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ABSTRACT. A commercial Finite Element (FE) code is used to simulate the forming of a 
thermoplastic viscous textile composite sheet. The main success of this work is in combining 
two distinct models. The first is a rate and temperature dependent unit cell energy model, 
designed to predict the shear force – shear angle – shear rate response of viscous textile 
composites. The second is a non-orthogonal rate-independent constitutive model that has 
been implemented previously in the code. Both models are reviewed briefly and the method of 
combining these models in the code is described. Preliminary results of Picture Frame test 
simulations together with complex forming simulations are presented and discussed. 

KEYWORDS: forming, textile composites, rate-dependence. 



614     REEF – 14/2005. Composites forming simulation 

1. Introduction 
 

Virtual technology is an important tool in improving efficiency in automated 
manufacturing processes. As such, deep drawing and press forming of viscous 
textile composites, including thermosetting prepregs and fabric reinforced 
thermoplastics, are prime candidates for virtual process development. Competition 
between composites and metals has created strong demand for such simulation 
technology in the composites industry, resulting in considerable research interest in 
the field. In the past, two main approaches have been followed in the forming 
simulation of textile composites, namely the development of algorithms based on 
pin-jointed net kinematics (Long, 1994; Robertson et al., 1981; Van West and Luby, 
1997) which give a reasonable first order approximation to the forming behaviour of 
rate independent textile composites and the Finite Element (FE) method. The latter 
is potentially a more accurate method and can be used to simulate both rate 
independent (Boisse et al., 2001; Yu et al., 2002) and rate dependent or viscous 
behaviour (Hsiao and Kikuchi, 1999; Lamers et al., 2002a; 2002b; Picket et al., 
1995). A difficulty in modelling viscous textile composites is often found to be in 
determining appropriate constitutive model material parameters. Hsiao and Kikuchi 
(1999) addressed this issue by using homogenisation methods enabling prediction of 
material rheology from parameters such as matrix viscosity and fibre volume 
fraction, though at the cost of computationally expensive numerical calculations. In 
this paper an alternative, economical method to predictive modelling of the forming 
behaviour of viscous textile composites is described and demonstrated. 

A non-orthogonal constitutive model implemented previously in a commercial 
FE code, Abaqus StandardTM and ExplicitTM, (Yu et al., 2002; 2003) is used to 
incorporate predictions from a constituent based unit cell energy model (Harrison et 
al., 2002; 2004a). As it stands this non-orthogonal model is rate-independent. 
However, by linking the shear parameters of the non-orthogonal model to 
predictions of the energy model, both rate and temperature effects can be included in 
the simulations. The main role of the energy model is to predict the shear force – 
shear angle – shear rate behaviour of viscous textile composites using material 
parameters supplied readily by material manufacturers, such as fibre volume 
fraction, weave architecture and matrix rheology. The motives for such constituent-
based predictive modelling are two-fold. First, once the material behaviours of the 
constituent components are known then the rheology of any composite comprised of 
matrix and continuous inextensible fibres can be predicted, allowing the pre-
manufacturing optimisation of a composite to suit a potential application. Second, 
characterising the rheological behaviour of, for example, a thermoplastic matrix 
polymer at different shear rates and temperatures is relatively easy using modern 
rheometers, compared with the equivalent but more difficult task of characterising 
the rheology of textile composites using picture frame and bias extension tests 
(Harrison et al., 2004b). Success in both these issues would lead to significant 
reductions in time and cost in the manufacturing process. The structure of this paper 
is as follows. The energy model is summarised followed by a brief description of the 
non-orthogonal model. Full descriptions of these models can be found elsewhere 
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(Harrison et al., 2002; 2004a, Yu et al., 2002; 2003). The method of incorporating 
predictions of the energy model in the non-orthogonal model is outlined. The 
general method is illustrated through discussion of implicit FE simulations of the 
Picture Frame test and explicit FE simulations of double-dome press forming 
operations. 

2. Micro-mechanical model 

During shear, it has been observed that the in-plane shear strain rate of tows is 
rarely as high as the overall in-plane shear rate across the composite sheet (Harrison 
et al., 2004a). This produces a discontinuous shear strain profile across the sheet 
with most of the shear strain concentrated in inter-tow regions. An example of such 
a non-linear shear profile is shown in Figure 1.  

 

Figure 1. Example of discontinuous shear strain profiles across a textile composite. 
The broken form of initially continuous lines drawn on the fabric before shear, 
serves to illustrate the strain profiles. 2 x 2 twill weave glass/polypropylene 
thermoplastic sheared in a bias extension test at 180oC 

These observed kinematics (Harrison et al., 2002) have motivated the use of a 
novel two-phase material model structure to analyse the energy dissipation within 
the textile composite. For the purpose of the model, the textile is considered to 
consist of two distinct superposed layers, each consisting of parallel tows and inter-
tow regions, see Figure 2. Each tow is modelled as a volume of uniaxial Ideal Fibre 
Reinforce Fluid (IFRF) whereas the inter-tow regions are filled with isotropic matrix 
fluid. The observed kinematics have important consequences for the deformation 
occurring during shear of textile composites, both within tow (fibre bundle) and 
inter-tow regions, and also between tow crossovers. 
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Figure 2. Textile modelled as two superposed layers of uniaxial composite 
consisting of tow and inter-tow regions 

Considering, for example, the rate of deformation tensor, the discontinuous shear 
profile means that ijD2  must be re-derived for both the tow and inter-tow regions. 

In order to do this it is necessary to define a set of coordinate systems, see Figure 3.  
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Coordinate system. θ  is the material shear angle, χ is the shear angle of 
this local region (indicated by dashed lines), χt when referring to the tow region 
orχm when referring to inter-tow region 

The first coordinate system, ix , describes a fixed Cartesian system. A second 

material coordinate system, iX , is considered attached to and to deform with each 

point, P, of a continuum in a hypothetical material undergoing homogeneous 
deformation. This is referred to here as the material coordinate system. Note that for 
the case of heterogeneous shear, particles of the localised continuum attached to the 
tows or inter-tow regions, referred to here by P’, are no longer stationary in the 
material coordinate system. Figure 3 shows the deformation imposed in the tow 
regions. In the case shown, χ  corresponds to the tow shear angle, tχ , where 
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θχ ≤≤ t0  and where θ  is the material shear angle. The derivation also applies to 

the inter-tow region, however, in that case, χ  would correspond to the shear angle 

of the inter-tow region, mχ . The fibre direction is considered parallel to the X1 axis 

of the fixed frame. It can be shown that in this reference frame, 
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whereθ�  is the relative angular velocity of the two reinforcement directions in the 
textile. From Equation [1] the simple shear rate of the tows or inter-tow regions, tγ�  

or mγ� , is given as 

χθθχχγ tantansec2
�

�� −=  [2] 

where χ  and χ�  must be chosen accordingly to represent either the tow or inter-tow 

regions in order to calculate the shear rate, γ� , in the tow, tγ�  or inter-tow, mγ� , 

regions. From Equation [2] is can be shown that when θχ �

� =  at all times (the 

condition of homogeneous shear) then θγ �� = . Using tensor notation, the constitutive 

equation for a uniaxial IFRF (Rogers, 1989), is given by Equation [3] 

( )( )kikjkjkiTLijTjiaijij DaaDaaDaaTp +−+++−= ηηηδσ 22  [3] 

where ijδ  denotes the unit tensor, ia  defines the direction of the fibre 

reinforcement, ijpδ−  and jia aaT  are reaction stresses due to the constraints of 

incompressibility and fibre inextensibility, Tη  and Lη  are the transverse and 

longitudinal viscosity parameters and i, j and k range from 1 to 3. Using micro-
mechanical modelling principals (Christensen, 1993; Coffin, 1995) both Tη  and Lη  

can be predicted from the matrix viscosity, mη , and fibre volume fraction. The 

interaction between fibres and matrix occurs on a microscopic scale and is shown in 
the schematic of Figure 4. Here the transverse viscosity, Tη , results from individual 

fibres rolling past one another, while the longitudinal viscosity, Lη , results from the 

fibres sliding past one another along their length. Numerous ingenious experiments 
have been devised to measure these two viscosities (Martin et al., 1995; McGuiness 
et al., 1998; Shuler et al., 1996). It should be noted that, unlike the viscosity 
parameters appearing in uniaxial IFRF theory, viscosity parameters appearing in the 
constitutive equations of biaxial IFRF (McGuiness et al., 1997; Spencer, 2000) can 
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not each be identified with a particular well-defined deformation kinematic and so 
can not be related to micro-mechanical mechanisms. This precludes the possibility 
of developing constituent based models based on biaxial IFRF model theory. 
 

 

 

 

 

 
Figure 4. (a) Shearing the composite across or transverse to the fibre direction 
gives a measure of the transverse viscosity and (b) shearing the composite parallel 
to the fibre direction gives a measure of the longitudinal viscosity 

Using Equation [1] and [3] together with the plane stress condition, it is possible 
to determine the rate of energy dissipation of the combined tow and inter-tow 
regions during shear using an expression for the stress power, dtdE , of the 

deforming material (McGuiness et al., 1995), 

( ) ( )22222 tan4tan4 mmotLTo hqwhW
dt

dE γθθηγηθθη �

�

�

� +++=  [4] 

where Wo and wo are the initial widths of the tow and inter-tow regions, h is the 
thickness of the sheet, q is a factor related to the fabric architecture (i.e. the contact 
area between adjacent tows) and tγ�  and mγ�  are found using Equation [2]. However, 

while the analysis described above accounts for the energy dissipation within the 
tow and inter-tow regions, the heterogeneous strain profile also induces energy 
dissipation between the tow crossovers. The velocity field between crossovers is 
calculated by analysing the in-plane kinematics of tow deformation during shear 
(Harrison et al., 2002; 2004a). The resulting velocity field between crossovers is 

( )( ){ } ( )( ){ }ji ˆsin1ˆsin1 XYv ttrel θγθθθγ −−+−−= ����
�

 [5] 

where the unit vectors, î  and ĵ  are orthogonal and coincide with the fibre 

reinforcement bisector directions and X and Y are the position coordinates in this 
reference frame. A polynomial function, Equation [6], can be fitted to the measured 
tow shear kinematics.  

2311.07701.01072.11072.1 2234 ++×−×= −− θθθχt  [6] 
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The experimental measurements were made on a pre-consolidated 2 x 2 twill 
weave glass/polypropylene thermoplastic composite at various angular shear rates 
and using both Picture Frame and Bias Extension tests. By differentiating 
Equation [6] with respect to time and using Equation [2] it is possible to calculate 
the velocity field between the tow crossovers from Equation [5]. Future refinements 
of the model will allow prediction of the tow shear kinematics. Assuming that the 
thickness of the matrix film separating tows at the tow crossovers is the same as the 
distance separating individual fibres within the tows, the thickness of the matrix film 
can be estimated from the fibre volume fraction of the composite. Using the velocity 
field and matrix film thickness the shear strain rate in the matrix film can be 
estimated as a function of position. Finally, given the matrix viscosity, an estimate 
of the rate of energy dissipation can be determined due to shear between tow 
crossovers. By combining the energy contributions from both tow/inter-tow shear 
and crossover shear, the total rate of energy dissipation during shear of the textile 
composite can be estimated and from this the shear force can be determined. 
(Similar to equating the product of the axial force and the crosshead displacement 
rate of a Picture Frame test with the stress power of the test sample (McGuiness and 
O’Bradaigh, 1997)). 

3. Non-orthogonal model 

To model the stress and strain relationship dependent on the fibre directional 
properties, a non-orthogonal equation has been developed in an explicit 
mathematical form by using a homogenization method (Yu et al., 2002). The 
resulting 2-D equation is based on a structural net concept (see Figure 5) and its 
derivation follows two distinct steps.  
 

 
Figure 5. A structural net (left) and unit cell (right) of fabric reinforcement 

Firstly, the contribution to total stress due to tensile strain in the non-orthogonal 
fibres is derived in a materially embedded orthogonal reference frame, with its x-
axis co-linear with the fabric warp reinforcement direction (single dash system in 
Figure 6). The resulting tensile equation, Equation [7], relates incremental stress to 
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incremental strain in this reference system. In this first step of the derivation the 
warp and weft fibres are assumed to rotate freely at crossover contact points 
assuming no frictional resistance. 
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where σ∆  and ε∆  are the stress and strain increments, a, b and h  are related to 

the fabric geometry (see Figure 5), c is the sheet thickness and αE
~

 and Γ  are 
representative of the tensile stiffness of the warp and weft yarns (Yu et al., 2002). In 
a second step, shear stress versus shear angle data is related to shear stiffness using a 
non-orthogonal analysis to find 
 

( )12
22

21
11

12 gggg ⊗+⊗= gg
lh

Fsσ  [8] 

 
where Fs is the shear force, 1ĝ  and 2ĝ  are unit covariant base vectors that convect 

with the warp and weft fibre directions (see Figures 6 and 7), l is the side length of 
the material and ijg  are components of the conjugate tensor.  

 
 
 y′  
 
 
 
 
 
 
 
 
 

 
Figure 6. Warp and weft fibre reinforcement directions plus three orthogonal 
reference frames used in analysis. Single dashed system has x-axis collinear with 
warp reinforcement direction (reference frame of Equation [7]). Double dashed 
system bisects the two fibre directions (reference frame of Equation [10]). Triple 
dashed system is material reference frame used in FE analysis (Equations [7] and 
[10] are transformed to this system before addition) 
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The incremental stress due to shear is then calculated by linearising the stress 
equation, i.e. 

θ
θ
σ

σ ∆=∆
d

d ij
ij

 [9] 

where θσ dd ij  is the tangent stiffness matrix. Equation [9] is then transformed 

into the orthogonal fibre bisector frame (double dash system shown in Figure 6) and 
related to the fibre shear angle increment, θ∆ , as 
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where G1 and G2 are model parameters that can be related explicitly to the shear 
force versus shear angle curve and 2

1
1
1 , gg  are components of 1ĝ  expressed in the 

orthogonal fibre bisector frame (double dashed system in Figure 6). Similarly, 
2
2

1
2 , gg  are components of 2ĝ  (Yu et al., 2003). 

 

 
Figure 7. Schematics of the picture-frame shear test (left) and contra-variant stress 
( 2112 ,σσ ) components acting along normalized covariant based vectors (

21, gg ). The 

unit vectors E1 and E2 are co-linear with the double-dashed system of Figure 6 
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Equations [7] and [10] are both rotated into the materially embedded reference 
frame used by the FE code (triple dash system in Figure 6), via a user subroutine. 
The stress increments calculated by these rotated equations are then simply added 
together to find the final combined stress in this materially embedded reference 
system. An attractive feature of this non-orthogonal model is that, given the shear 
angle the two shear parameters G1 and G2 can be related analytically to the shear 
force versus shear angle response of textile composites through Equations [11] and 
[12]. 
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where sF  is the shear force versus shear angle which can be approximated using a 

polynomial function of θ  and θddFs  is the gradient of the shear force versus 

shear angle curve which is also a function of θ . 

4. Implementation of energy model 

The energy model described in Section 2 requires the following material 
properties as input in order to generate shear force versus shear angle predictions: 
fibre volume fraction, matrix rheology, weave architecture and fibre diameter. For 
thermoplastic textile composites the matrix rheology is a function of shear strain rate 
and temperature. By specifying the temperature, the energy model allows prediction 
of a shear force surface in shear angle – angular velocity space. Using the input data 
for a 2 x 2 twill weave glass/polypropylene thermoplastic textile composite with a 
fibre volume fraction of 0.35 for which the matrix rheology has been characterised 
using an RMS 800 Rheometer, predictions have been made and found to give good 
comparison with experimental results (Harrison et al., 2004a). An example of the 
predicted shear force surface for this thermoplastic composite is shown in Figure 8. 
In order to incorporate these predictions in the FE code and consequently introduce 
rate dependency in the simulation, polynomial fits are made to the surface at specific 
angular velocities. In Figure 8, five different fits to the energy model predictions are 
indicated by the thick black lines superimposed on the shear force surface. The 
polynomial coefficients of these fits and corresponding angular velocities are stored 
in a matrix. This is the output of the energy model and is stored in a text file in a 
specified location on the computer. (Note that the text file containing the polynomial 
coefficients and corresponding angular velocities is the only output of the energy 
model, thus energy model parameters such as ηT and ηL are not required as input for 
the non-orthogonal model implemented in the FE code).  
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At the start of the FE simulation the output of the energy model is read in matrix 
format into a specified variable read by the subroutine. Care is taken to ensure that 
the code reads the data only one time, as repeated reading at each time step could 
slow the simulation significantly. (Increasing the number of polynomial curves fitted 
to the energy model predictions results in only a minor increase in the total 
simulation time). During the FE simulation the angular velocities of the individual 
finite elements are calculated in the user subroutine (a Fortran program containing 
the FE implementation of the non-orthogonal constitutive model). This is done for 
each element and at each time step of the simulation. The code uses the angular 
velocity of the element to determine which polynomial curve approximation of the 
shear force – shear angle (SF-SA) predictions will be used to calculate G1 and G2 
using Equations [9] and [10]. This process is illustrated in Figure 8.  

 

 
 

Figure 8. Shear force – shear angle – angular velocity prediction for 2 x 2 twill 
weave glass/polypropylene thermoplastic textile composite at 190oC. Grey scale 
indicates the shear force magnitude of the surface (legend on right). The five thick 
black lines are 11th order polynomial fits to the surface at specific angular 

velocities: 0.2, 0.4, 0.6, 0.8 and 1 rads-1 (or 11, 22, 34, 46 1−so ). The white cross 
corresponds to the shear angle and angular velocity associated with a specific 
element (see text) 

The white cross on the shear force surface indicates the shear angle ( o35≈ ) and 

angular velocity ( 5.0≈ rads-1 or 129 −so ) of a given element at a given time. In 
determining the shear parameters of this element, G1 and G2, the code assigns to the 
element the coefficients of the polynomial curve fitted at an angular velocity higher 
but contiguous with the angular velocity of the element. In this case the element 

would be assigned the polynomial coefficients of the 0.6 rads-1 (or 134 −so ) curve.  

��
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5. Finite element results 

FE results from simulations are presented which illustrate the combined 
implementation of the micro-mechanical and non-orthogonal constitutive models. 
The first simulation is of a Picture Frame test and uses the implicit FE method. This 
simulation provides a clear demonstration of the interfacing between the two 
models. Complex forming conditions associated with the press forming operation, 
such as contact between tool and blank, can be simulated more readily using the 
explicit FE method. Thus, explicit FE simulations are used to simulate the forming 
of both a hemisphere and a double dome geometry. 

5.1. Picture frame test simulations 

Implicit FE simulations of the Picture Frame test have been conducted using the 
interface described in Section 4. 100 quadrilateral linear membrane elements were 
used to model the blank. The boundary conditions imposed during the simulations 
were such that nodes along the sides of the material were constrained to move along 
the lines connecting the corner nodes. The bottom left corner was fixed while the 
upper right corner moved at a constant displacement rate in the diagonal direction.  

Figure 9 shows the deformed mesh at different times during the simulation. The 
legend refers to the polynomial curve indicator value assigned by the interface to each 
element. Figure 10a shows the ideal shear angle expected in the case of inextensible 
fibres as the test proceeds, see Equation [13], together with the actual predicted shear 
angle from the FE simulation. Similarly, Figure 11b shows the ideal angular shear rate 
expected for the case of inextensible fibres, see Equation [14], together with the actual 
predicted angular shear rate produced by the FE simulation. 
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1
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( )24sin θπ
θ

−
= d�
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where d is the displacement of the upper right corner node, L is the side length of the 
blank (0.115 m) and the dot above the symbols indicates differentiation with respect 
to time.  

Equation [14] shows that for a constant displacement rate the angular shear rate 
increases with increasing shear angle. Thus, during the course of the simulation the 
elements undergo progressively faster angular shear and are consequently assigned 
polynomial SF-SA curves of increasing value as the shear angle increases. In order to 
produce angular velocities corresponding to those typically induced during rapid press 
forming, a velocity scale factor has been introduced in the user subroutine. This 
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velocity scale factor affects the FE results only via its influence regarding assignment 
of polynomial SF-SA curves to the elements during the simulation. Otherwise the 
velocity scale factor has no bearing on the FE calculations. In this simulation 
50 polynomial curves were fitted to energy model predictions at equal increments over 
an angular shear rate range of 110 −≈ so to 140 −so . Elements undergoing angular 

shear rates higher than 140 −so  were automatically assigned the highest polynomial 
SF-SA curve. The range of angular shear rates was chosen by referring to Figure 11b 
and imposed through the use of an appropriate velocity scale factor.  
 

 

 
Figure 9. Picture Frame test simulation at a shear angle of (a) 19o (b) 38o (c) 55o 
and (d) 76o. The grey scale indicates the value of the polynomial indicator value 
used by each element 

Figures 9 and 10 indicate the kinematic predictions of the simulation are correct 
until very high shear angles where mesh distortion is high. Figure 10a shows 
divergence from the ideal shear angle at about 70o and Figure 10b shows a similar 
divergence in the angular shear rate at about 67o. Thus the kinematics predictions of 
the non-orthogonal constitutive model are successful. Here, the emphasis is on 
examining the kinematic predictions of the code, force predictions of this model 
have been presented previously (Yu et al., 2005).  

(a (b 

(c (d 
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Figure 10. Kinematics of ideal (black line) and simulated Picture Frame test (grey 
line). (a) Shear angle and (b) Angular shear rate. Simulation predictions were taken 
from a single element positioned near the centre of the blank 
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Figure 11. Polynomial indicator value versus shear angle for centrally located 
element of Picture Frame simulation 

Figure 11 gives further insight into the operation of the interface. The value of 
the polynomial indicator curve assigned to one of the central elements of the blank is 
shown over the course of the simulation. Comparison of Figures 11 and 10b clearly 
shows the correlation between the change in the polynomial indicator value and the 
change in the angular shear rate of the element. This comparison demonstrates the 
correct functioning of the interface between the two models. 

(a) (b) 



Forming of viscous textile composite sheet     627 

 

5.2. Double dome forming simulations 
 
 

 

 

Figure 12. (a) Double-dome forming simulation set-up showing male tool, blank 
holder ring and blank. A slightly larger matched female tool is positioned below the 
blank (3 mm gap between tools). Initial fibre orientation is shown on the blank. 
(b) Dimensions of the male tool in mm 

A simulation of a double-dome press forming process has been conducted. The set-
up is shown in Figure 12a and the dimensions of the tool are shown in Figure 12b. The 
undeformed blank measured 650 x 450 mm and the initial fibre orientation is shown in 
Figure 12a. Figure 13 shows results from the simulation and consists of six images 
predicted from a single FE simulation. Rows correspond to different instances in time 
(0, 0.02, 0.04, 0.06 s, time increasing downwards) and columns correspond to: Left, 
magnitude of shear angle and Right, polynomial curve indicator value. 21,706 
triangular linear reduced integration shell elements were used in creating the FE mesh 
of the blank. The indicator value is assigned to each element at the same time as the 
polynomial coefficients and, as with the Picture Frame simulation, serves to indicate 
which polynomial curve has been fitted to a given element. In this simulation the 
indicator value ranges from one to twenty. For convenience, a surface friction 
coefficient of 0.3 was chosen for all contact surfaces in the simulation and a blank 
holder force of 35N was applied. Areas of high shear are indicative of regions with 
relatively high angular shear rate. These areas can be seen to contain elements which 
have been assigned polynomial curves representing the shear behaviour of the textile 
composite at correspondingly high angular shear rates (see, Figure 13), as predicted by 

Initial fibre 
orientation 

Male tool 

Blank holder 
ring 

Blank 
(a) 

(b) 
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the micro-mechanical energy model (Section 2). Figure 13 shows that in any given 
time step the polynomial indicator value changes considerably across the sheet in an 
apparently random and patchy manner. This is thought to be due to the nature of the 
explicit FE code solver. Each individual element may contain an error in any given 
time-step (12,000 in this simulation). However, the time averaged value of the angular 
velocity is shown to be correct through the reasonable prediction of the shear angle 
(left-hand column in Figure 13), i.e. the shear angle in each element is effectively the 
angular velocity of each element integrated over time.  

 

 

 

 
 
Figure 13. FE simulation of double dome forming. Rows correspond to instances in 
time, (0, 0.02, 0.04, 0.06 s downwards) and columns correspond to: Left, magnitude 
of shear angle and Right, polynomial curve indicator value. The FE mesh of the 
blank is shown in the first time increment 
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The double dome forming simulations demonstrate the basic philosophy behind 
this predictive approach to simulating the press form manufacture of viscous textile 
composites, i.e. predicting the shear behaviour of these materials using a micro-
mechanical energy model and incorporating this behaviour in FE simulations of 
forming processes. Future work will involve examination of the force predictions of 
the Picture Frame test simulation and detailed investigation into the effects of rate 
and temperature dependent forming behaviour on the results of complex press 
forming operations. More realistic boundary conditions such as rate and temperature 
dependent tool-ply friction will also be incorporated in the simulations. 

6. Conclusions 

A constituent-based micro-mechanical energy model has been presented. SF-SA 
predictions of this model are based on the matrix rheology, fibre volume fraction 
and fabric architecture of the textile composite. As such the energy model is capable 
of predicting both the rate and temperature-dependent response of viscous textile 
composites due to shear. These SF-SA predictions have been incorporated in FE 
simulations via an interface implemented in the user subroutine. This interface is 
designed to pass energy model SF-SA predictions to a non-orthogonal constitutive 
model implemented in the FE code. This constitutive model uses the SF-SA energy 
model predictions to determine the shear stiffness of the finite elements. Rate 
dependency is produced in the FE simulations by automatically assigning 
appropriate SF-SA predictions to the finite elements according to the angular shear 
rate of the elements during the course of the simulation. Preliminary implicit FE 
simulations of the Picture Frame test have been presented which illustrate clearly the 
successful implementation of the interface in the FE code. Explicit FE simulations 
of forming simulations have also been conducted which indicate the current state of 
the work and suggest the future potential of the method.  
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