, ensemble
learning, hard voting.

1 Introduction

Understanding the airflow around specific objects (e.g., cars, buildings,
and turbo-machinery) known as aerodynamics is of great interest in many
technical fields as the product performance strongly depends on it [11].
For instance, studying the airflow over a rotor blade is important because it
improves the turbine’s performance, efficiency and longevity etc. Depending
on the environment (e.g., in a wind farm) the airflow over blades can be
unstable and turbulent. Being able to understand how vortices behave and
move through space by identifying their formation may allow designers to
improve the turbine performance. The detection of vortices and vortex cores
is also the foundation of numerous aerodynamic subjects, serving as a catalyst
for in-depth research that builds upon the study of vortices.

However, the detection of vortices and their cores in airflow with instabil-
ity and turbulence is not straightforward. Sujudi and Haimes [15] develop an
algorithm to identify vortex cores in 3D discrete vector fields. They use the
distributed environment of pV3 and linear interpolation to find the trajectories
of vortex cores by employing cell-by-cell processing. Unfortunately, the
research only considers the vortex core trajectory, ignoring the effect of
vortex strength and mesh roughness on the accuracy of the results, resulting
in inaccurate vortex core detection results. Biswas et al. [5] implements a
voting algorithm based on Machine Learning classifiers to determine the
proximity of points from vortex zones. This study is effective to identify
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vortex regions but not to detect vortex cores. Azmi and Baliga [4] have
shown that ensemble approaches are more effective and yield superior results
compared to a single decision tree in classification tasks. Furthermore, it is
found that ensemble approaches utilizing boosting methods such as XGBoost
and AdaBoost outperform bagging methods such as Random Forest when
there is little noise in the data [6, 14]. However, the application of ensemble
approaches in vortex and core detection remains relatively scarce in practice.

This study aims to develop a comprehensive framework to detect the
vortices and cores, and subsequently improve the detection accuracy and
reduce the computational cost by integrating Computer Vision with Machine
Learning methods. This framework uses a voting ensemble classifier to deter-
mine the proximity of points in vortex zones. The inputs of the framework are
four vortex features obtained from Computer Vision methods and YOLOv5s.

The remainder of this report is organised as follows: Section 2 reviews
the research on vortex and core detection; Section 3 illustrates the framework
and its implementation steps; Section 4 presents the results and evaluates the
proposed methods; Section 5 analyses and discusses the results, limitations,
and recommendations; Section 6 concludes the work.

2 Literature Review

A vortex is a flow region in a fluid where it revolves around an axis. Vortices
play a crucial role in aerodynamics product design as they often interact
significantly with one another, leading to an increase in drag caused by
friction with the fluid particles. It is therefore important to identify vortices
and cores in aerodynamics.

There are solutions available such as using numerical information and
Machine Learning methods to identify vortices and cores. For example,
Levit and Lasinski [9] develop the TOPO software system that numerically
analyses topological aspects of a 3D vector field for vortex core detection
and visualisation. Sujudi and Haimes [15] develops an algorithm to identify
vortex cores in 3D discrete vector fields based on critical point theory and
implement it in the pV3 visualisation package. Jiang et al. [7] present a
list of vortex core detection methods including Eigenvector, Swirl Parameter
Method, and Lambda2 based on Computer Vision. However, the conven-
tional Computer Vision and Machine learning approaches are limited in their
accuracy, adaptability, and scalability due to the sizes and forms of flow fields.

Recently, Deep Learning methods such as Convolutional Neural Net-
works (CNN) are applied for vortex and core detection. Majchrzak et al. [11]
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train a Keras-RetinaNet for vortex core detection, with a total of 1000 images
captured by slicing in the flow direction (X-axis) in increments of 10 meters.
The authors assert that the proposed method yields good results within a
short time frame, although specific evaluation metrics are not provided.
Furthermore, the method does not require additional data beyond the velocity
field. Luo et al. [10] use YOLOv3, an object detection model based on
CNN architecture, trained using the self-built vortex dataset from flow field
photographs. Experiments show that the CNN-based technique outperforms
traditional methods. Abolholl et al. [2] use YOLOv3 to detect flow structures
directly from streamline plots. The results show that the approach reduces
the number of false positives and negatives while removing the need for
a cutoff. Abras and Hariharan [3] develop a CNN model to classify no-
vortex or vortex in a large-scale 3D fluid-dynamic simulation. The model is
trained using a collection of grey-scale vortex/no-vortex images with entropy
contour plots acquired from a variety of rotor wake data sources. Its model
results show that the performance is on par with humans in detecting vortices,
but unable to confidently make predictions as the vortices start to break
up. Xiong et al. propose a novel learning-based framework consisting of
two Deep Learning Neural Networks, i.e., a vortex representation network
to identify the Lagrangian vortices and a vortex interaction network to
learn the underlying governing dynamics. The results show the method’s
efficacy in generating highly accurate predictions with low computational
costs.

Deep learning algorithms can be time-consuming and computationally
complex for vortex and core detection. To address these challenges, hybrid
approaches are suggested. Wang et al. [16] introduces a unique vortex detec-
tion approach based on Convolutional Neural Networks-Extreme Learning
Machine (CNN-ELM) to address the issue. This method converts the vortex
detection from the flow field into a binary classification problem. Studies
show that the method is effective and improves or supplements the existing
methods. Ensemble Learning approaches for classification [4, 8, 13] combin-
ing the performance of multiple classification models based on metaheuristic
optimisation techniques such as voting or boosting tend to reduce bias and
provide more precise prediction than individual classification models. Biswas
et al. [5] present a framework to investigate the uncertainty of four vortex
detection methods and integrate them based on a voting algorithm to conduct
vortex analysis and detection in a more robust manner. It first categorises the
vortex zones and clusters them according to their geographical placements,
and then identifies the remaining locations as either vortex or non-vortex
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depending on their proximity from their nearest vortex cluster. The research
tests the strategy on different datasets and time steps and finds that the
method improves the model accuracy. Abolholl et al. [1] propose a hybrid
approach based on Computer Vision and Machine Learning. Firstly, a CNN
is trained to detect vortex locations in line integral convolution (LIC)-based
streamline plots. Then, a Machine Learning layer is added to the CNN
to locate the vortex cores. The experiments show that the training time is
reduced by a factor of two with high prediction accuracy. However, as the
specific details regarding the data processing pipeline and model architecture
are not provided, the approach’s adaptability and scalability for other vortex
scenarios are questionable.

The literature review of various studies on vortex and core detection in
fluid dynamics shows that most recent studies commonly use Deep Learning
algorithms such as customised CNNs or YOLO models. These approaches
are efficient in detecting vortex regions but not as efficient and accurate in
detecting vortex core locations. Ensemble Learning approaches combining
multiple classification models tend to provide more precise predictions than
individual models. This study aims to develop a comprehensive framework
with detailed data processing pipelines for vortex and core detection in fluid
dynamics. The framework employs Machine Vision, Deep Learning based on
YOLOv5s, and Ensemble Learning utilizing Random Forest, AdaBoost, and
XGBoost classifiers. A 3D vortex core flow is also visualized.

3 Methodology

The framework based on CNN and Machine Learning methods for the
detection of vortices and their cores is shown in Figure 1:

First, a CFD (Computational Fluid Dynamics) simulation generates raw
data based on a defined case. The raw data is then visualised, preprocessed,
and labelled for a YOLO model to detect vortices. Subsequently, the detected
vortices and parameters are put through a Computer Vision based Feature
Engineering pipeline to generate features which are then applied to an
ensembler for vortex core detection.

3.1 Simulation

CFD is commonly used to solve and analyse the fluid flow and its effect.
It comprises geometry and mesh generation, and fluid modelling. In this
research, a rotor blade NACA0012 is selected as a study case for simulation,
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Figure 1 The framework for vortex and vortex core detection.

with the Aspect Ratio (AR) of blade 6 and the radius meter of 1.143 m.
Since the case is symmetric, the domain is designed as a half cylinder with
a length of 5.6 meters and a radius of 3.2 meters with two periodic planes.
The domain dimension is created to have all the results with less space as
possible, thus improving the computational efficiency. The geometry of the
domain is shown in Figure 2.

The initial mesh is refined locally in the cells where the gradients of the
velocity are the lowest, thus having more accurate results near the areas where
vortices are likely to occur, as shown in Figure 3. The boundary conditions
are modified as per Figure 3, by changing the fluid’s rotation-axis direction,
rotational velocity, and the rotor blade’s angle of attack. The domain is then
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Figure 2 The simulation domain of a rotor blade NACA0012.

Figure 3 The refined mesh with modified boundary conditions.

sliced into planes to export the data. A total of 158 planes are created, rotated
around the z-axis with an angular distance of 1.125◦ between them.

3.2 Data Visualisation

The data with the x, y, and z velocity components is visualised using
Paraview, with filters added as a white background. The camera for each
plane is set by performing trigonometric calculations from the parameters,
with known angles between planes as highlighted in Figure 4(a). The borders
of the images are then removed and the images are standardised to a size
of 1230px by 580px to reduce the interference and computational cost in
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(a) Camera and parameters (b) A sample image after noise removal

Figure 4 Camera for data visualisation and image sample generated.

subsequent work. Finally, the Gaussian blurring method is implemented to
remove noises. A sample image is shown in Figure 4(b).

3.3 Vortex Detection

Vortices are notoriously difficult to predict, and so are their vortex cores.
In unsteady flows, the vortex cores as identified by streamlines may not
necessarily coincide with the actual vortex cores. However, for steady-state
flows, like in the current study, the vortex cores are in agreement with those
visualised through streamline plots. Its data pipeline for vortex detection is
shown in Figure 5.

Firstly, the images obtained from the simulation are augmented based
on Computer Vision techniques which include cropping, panning, rotating
and flipping images, adjusting image brightness, and adding noise to images.
In total 400 images are generated, which are then labelled for vortex detection
using YOLOv5s model. YOLO (You Only Look Once) is well known for its
accuracy in real-time object detection. It performs detection in a single pass
through an optimized deep Convolutional Neural Network, enabling direct
prediction of bounding box coordinates and class probabilities for multiple
objects. Here, YOLOv5s is chosen for its high efficiency after comparing
their model sizes, loss functions, and accuracy of the YOLO family. The
hyperparameters of the model are then configured. For instance, the epochs,
learning rate, and optimiser are set to 300, 0.01, and Adam respectively (see
detail in the Appendix). Subsequently, the model is trained with weights
generated from scratch due to the data specificity and custom object class
of vortex and core detection, and evaluated for model performance based on
IoU (Intersection Over Union) and confusion matrix metrics.
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Figure 5 Vortex detection pipeline based on YOLO model.

3.4 Vortex Core Detection

For vortex core detection, this research proposes a computationally light
solution by integrating traditional Machine Vision techniques with Machine
Learning algorithms, to produce accurate results without the need for a large
dataset.

3.4.1 Computer vision pipeline
A Computer Vision based pipeline (as shown in Figure 6) is developed to
extract features that best describe the cores while taking computational effi-
ciency and model accuracy into account, before applying Machine Learning
to vortex core detection.

As shown in the figure, the labelled images are first supplied to the
pipeline with the vortex regions identified in pixel coordinates. The vortex
regions are then cropped, separated from the original images, and resized to
300 pixels wide, with the heights calculated below so that the same ARs are
kept to ensure that the images are not distorted.

New Height = Original Height ∗ New Width

Original Width

The images are then converted into grayscale, followed by Gaussian
blurring to smooth up the image edges, adaptive thresholding to enhance the
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Figure 6 Computer Vision based pipeline for feature generation.

(a) Detected contours (b) Contours surrounded by bounding boxes

Figure 7 Labelled contours and vortex cores.

contrast between the foreground objects and the image background, and noise
reduction to eliminate the unwanted noises by image erosion and dilation (see
the resultant sample in the Appendix). Subsequently, contours are detected
based on the intensity of the pixels with similar points joined to a continuous
path. The bounding boxes surrounding these contours are also generated as
shown in Figure 7.

To identify which bounding box/contour parameters best describe a core,
a method to filter the redundant information through the data is then imple-
mented with feature filters including Contour Area (CA), Aspect Ratio (AR),
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Figure 8 An exemplar illustration of Area Difference (AD).

Area Difference (AD), or Area Percentage Difference (APD), and Moment
Centre (MC). For instance, based on observation a vortex core is commonly
assigned a contour with a size between large and small extremes as shown in
Figure 7. Hence, a threshold size with respect to CA is used to filter out both
large and small extremes. As each contour is surrounded by a bounding box,
the size of the bounding box can be used to identify the core by analysing the
box’s AR, i.e., the ratio between an image’s width and height. The ARs that
best described the vortex cores are then identified with a threshold, beyond
which are filtered. AD is the area difference between the bounding box and
the contour it surrounds while APD is the percentage of the difference over
the bounding box, based on which a tolerance threshold can be defined for
locating potential vortex cores. For example, the left figure of Figure 8 is
within the tolerance threshold and therefore kept while the right is beyond
the threshold and left out.

The sample image through contour filtering is shown in Figure 9(a). The
moment (i.e., MC) of each contour is then computed and the one closest to
the image’s centre is recognised as the vortex core, as shown in Figure 9(b),
in which the moment is represented by a blue dot with the contour that it
corresponds to highlighted in green. The process culminates in the successful
determination of the contour that better describes the vortex core as well as
the position of the vortex core.

It is observed that the Machine Vision pipeline produces accurate results
subject to the vortex being of a sane shape. While distorted vortices still
get misidentified, a Machine Learning ensembler is applied to improve the
accuracy of vertex core detection. The parameters used during the filtering
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(a) Contours after filtering (b) Vortex core contour

Figure 9 Labelled contours and vortex cores after filtering.

Figure 10 Machine Learning pipeline for vortex core detection.

process are then saved into a .csv file along with the moment pixel coordinates
for a further Machine Learning pipeline.

3.4.2 Machine learning pipeline
The image features in the .csv file are preprocessed with further features
extracted before being used by the Machine Learning Classifiers, as displayed
in Figure 10.

The features are first normalised using Z-Score as it is an important
measure for outlier detection. Then Exploratory Data Analysis (EDA) using
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(a) Strip plot (b) Box plot

(c) Point plot

Figure 11 Feature distributions using EDA.

strip, box, and point plots and feature heatmap is carried out for potential
trend and correlation identification with two categories, i.e., vc (containing
vortex cores) and nvc (not containing vortex cores). The EDA is helpful in
determining the features that can provide insight into the vortex location. The
strip and box plots in Figure 11 visualise the distributions of the vc and nvc
values and their relationships by feature. The APD and MC are found to be
separable for vc and nvc images.

A point plot shows the estimation of a numerical variable’s core propen-
sity and indicates the uncertainty surrounding the estimation. Figure 11(c)
visualises where the most vortex and non-vortex values are located by feature
based on their means. It confirms the inverse correlation between the two.
To further study the correlation between features, a heatmap is implemented
in Figure 12. It shows that none of the features are correlated highly enough
to be dropped. It is noted that the APD is inversely correlated to the MC as
also evidenced by the box plot in Figure 11.
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Figure 12 Feature correlation using EDA.

Finally, a hybrid ensemble classifier is implemented in this study,
combining both bagging and boosting techniques with the Random For-
est, AdaBoost, and XGBoost algorithms (refer to the architecture in the
Appendix). Utilizing multiple models, the ensemble classifier is expected
to provide more consistent and reliable predictions. The Random Forest
algorithm employs bootstrap aggregation (bagging) by training multiple deci-
sion trees on different subsets of data and features to aggregate predictions.
It excels in handling high-dimensional data and mitigating over-fitting while
providing feature importance estimation. Boosting algorithms, on the other
hand, sequentially combine weak classifiers by adjusting sample weights to
attend to previously misclassified samples, thereby achieving better accuracy
compared to bagging. However, they have a tendency to overfit the data.
Moreover, XGBoost is a suitable choice for larger or more complex datasets,
while AdaBoost is relatively robust against overfitting in datasets with low
noise levels. By integrating different models, it is possible to compensate for
the limitations of individual models.

The ensemble classifier in this study adopts a hard voting scheme to gen-
erate the winner output. Its hyperparameters including n estimators (i.e.,
the number of estimators or decision trees), max depth (i.e., the maximum
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depth for each estimator), random state (i.e., the randomness of features)
and learning rate are tuned based on a grid search method [12]. The con-
fusion matrix and its derived metrics are then applied to evaluate the model
performance. Subsequently, the flow of the vortex cores is reconstructed in a
3D shape with the simulation planes.

4 Results

The first step of this study is vortex detection, where a YOLOv5s model is
trained using the dataset obtained from a rotor blade NACA0012 simulation.
Figure 13 shows the training process of the YOLOv5s model with a sample
result of vortex detected based on the augmented dataset. The YOLOv5s

(a) YOLOv5s model training process and metrics

(b) Sample result

Figure 13 Vortex detection sample result using YOLOv5s.
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(a) Adaptive Boosting (b) XGBoost

(c) Random Forest

Figure 14 Training and validation curves of individual classifiers.

training and validation losses (incl. bounding box regression, objectness and
classification losses) and metrics (incl. precision, recall and mAP at IoU
threshold of 0.5) are shown in figure (a), in which the training is stopped at
200 epochs with minimum classification loss. The figure (b) shows the vortex
is correctly identified with a confidence level of 0.85. Through observation of
all samples, it is evident that the detection results are accurate with good
statistical confidence and no noise distorts the results which therefore can be
well applied to the subsequent classification model.

Subseqently, an ensemble classifier is employed to improve the accuracy
of vortex core identification by utilizing Computer Vision features extracted
from the detected vortex regions. These features are first utilized by three
distinct classifiers, i.e., AdaBoost, XGBoost, and Random Forest, to generate
classification results individually. Figure 14 displays the performance of
the AdaBoost, XGBoost and Random Forest classifiers by the number of
estimators. The validation accuracy of AdaBoost stays at 86% above from
25 estimators though falls slightly at the end, the accuracy of XGBoost
stabilises at 84% from 25 estimators, and the Random Forest fluctuates
between 81%− 82% from 7 estimators.
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Figure 15 Confusion Matrix based on hard voting ensembler.

Then an ensemble classifier based on the three classifiers is implemented
using a majority-take-all voting scheme, through which optimal results are
effectively selected from the classifier outcomes. In total 133 images are used
by the ensembler in this study, with 93 for training and 40 for testing. The
confusion matrix generated by the ensembler is shown in Figure 15.

The figure above shows that the hard voting scheme improves the individ-
ual algorithms with an accuracy of 97.56%, in which only one false positive
is obtained, without false negative.

5 Discussion

This research develops a vortex and core detection framework by combining
traditional Computer Vision and Machine Learning techniques, which is then
applied to a rotor blade case. More specifically, the research simulates the
wind turbine process, refines its mesh using the lowest velocity gradients, and
applies the slicing plane approach to generate vortex images. Then, a vortex
detection pipeline based on YOLOv5s, a Feature Engineering and vortex
core location pipeline based on Computer Vision, and a Machine Learning
pipeline for vortex core detection based on Ensemble Learning are developed.
The findings show that the method produces an accuracy score of 97.56%
in detecting vortex cores. The results are comparable to those obtained by
leading research work such as Abolholl et al. [1] in this area while exhibiting
enhanced adaptability and scalability through the utilization of three distinct
and comprehensive data processing pipelines.
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For small targets such as vortex cores, the Deep Learning approaches such
as YOLOs or CNNs alone do not work well. Therefore, this study applies an
integrated approach based on multiple technologies including Feature Engi-
neering, Deep Learning, and Ensemble Learning. The labels for vortex core
detection are automatically generated by YOLOv5s thus reducing the manual
work that other studies (e.g. Biswas et al., [5]) typically rely on. To detect
vortex cores, the vortex regions generated by YOLOv5s are passed through
Feature Engineering and Machine Learning pipelines for feature extraction
and EDA. Then, a hard voting classifier ensembling Random Forest, Adaptive
Boosting, and XGBoost algorithms is trained for binary classification.

In feature extraction, the contour approach is selected through trial and
error, based on which the ensembler classifies the vortex core images with
high accuracy. A number of other features including edge detection, template
matching, hough transform, and corner detection are also tested without
success. If a vortex is well-shaped and free of distortion, Machine Vision
methods alone can produce accurate results, as shown in Figure 9. However,
vortices may be irregular, distorted, and noisy. A Machine Vision algorithm
combined with ensembler capable of tracking the swirling motion of white
lines with noise handling all the way to the vortex core is an option for these
vortices, potentially improving the model efficiency and accuracy. Moreover,
a further study on hidden image features that are most suitable for vortex core
detection is necessary.

This study utilises data augmentation techniques to improve the training
of the YOLOv5s model with weights updated from scratch. It shows that the
training with a single dataset obtained from the same simulation is effective
for vortex and core detection. However, model generalisation often requires
training with different datasets, which may negatively impact the model’s
accuracy. In the study, the simplest YOLOv5s model is selected over some
potentially more accurate YOLO models because of its low computational
cost. Given more computing power, the accuracy can be improved with more
complex YOLO models.

The box plot of the Z-Score values for APD in Figure 16 shows that
there is a threshold for the images with and without vortex cores, below
which the images are devoid of vortex cores. It is worth investigating whether
the variable would be a good detector on vortex cores with a well-tuned
threshold, based on a larger dataset with more complex vortices.

Figure 17 shows the visualisation result of all the detected vortex cores in
a simulation. The results show the general shape of the flow and are coherent
with the expectation.
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Figure 16 Box plot over the Z-Score values for APD.

(a) Front view (b) Side view

(c) Top view (d) Rear view

Figure 17 Vortex core flow 3D reconstruction.

This research explores an integrated method for detecting vortices and
cores than traditional approaches commonly based on Deep Learning,
Machine Learning, or Computer Vision alone. Although high accuracy
is achieved by the ensembling approach, the performance of individual
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classifiers is impacted by the lack of data diversity (e.g., the vortices of
particular types are dominant) and the small size of data samples. It is
observed that the proposed solution produces accurate results for the vortices
with a circular shape (e.g. oval or spiral) with vortex cores at or near their
centres. The images with distorted vortices and cores need to be further
tested. Moreover, as the selection of algorithms is arbitrary for ensembler,
an uncertainty study is required.

The methodology employed in this study, which incorporates a vortex
detection pipeline, Computer Vision-based pipeline, and a Machine Learning
pipeline, can be adapted and scaled to address various vortex and core detec-
tion scenarios due to the commonality in vortex structural features acquired
by YOLOv5s model training and the utilization of Feature Engineering tech-
niques to characterize the vortex cores, evidenced by the distinction in feature
distributions between vortex and non-vortex cores. However, further testing
and fine-tuning with new datasets are necessary for an optimised solution.

6 Conclusion and Future Work

This research presents a comprehensive framework for detecting vortices and
their cores in Computational Fluid Dynamics (CFD) simulations, employ-
ing a combination of Computer Vision and Machine Learning techniques.
The framework consists of three main components, i.e., a vortex detection
pipeline based on YOLOv5s, a Feature Engineering and vortex core detec-
tion pipeline based on Computer Vision, and a Machine Learning pipeline
utilizing Ensemble Learning for accurate vortex core detection.

The framework is then applied to a rotor blade case, where the fluid
simulation vortex images are used to train a YOLOv5 object detector to detect
vortices and to extract features by Computer Vision techniques for subsequent
vortex core detection by developing a state-of-the-art ensembler. The results
demonstrate the effectiveness of the proposed framework in detecting small
targets, i.e., vortices and cores, achieving higher accuracy compared to using
the YOLO model alone. Furthermore, due to the comprehensive and detailed
design, the methodology can be easily adapted and scaled to address various
vortex scenarios.

Future work will focus on generalizing the framework by utilizing a
larger and more diverse dataset encompassing different types of vortices.
Additionally, the framework’s uncertainty will be studied, and intelligent
thresholds will be explored to enhance the efficiency of vortex and core
detection.
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A Appendix

Figure 1 Attack angle.

Table 1 Training parameter configuration
Name Function Value/Action Type

weights initial weights path None str
cfg model.yaml path ROOT/’models/yolov5s.yaml’ str
data dataset.yaml path ROOT/’data/data.yaml’ str
hyp hyperparameters path ROOT/’data/hyps/hyp.scratch-low.yaml’ str
epochs training epoches 300 int
batch-size total batch size for all GPUs 16 int
imgsz train, val image size (pixels) 640 int
rect rectangular training store true –
resume resume most recent training False –
device cuda device 0,1 –
project save to project/name ROOT/’runs/train’ str
name save to project/name exp str

Table 2 Hyper-parameter configuration
Name Function Value

lr0 initial learning rate 0.01
lrf final OneCycleLR 0.01
momentum 0.937 SGD momentum/Adam betal
weight dacay optimizer weight decay 0.0005
warmup epochs warmop epochs 3.0
warmup momentum warmup initial momentum 0.8
warmup bias lr warmup initial bias lr 0.1
box box loss gain 0.05
cls cls loss gain 0.5
cls pw cls BCELoss positive weight 1.0
iou t IoU training threshold
anchor t anchor-multiple threshold 4.0
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(a) Vortex core (b) Noise reduction

Figure 2 Vortex region generated through noise reduction process.

Figure 3 The ensemble classifier based on hard voting.
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Figure 4 Feature pair plot.
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