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ABSTRACT. Discrete models of fabric have been elaborated at both macroscopic and 
mesoscopic scales, whereby nodes endowed with a mass and a rotational rigidity are 
mutually connected by extensible bars to form a two-dimensional trellis. At the macroscopic 
scale, the equilibrium shape of the structure is obtained as the minimum of its total potential 
energy versus the kinematic translational and rotational variables. Draping simulations are 
performed for fabric sheets lying on a fixed rigid surface. In the second part of the paper, a 
mesoscopic model of fabric is elaborated ; thereby, the undulations of the yarns are explicitly 
described within the unit cell, using a Fourier series development to represent the  shape of 
each yarn. This methodology is applied to get the response of a set of intertwined yarns under 
biaxial loading, accounting for the contact reaction forces exerted by the transverse yarns. 

RESUME. Des modèles discrets de structures tissées ont été élaborés aux échelles 
macroscopique et mésoscopique, considérant un réseau de nœuds dotés d’une masse et de 
rigidité en rotation, et connectés par des barres extensibles. L’ensemble de quatre barres 
délimitant un rectangle est doté d’une rigidité en torsion. La forme d’équilibre de la structure 
à l’échelle macroscopique est obtenue comme le minimum de son énergie potentielle,  
relativement aux variables cinématiques de translation et de rotation. Des simulations de 
drapé de nappes supportées par des formes rigides sont effectuées. Dans la seconde partie, 
on développe un modèle dit mésoscopique, qui prend en compte de façon explicite les 
ondulations des fils à l’intérieur de la cellule de base, la forme d ‘équilibre des fils étant 
décrite par un développement en série de Fourier. Cette méthodologie est mise à profit pour 
évaluer la réponse d’une nappe de fils soumise à une sollicitation biaxiale, en tenant compte 
des efforts de réaction de contact des fils transverses.  

KEYWORDS: woven structures, discrete models, draping simulations, stability analysis, 
mesoscopic approach, yarn-yarn interactions, uniaxial and biaxial loadings. 

MOTS-CLES : structures tissées, modèles discrets, simulations du drapé, analyse de stabilité, 
approche mésoscopique, interactions entre fils, tractions uniaxiale et biaxiale. 
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1. Introduction 
 

The analysis of the deformations and shape forming of woven structures such as 
textiles is nowadays an important scientific and technological topic, due to the wide 
range of applications of these structures: mention e.g. mechanical parts made of dry 
fabric used in car and aerospace industry for their gain of weight ; apparel industry, 
or geotextiles. Since mechanical parts having complex shapes are produced on a 
large scale, it becomes important to have at hand tools for predicting the shape 
formability of fabric sheets. Although the mechanical properties and behavior of 
woven fabric reinforced composites has attracted many studies (Ishikawa et al., 
1983), less work has been spent on dry fabrics (Kawabata, 1989), (Realf et al., 
1993), (Gasser et al., 2000), (Boisse et al, 1997), (Boisse et al., 2001), (Magno et 
al., 2002), (Ganghoffer, 2003), despite their wide range of applications. The dry 
fabric behavior is quite peculiar, due to the ease of relative motions between yarns, 
which becomes prohibited when the initially dry fabric is impregnated with a resin: 
the lack of a matrix has thereby an important influence on the fabric behavior. 

 

The mechanics of fiber fabrics is a three-scale imbricated problem, which calls 
for a micromechanical approach: at the microscopic scale, the basic constituents – 
the yarns – are made of single intertwined filaments, the organization of which may 
influence the contact and friction behavior during tension. At the intermediate scale, 
called the mesoscopic scale, the change of shape of the undulated yarns (warp and 
weft) and their extension lead to geometrical non-linearities. These deformation 
mechanisms and the arrangement of the yarns within the elementary woven pattern in 
turn determine the nonlinear complex behavior observed at the macroscopic scale. 
Considering this discrete constitution, it is relevant to analyze the behavior of the 
woven structure from the scale of a yarn or a set of intertwined yarns, possibly 
accounting for their mechanical coupling. The contact between the yarns, and their 
organization within the unit cell, that defines the type or armor (such as satin, serge) 
plays there an important role in the shape forming capacity of the initially flat 
structure (the pattern). It is therefore important to develop reliable and accurate 
micromechanical models, in order to be able to predict the 3D deformation of woven 
structures during real forming processes. These models can then further be used at 
the next scale (the macro scale) and implemented in FE codes (Realf et al., 1993), 
(Hing et al., 1996), (Bruckstein et al., 1990). This description can be refined, using 
the so-called meso-macro models that account for the nonlinearities due to the 
change of undulations of the yarns (Boisse et al., 2001), (Magno et al., 2002). A 
synthetic view of the modeling of woven structures is given in (Hing et al., 1996). 

 

The goal of the present paper is accordingly to set up discrete models of fabric, 
involving beam like elements mutually connected to form a repetitive unit cell, that 
defines the basic fabric pattern. In connection to this, a given kinematics of the 
analogical elements (extensional, flexional and torsional springs) shall be elaborated. 
This kind of approach bears some resemblance with the work of (Provot, 1995), who 
models the tissue by a set of punctual masses connected with extensional, flexional 
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and shear-like springs. However, Provot model only considers the in-plane 
deformation of the pattern, and thus excludes the displacements of the nodes outside 
the initial plane of the tissue. This work is intended to give a synthetic review of the 
previous works published by the authors (Ben Boubaker et al., 2002; 2003).  

 

The kinematic and static of the discrete model is first elaborated, thus leading to 
the expression of the total potential energy of, the unit cell. Draping simulations of 
fabric sheets on fixed rigid supports exemplify the potential of the model ; a stability 
analysis of a discrete fabric plate is conducted, using Dirichlet Lagrange stability 
criterion. In the second part of the paper, a mesoscopic refined analysis of the fabric 
is elaborated, which allows the consideration of the yarn undulations and yarn 
contact interactions within the unit cell. Simulations under biaxial loading are 
performed, and the impact of the transverse yarns properties on the yarn interactions 
is quantitatively assessed. Finally, some conclusions and perspectives are given. 
 
 
2. Kinematics and sthenic of the discrete model. Energetic formulation 
 

From a macroscopic point of view, the fabric is here considered as an orthotropic 
(at least in its initial reference configuration) elastic structure, the principal 
directions of which coincide with the warp and weft direction. The fabric sheet is 
modeled as a truss of elastic beams connected at frictionless hinges; the truss 
represents a mesoscopic view of the whole woven structure, that occupies a plane 
domain ( )x, y  in the initial stage, Figure 1a. The z axis− is selected in the direction 

normal to the plane ( )x, y . The nodes of the truss are labeled with two indices, the 

index i in the x direction, and the index j  in the y  direction. The elastic bars are 

represented by stretching springs of rigidity i, j
exC  (Figure1(c)). Rotational springs of 

rigidity i, j
bC  are positioned at each grid node of mass j,im . It is assumed that such 

spring device at each node allows the rotations in the both directions (around the x 
and y axis) as shown in Figure1(e). To give the model a torsional rigidity, a spring 
device of rigidity i, j

tC  is installed inside each set of four bars forming a rectangular 

chain (unit cell), Figure1(b). A shear spring of rigidity i, j
sC  installed inside each 

basic cell, models the fabric shearing stiffness (Figure1(d)). The nodal kinematics 
variables attached to each node are the displacements i, ju , i, jv , i, jw , and the 

rotation i, jΨ , as described in Figure1. The kinematics of the unit cell is associated to 

the following deformation modes: 

– In-plane stretching (Figure 1c), described by two springs in the x  and y  
directions; 

– In-plane shear, represented by the diagonal springs in Figure 1d; 

– Out of plane bending, due to the rotational spring on Figure 1e; 

– Torsion, represented by the torsional spring on Figure 1b. 



656     REEF – 14/2005. Composites forming simulation 

(a )

v i,j

v i+ 1 ,j

v i,j+ 1

v i+ 1 ,j +1

(d )

v i,j

v i+ 1 ,j

v i,j+ 1

v i+ 1 ,j +1

[(c)

(b )

(e)  

Figure 1a, b, c, d, e. Kinematics of the macroscopic discrete fabric model 
 
 

Considering thin plates (only the case of monolayers of intertwined yarns shall be 
considered in the present study, with a small thickness to transversal length ratio), 
the kinematics and statics of the discrete model has been established in (Ben 
Boubaker et al., 2002), whereby the discrete model mimics in an analogical manner 
an orthotropic thin plate structural model of the Kirchhoff type (Kikuchi et al., 
2000). Thereby, the mesoscopic behavior shall reflect the behavior being modeled 
and measured at the macroscopic scale, thus making the identification of the 
parameters easier. 

The strain energy of the trellis sU  is obtained as the sum of the bending, 

torsional, stretching and shearing energy, deduced from the work of the internal 
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forces (moment resultants and force resultants) (Ben Boubaker, 2004). The 

extension energy, stored in the stretching spring i, j
exC , is expresses as: 

i, j 2 22 2
ex(i, j) ex (i, j) (i, j) 2 1 (i, j) (i, j)

1 1

E E1 y x
U C u v u v

2 x E y E

  ∆ ∆= ∆ + ∆ + ν + ν ∆ ∆   ∆ ∆   
 [1] 

with i, j 1
ex

1 2

hE
C

1
=

− ν ν
 and 1E , 2E  the young modulus in the warp and weft directions 

respectively, G  is the shear rigidity, and 1ν and 2ν  are the Poisson’s ratios in the 

warp and the weft directions. x∆  and y∆  are the finite difference grid lengths. 

The shear energy, stored in the shearing spring i, j
sC , is expressed as: 

i, j 2 2
sh(i, j) s xy(i, j) yx(i, j)

1 x y
U C u v

2 y x

 ∆ ∆= ∆ + ∆ ∆ ∆ 
, where i, j

sC Gh=  [2] 

with G the shear modulus.  

The bending energy, associated with the flexional spring i,j
bC , is obtained as: 

2 22
x(i, j) y(i, j)

1i,j
b(i, j) b

2
2 1 x(i, j) y(i, j)

1

Ey x

x E y1
U C

2 E

E

∆ ∆ ∆ψ + ∆ψ ∆ ∆ =   
+ ν + ν ∆ψ ∆ψ  
   

 [3] 

where 
3

i,j 1
b

1 2

Eh
C =

12 1− ν ν
. 

The torsional energy, stored in the torsional spring i, j
tC , is expresses as  

i,j 2 2
t(i, j) xy(i, j) yx(i, j)t

1 x y
U C

2 y x

 ∆ ∆= ∆ψ + ∆ψ ∆ ∆ 
, where 

3
i,j
t

h
C G

6
=  [4] 

The strain energy sU of the lattice is then the sum of the previous contributions, viz 

n m n 1m 1 n m n 1 m 1

s b(i, j) t(i, j) ex(i, j) sh(i, j)
i 1 j 1 i 1 j 1 i 1 j 1 i 1 j 1

U U U U  U
− − − −

= = = = = = = =
= + + +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  [5] 

where n and m are the total number of chains in the x and y directions (longitudinal 
and transversal) respectively. 
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The configuration shown in Figure 2 gives the kind of applied boundary 
conditions: rotational springs of constants edgeN1 edgeN2 edgeN3 edgeN4C ,C ,C ,C  represent 

the rigidity of the edge supports and extensional springs of constant foundationC  

represent the equivalent elastic foundation rigidity. We assume the springs’ constant 
to be uniform for each edge, whereas the edges’ rigidities 

edgeN1 edgeN2 edgeN3 edgeN4C ,C ,C ,C  may be different. This system allows the study of 

the deformation and buckling considering different types of boundary conditions 
(free, elastic or clamped edges) (Kikuchi et al., 2000) and also in the case of a fabric 
sheet with lateral elastic contacts, or lying on an elastic foundation (Silva et al., 
1998). These additional parameters allow the representation of a great diversity of 
boundary conditions. 

 
 

Figure 2. Discrete fabric model resting on an elastic foundation with fixed edges 
 
 

The boundary conditions at the edges and the corners of the domain are the 
following: 

– at the corner nodes, the bending stiffness is ignored (it is supposed nil, because 
there is no change in rotational angles); 

– Considering the nodes of the longitudinal (resp. transversal) edges, we take 
only the longitudinal (resp. transversal) change in rotational angles x∆ψ (resp. y∆ψ ) 
into account, in order to express the bending strain energy stored in the rotational 
springs of these nodes. 

We assume that the foundation extensional springs are connected to the grid 
nodes as shown in Figure 2. During fabric sheet deformation, the elongation of an 
extensional spring connected to a node labeled ( )j,i  is equal to )j,i(w , thus, the 

total stretching energy of the foundation is: 

n m 2
foundation foundation(i, j) i, j

i 1 j 1

1
U C w

2 = =
= ∑ ∑  [6] 
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In order to take the rigidity of the edge’s supports into account, it is assumed that 
at each boundary node, a rotational spring defined above is connected. The 
corresponding stored strain energy edge 's fixationU  can be written as  

n m
2 2

edge'sfixation edgeN1 y(i,1) edgeN2 x(n 1, j)
i 1 j 1

n m2 2
edgeN3 y(i,m 1) edgeN4 x(1, j)

i 1 j 1

1 1
U C C

2 2

1 1
                   C C

2 2

−
= =

−
= =

= ψ + ψ∑ ∑

+ ψ + ψ∑ ∑
 [7] 

The total strain energy U  of the discrete mechanical model is the sum  

s edge's fixation foundationU U U U= + +  [8] 

The total potential energy of the structure is then the difference between the total 
strain energy and the external force’s work, viz 

extV U W= −  [9] 

where extW is obtained by summing up the work of the gravitational forces and the 

work of the compressive loads x yP ,P  (discrete load): defining S  the surface of the 

lattice, and ρ  the mass density per unit area of the fabric, one obtains  

( )

( )

n m n 1 m

ext i, j x x(i, j) n, j
i 1 j 1 i 1 j 1

n m 1

y y(i, j) i,m
i 1 j 1

S
W g w P x(1 cos ) u

n m

          P  y(1 cos ) v

−

= = = =

−

= =

 = −ρ + ∆ − ψ −∑ ∑ ∑ ∑  ×

 + ∆ − ψ −∑ ∑  

 [10] 

with x xP p  x= ∆  and y yP p  y= ∆  the punctual nodal forces exerted in the x and y 

direction respectively. The two components x yp  and p  therein are the lineic 

densities of the uniform loads exerted in the plate directions x and y respectively.  

The fabric is further assumed to undergo small stretching and shearing, provided 
it remains only submitted to its own weight and to small loads. We notice that the 
total potential energy involves two dependent variables ψ  and w, where 

i 1, j i, j
x(i, j)

w w
sin

x
+ −

ψ =
∆  ,  ( ) [ ] [ ]i, j 1,n 1 1, m∈ − ×

 [11] 

i, j 1 i, j
y(i, j)

w w
sin

y
+ −

ψ =
∆

 ,  ( ) [ ] [ ]i, j 1, n 1, m 1∈ × −  [12] 
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These relationships remain valid for small deformations ( )( i, ju  x∆ << ∆  and 

( )i,jv   y∆ << ∆ , ( ) [ ]) i,j  1..n;1..m∀ ∈ . Therefore it is possible to express V in terms 

of only three variables fields, either ( )ψ,v,u  or ( )w,v,u . 

The fabric materials are assumed to be flexible structures, which undergo small 
stretching and shearing under their own weight or under low load value. 
Accordingly, in the sequel, we neglect the stretching and the shearing deformations. 
Therefore, using the previous assumption, the total potential energy will be 
expressed in terms of the sole displacement field w. 
 
 
3. Draping simulations 
 

We analyze the drape deformation of square fabric sheets draped over multi –
geometrical surfaces or supported at p-fixed point positions, subjected to their own 
weight. Obviously, the geometry of surface supports, the position and the number of 
support points are important parameters. We shall focus to the case where the fabric 
sheet is placed upon a fixed rigid supporting body, which can represent a mold. The 
nodes in contact with the support surface or located on the support points, are fixed 
in all directions: this defines auxiliary conditions being treated here as an additional 
set of displacements constraints for the supported or draped fabric sheet, viz: 

k,l (k,l)w h=  ; [ ] [ ]{ }i, j(k, l) (i, j) 1,n 1,m , w cst∈Ω = ∈ × =  [13] 

This constrained problem is solved by the classical method of Lagrange 
Multipliers (Bruckstein et al., 1990), whereby the following additional energy term 

auxU  is added to the potential energy of the structure: 

( )aux (k,l) k,l (k,l)
(k,l)

U w h
∈Ω

= λ −∑   [14] 

The Lagrange multipliers j,iλ  are identified to the reaction forces of the fixed 

nodes of the trellis. At equilibrium, the first variation of the total potential energy 

V� must vanish, thus we the following system of equations shall be satisfied: 

~ ~ ~ ~

1,1 1,2 i, j n,m

V V V V
... ..... 0

w w w w

∂ ∂ ∂ ∂= = = = =
∂ ∂ ∂ ∂

and

~

k,l

V
0

∂ =
∂λ

, ( )k, l ∈Ω  [15] 

An algorithm using the symbolic manipulation software Maple© has been written 
to generate and solve this system of algebraic equations. Note that in the case of 
large displacements, the system of equations is non-linear. The case of a continuous 
supporting surface is considered: the simulation of the draped shape of a piece of 
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fabric, a part of which is fixed on the surface of a square, subjected to its self-weight, 
has further been performed, (Figure 3), using the Maple© software. 

 

1 2

1 2

2

E 175 Kpa E 120 Kpa

0.6 0.4
  

G 33 Kpa h 1.45 mm

22 g/m

= =
ν = ν =
= =

ρ =

 

 

Figure 3. Draping of a square fabric sheet (31×31 nodes) posed over a square plate 
 
 

In a general case, the deformed shape of the draped fabric sheet is obviously 
dependent on the fabric properties (Yu. et al 2000) (bending stiffness, shear rigidity, 
Poisson’s ratio, thickness and weight), the geometry of the support surface, the 
number and locations of the support points. 
 
 
4. Stability analysis 
 

Although many buckling plates (fabric sheet here) theories have been developed, 
engineers are still looking for some simple and useful models for general engineering 
problems (Timoshenko, 1947), (Nemeth, 1997), (Chai, 2002). Stability and buckling 
analysis for discrete beams may lead to original analyses with a simpler formulation, 
(Magno et al., 2002). The stability analysis is used in order to determine the 
buckling load and corresponding mode shape for a given set of applied loads and 
constraints. Buckling behavior for fabric sheets plays an important role (formation of 
plies within the fabric). The fabric shape at equilibrium depends upon the boundary 
conditions, which take into account stitches, seams, lining, hem, pleat (local rigidity). 

Stability is satisfied when the total potential energy V  has a relative minimum at 
the equilibrium position, thus one looks for the minimum of the multivariable 
function 1,1 1, j 1,m i,1 n,mV(w ,.., w ,.., w ,.., w ,.., w ) . The buckling analysis relies on the 

Dirichlet-Lagrange stability criterion (El Naschie, 1990), which involves the 
vanishing of a stability determinant, that determines the critical load. The stability 
matrix K  is defined as the Hessian matrix of the total potential energy function 
V of the mechanical structure, viz  

2

i, j

i, j

V
K

 ∂=   ∂ ∂ w w
,  with  [ ](i, j) 1..n m;1..n m∈ × ×  [16] 

The critical state of stability shall then be detected from the condition 

Det(K) 0=  [17] 
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Only the first root value of equation [17] or the lowest bifurcation point is 
interesting, indicating that the state of equilibrium changes from stable to unstable: 
this change marks the occurrence of the buckling load. The state of equilibrium is 
stable if and only if the stability determinant Det(K)  and its principle minors 

( )i i
Det K  are all positive (in the opposite case, the equilibrium will be unstable). 

The number of stability roots is an indication about the corresponding number of 
passed bifurcation points. In order to illustrate the application of the Dirichlet-
Lagrange criterion, we consider a square fabric sheet simply supported at all four 
edges and uniformly compressed in the x-direction only (Figure 4).  

 
 

Figure 4. Square fabric simply supported at its edges compressed in the x-direction 
 
 

The square fabric sheet is discretized in a truss of n longitudinal chains and m 
transversal chains. We restrict to the case where m is equal to n (i.e. x y∆ = ∆ = ∆ ). 

In this example, we suppose that the fabric sheet has the same properties in the x and 
y directions, thus behaves as an isotropic plane material. This implies 

1 2E E E= =  and 1 2ν = ν = ν  [18] 

Denoting by 
3

2

E h
D

121
=

− ν
 the bending rigidity and by ( )

3h
T G D 1

6
= = − ν  the 

torsional rigidity of the fabric sheet. 
Differentiating V with respect 1,1 1, j 1,m i,1 n,mw ,.., w ,.., w ,.., w ,.., w , the stability 

matrix S of a square lattice of 12 elements bars is expressed in term of 
P

:
D

∆λ = . 

The smallest root, of the equation ( )det S 0= , is 0.4824λ =  which corresponds to 

the approximate critical load gives 

c
c x
x 2 2

P D D
p 3.977

L

λ= = =
∆ ∆

 [19] 

The exact solution of the same buckling problem is (Kapur, 1996). 
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2
c
exact 2

D
P 4

L

π=  [20] 

The comparison of the values given in (Chai, 2002), (El Naschie, 1990) – the 
error in the critical load is about 0.5% – demonstrates the good accuracy of the 
present model. Compared to other methods (Rayleigh-Ritz method, finite differences 
or finite elements), the stability analysis conduced on the basis of the discrete model 
proves simpler to handle (El Naschie, 1990), since the form of the criterion itself 
receives a simpler expression, and it further proves convenient for the study of the 
effect of a wide range of configuration parameters, such as the effect of structure 
orthotropy, structure size and boundary conditions. 
 
 
5. Mesoscopic model 
 

As previously mentioned, the analysis of the motion and behaviour of the dry 
fabric (before it is being impregnated with a resin, such as in the RTM process) is 
very peculiar, due to the relative easy of motion of the yarns. This motion in turns 
determines the shape forming of the woven structure, thus calls for a separate 
analysis (Kawabata et al., 1973), (Gasser et al., 2000). As the woven structure 
becomes stretched, the interaction between both sets of yarns (warp and weft) is 
mobilized, and one should expect that the ability of the tissue to deform shall be 
accordingly hindered (due to a change of deformation mechanisms): it is intuitively 
clear that the yarn mobility is reduced at the contact zone between both yarns, 
specially in terms of rotation. This in turn affect the shape forming capacity of 
woven structures at the macroscopic scale. Few works in the literature have been 
devoted to the analysis of the interactions between the yarns, notwithstanding 3D 
finite element analysis within a context of contact mechanics (Page and Wang, 
2002). The goal of the mesoscopic approach is to incorporate the effect of the yarn 
interactions, without considering the three-dimensional picture inherent to a 
microscopic view of the yarns contact problem. For that purpose, a more refined 
analysis of the yarn motion is performed, whereby the yarns undulations are 
explicitly considered: for that reason, it is given the coinage mesoscopic modeling, 
see (Ben Boubaker et al., 2003). 
 
 
5.1. Single yarn motion accounting for transverse yarns reactions  
 

In order to exemplify the methodology, one considers in the sequel the plane 

motion of a single yarn (the warp, here labeled k
waY  for the kth yarn) that we 

mentally isolate from the woven structure, subjected to a traction effort at its 
extremities and to the punctual contact reactions exerted by the transverse yarns (the 
weft), see the left side of Figure 5.  
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Figure 5. Discrete model of the yarn isolated from the trellis 
 
 

Although this situation is somewhat artificial (since we isolate mentally the yarn 
from the trellis), it gives a first insight into the coupling effect between both sets of 
yarns. The discretized yarn consists of a set of punctual masses mutually connected 
by extensional rigidities eiC EA /= ∆ ; each node is given a rigidity in flexion 

biC EI /= ∆  (∆  is the curvilinear distance between two consecutive nodes), Figure 

5. Compared to the trellis model which neglected the extension of the yarns, the 
discrete elements of the undulated yarn are here endowed with an additional 
extension mode. 

5.2. Weft and warp force interactions in the case of a biaxial loading of the fabric 

These expressions at hand, the extension of this analysis for the whole network is 
straightforward and is just a matter of having a double indexing system for the nodes 
of the network (the first index being attached to the warp and the second to the weft). 
At equilibrium, the deformed shapes of the fabric yarns are assumed to be periodic 
and accordingly expressed as the following Fourier series: 

– ( )waN
j we
we n, j

n 1 we

y
w (y) a sin  j 1 n

L=

 π= − π+∑  
 

,     for a weft yarn of index j 

– ( )weN
k wa
wa n,k

n 1 wa

x
w (x) a sin  k 1 n

L=

 π= − π+∑  
 

,   for a warp yarn of index k 
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The set of intertwined yarns Ω  is decomposed into the assembly of two sub 
mechanical systems (Figure 5) namely the set of warp yarns, waΩ , being in 

interaction with the set of weft weΩ , here considered as an external (sub-

mechanical) system. 
In order to establish the expression of the reaction force exerted at the yarn-yarn 
contact points, we analyze the mechanical behavior of the system weΩ consisting of 

the weN  weft yarns: since the sub-system waΩ  consisting of the set of warp ( waN  

yarns) is considered as an external system, the contact forces exerted on the weft 
yarns are considered as external forces for weΩ . Using the Timoshenko’s beam 

theory, in the case of an elastic beam subjected to an axial load P  and a lateral force 
F  exerted at a point of abscissa c (Figure 6), the equilibrium shape of the elastic 
beam is given by the Fourier series 

3 N

4
k 1 2 2

cr

2FL 1 k c k x
w(x)  sin  sin      

L LEI P
k k

P

=

π π   = ∑     π    + 
 

 [21] 

with,
2

cr 2

EI
P

L

π= , the beam critical compressive load for buckling, L the projected 

beam length and EI the beam bending rigidity. 

c

0

w (x )

x
 

 
Figure 6. Elastic beam subjected to lateral and axial loads 

 
 

Using the superposition principle, the equilibrium shape associated to a weft yarn 
of index j, treated as an elastic beam subjected to an axial load and periodic lateral 
forces, is defined in terms of the reaction force we/waR , as, viz 

( ) ( )wa wa

3
j wa / we we
we 4

we

N N / 2 wa

2 2n 1 m 1 wewe
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2R L
w (y)

EI

n 3
sin 2m

N 21 n y
                         sin j 1

Ln n 1 n
 -sin 2m

2 N

= =

=
π

  π  −      π   − π+∑ ∑    + α π    −      

[22] 
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with we
we we

cr

P

P
α = , and 

2
we we
cr 2

we

EI
P

L

π
=  the critical weft compressive buckling load. 

This result shows that the deformed shape of the weft yarns within a woven 
structure at equilibrium is known from the values of the applied traction weP (trough 

the ratio weα ) and the yarn-yarn contact forces. We note we wew A=� the amplitude 

of the weft yarns within the woven structure, defined at the contact points abscissas  

(Figure 7) by ( )j
k we we y c ,   w w y= =�  

 
 

L w a
0 x

w

w s-w a

w s-w e

w so -w a

w so -w e δw e

δch

1 2

1

1

j+ 1

j

j-1

N w e

 
 
 

Figure 7. Motion of the undulated warp: kinematic variables and  reaction forces 
 
 

At the interlacing points ( [ ]k way c ,    k   1 , N= ∀ ∈ ), the new double sum of 

the Equation [22] renders after a tedious but elementary calculation 
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=

∑ ∑

( )2
a we+α

  [23] 

We then deduce, from Equation[22], the expression of the reaction forces exerted 
by the transverse yarns on the weft yarns at the interlacing points: the amplitude 
undulations have the value we wew A=� , thus we obtain 
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( )

( )

3
wa/we we

k we we 4 2
we wa wa we

4
we we
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2R L
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= = =
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�

 [24] 

In the specific case of only one reaction force ( waN 1= ) applied at the middle of 

the yarn, we find a result identical to that of (Timoshenko, 1947), viz  

( )
4

3

EI
 F 1  w

2 L

π= + α �  [25] 

 
 
5.3. Effect of the yarn interactions on the traction behavior 
 

Under the effect of the loads wa weP  and P applied respectively in the warp and 

weft directions (supposed to be uniformly distributed along the edge nodes), an 
undulation transfer due to the yarn-yarn interaction occurs at the contact points ; this 
undulation transfer process is followed by a lateral displacement of the contact 
points (Figure 11). The displacement continuity occurring at the crossing points 
labeled by the set of indices ( )k,j  then expresses as  

j,k j,k j,k j,k
s we so we s wa so waw w w w− − − −= + −  [26] 

where j is the index of the weft yarn and k the index of the warp yarn. This relation 
can further be interpreted in purely geometrical terms as an undulation transfer 
between the two mechanical systems wa we and  Ω Ω : when the undulation decreases 

in one direction, an increase in the transverse direction of the transverse yarn occurs 
(Figure 7). From the relations [24] and [26], we get 

( )

( )
4

j,k j,k j,k j,kwe we
so we so wa s wawa / we 3 2we wap
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R 1  (w w ) w

2 NL
− − −

 απ  = + − +     
 [27] 

The action-reaction principle, j,k j,k
we / wa wa / weR R= − , further gives 
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− − −
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 [28] 
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The work of the reaction force exerted by a weft yarn of index j on the warp yarn 
of index k, occurring at the interlacing point (j,k), is then evaluated as 

( )

( )
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so we so wa

so we so wa

4
we we

3 2R we wap
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 [29] 

This expression shows the influence of the transversal yarns characteristics 

we
we p so-we s-weEI ,  L , w  ,  w  and of the coefficient we

we we
cr

P

P
α =  - which quantifies the 

interaction between the two sub-mechanical systems wa we and Ω Ω  - during the 

loading - on the work of the reaction force exerted on the warp yarn. Accordingly, 
the total work of the reaction forces exerted on a warp yarn of index k  is the sum 
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N
k
reaction forces Rj 1

W W
=

= ∑  

The total potential energy V  becomes a function of the Fourier coefficients 
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We assume that the woven structure is fixed at the side 0x = , thus the condition  

( ) [ ]wa

k
1 k 1..N

u 0
∈

=  [31] 

The equilibrium state of the sub-mechanical system waΩ is characterized by the 

minimum of the total potential energy V ; thereby, the first variations of the total 
potential energy vanish, leading to the following system of algebraic equations: 
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Considering carbon fibers reinforced fabric, the following input parameters are 
used (SNECMA, 2002): the mechanical properties of the warp and weft yarns are 
taken as: 

7
wa

7
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wa

EI 1.47e N.m

EI 1.47e N.m

EA 13.72 N    

−

−

 =
 =
 =

, The rigidities in flexion/extension of the springs are then 

evaluated as wa wa
b e

EI EA
C  ; C= =

∆ ∆
. The geometrical parameters of the 

discretization scheme are: 0 we d

so wa so we

L 0.1m N 16 ; N 224

w 0.5mm w 0.5mm− −

= = =
 = =
î

 

The mean curve of the yarn is restricted to the (x, y) plane, (Figure 7), and both 
extremities of the yarn keep aligned with the direction of traction. The extension of 
the yarn is here defined as the displacement of the end node of the undulated beam. 
The yarn is subjected to an increasing traction at its extremities, and one represents 
the traction load vs. the yarn end-displacement (Figure8) ; the simulation without 
yarn interactions serves as a reference comparison case to assess the interaction 
effect. 

 

E n d  d isp la c e m e n t (m )

 P (N )w a
+  tra c tio n  cu rv e  :  w ith  y a rn  in te ra c tio n s
 
o  t ra c tion  c u rv e  : w ith o u t y a rn  inte rac tio n s

 

Figure 8. Unidirectional traction curve of the warp yarn. Effect of yarn-yarn 
interactions 
 
 

The obtained J-shape (Figure 8) of the fabric tensile response is in good 
agreement with observed experimental results (Boisse, 1997). The consideration of 
the yarn-yarn interactions leads to a stiffer response of the yarn (Figure 8): during 
traction, the transverse yarns resist the yarn-yarn undulation transfer by increasing 
the reaction force. This explains why, without considering yarn-yarn interactions, the 
loss of undulations is more rapid, compared to the case with yarn-yarn interactions. 
We can distinguish two nearly linear parts: the first part (up to an applied force of 
about 0.01 N) is due to the yarn-yarn undulation transfer, which traduces a decrease 
of the warp undulation. At the end of the transfer of undulation (the structure is 
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nearly blocked regarding the variations of undulation), a stiffer response represented 
by the non-linear part is obtained, due mostly to the extension of the yarn. During the 
fabric deformation process, the end nodes (located at the free edge) undergo an axial 
displacement, due to a flexional contribution (variation of the undulation) and an 
extensional contribution (displacement due to the fabric stretching).  

 

The deformation mechanisms of the fabric, viz the change of yarn undulation and 

the yarn stretching are next analyzed. The global displacement wau∆  experienced by 

the end nodes of the warp is obtained as the sum of a flexional displacement 

contribution f
wau∆ (yarn end-displacement due to the undulation variation) and the 

extensional displacement contribution ex
wau∆  (yarn end-displacement due to the 

stretching of the yarn), with  
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i 1
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=
∆ = ∆ ψ − ψ∑  and 

d

d

N
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wa i N 1

i 1
u u u +

=
∆ = ∆ =∑  [33a,b] 

Accordingly, one has the following additive decomposition of the total displacement 

( ) ( )( )d

d

N

wa x,i x,oi N 1
i 1

u cos cos  u +
=

∆ = ∆ ψ − ψ +∑  [34] 

The separate variations of the flexional and the extensional displacements are 
illustrated in Figure 9, using equation [33a,b]; the transverse load is here assigned a 
nil value (thus we waP 0.0P= ). 

 
P w e = 0 .0  P w a  ( tra ctio n  )u n i-a x ia l 

E x ten sio n al d isp la ce m e n t

F lex io na l d is pla ce m en t

E n d  disp lac em en t(m )

P (N )w a  

 
 

Figure 9. Flexional and extensional displacements variations vs. the applied load 
(case of uniaxial load) 

 
 

The flexional displacement tends toward a limit value, which indicates that the 
yarn has exhausted it variation of undulations, whereas the extensional displacement 
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linearly varies vs. the applied load, which shows that this deformation mechanism is 
not influenced by the change of yarn undulations. 
5.4. Fabric under uni-axial extension: effect of yarns mechanical properties  

 
The reaction load at the interlacing points depends on the weft mechanical 

parameter, as evidenced by equation [28]. In order to asses the effect of the 
mechanical and geometrical characteristics on the fabric traction behavior, 
simulations of the traction behavior of the fabric in the warp direction are performed 
for different values of the transverse yarns rigidity. Figure 10 shows that a stiffer 
transverse yarn increases the reaction forces, thus leads to a stiffer response of the 
warp (Figure 11).  
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Figure 10. Variation of the reaction force. Effect of warp and weft modulus 
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Figure 11. Fabric extension in the warp direction. Effect of the weft modulus 
 
 

At the end of this stiffening, the reaction force tends toward a limit value, which 
indicates that the yarn has exhausted its possibilities of undulation changes. 
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5.5. Fabric under bi-axial extension 
 

We analyze the effect of the transverse extension load weP on the fabric 

mechanical behavior, in the warp direction (x-direction). We can deduce from 
Equation [28] that the reaction force occurring at the interlacing points varies with 

weP , thus leads to different fabric traction responses. The followings values of the 

extension load weP  are considered (viewed here as a parameter): 

{ }we wa wa wa waP 0.0 P ,0.1 P ,0.2 P ,0.3 P∈ . 
 

P w e=0 .0  P w a ( u n i-ax ia l )
P w e=0 .1  P w a
P w e=0 .2  P w a
P w e=0 .3  P w a
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






b i-ax ia l tra ct ion

P (N )w a  

E x ten sio n  (m )  
 
Figure 12. Fabric traction curves: effect of the transverse extension load weP  

 
 

The results (Figure 12) show that increasing the transverse extension load 

weP leads to a stiffer response of the fabric: this is due to the decrease of the yarn-yarn 

undulation transfer capacity. Indeed, from Equation [28], we remark that as weP  

increases, the reaction load we / waR  increases, which affects the yarn-yarn undulation 

transfer, thus leading to a stiffer response. We further record the variation of the 

reaction load we / waR , occurring at the crossing points, vs. the applied extension load 

waP  (in the x-direction), considering different values of weP  (given in [28]), Figure 13. 
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
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Figure 13. Variation of the reaction load we / waR : effect of the transverse load weP  
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The reaction force we / waR  increases with the transverse extension load weP . 

Although the reaction load we / waR tends toward a limit value in the case of an uni-

axial extension ( weP 0= ), we remark that, in the case of biaxial extension, it grows 

continuously without reaching a limit value: Equation [28] shows that the reaction 

force we / waR not only varies according to the position of the warp/weft yarns’ 

summits, but also according to the transverse extension load weP . In fact, when the 

yarn-yarn undulation transfer process is exhausted, the reaction force does not vary 
any more (since the positions of the contact points between yarns do not change any 
more) ; it solely varies vs. weP , with a linear variation that explains the linear part 

observed on the biaxial traction curves. 
 
 
6. Conclusion 

 
A discrete mass-spring model of the mechanical behavior of a woven fabric 

sheet, built from the repetition of a basic unit cell made of four beams connected by 
rotational rigidities, and two torsional springs along the diagonals. The kinematics of 
the discrete unit cell combines stretching and shearing in plane deformations with 
flexional and torsional deformation modes. Discrete models present the advantage 
that the basic constituent of the trellis, the yarn, is explicitly modeled, thus the 
developed models have a predictive nature ; they are thought to bring a help for the 
design of specific fabric, since they allow to analyze the influence of several 
geometrical and mechanical parameters (mechanical properties and organization of 
the yarns within the unit cell). Such micromechanical analyses shall be extended 
towards consideration of more complex armors (serge, satin, 3D weaving). 

We have next developed a refined discrete mass-spring model of a woven 
structure at a mesoscopic level, whereby the yarn undulations and the yarn-yarn 
interactions are taken into account. The simulated macroscopic behavior of the 
fabric appears strongly depends on the mechanical and geometrical yarns parameters 
and also on the ratio of the biaxial loading. The contribution to the total deformation 
of the flexional displacement (due to the undulations variation) and of the 
extensional displacement (due to the yarns stretching) has been analysed.  

Although expensive from computational point of view when dealing with large 
scale analysis (structural analysis), the discrete models prove convenient when 
important changes of curvature occur, since the microstructure (yarn intertwining) 
plays there an important role. Clearly, the discrete modelling approach shall prove 
simpler to implement compared to the continuous strategy in the case of more 
complex armors (such as serge, satin, or even three-dimensional weaving). Further 
work remains to be done in this direction.  
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The consideration of the yarns compressibility and the friction between yarns 
constitutes one of the main perspective of development of the discrete modeling 
strategies of fabric. 
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