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Abstract

In this study, we will evaluate the effect of bending/torsion coupling on the
buckling instability and free vibration behavior of symmetrical laminated
plates. We will load these plates in-plane with bi-axial or uni-axial, uniform or
non-uniform mechanical loads. To quantify this behavior, we’ll compare the
results obtained with those of specially orthotropic symmetrical plates (where
bending/torsion coupling is absent). A parametric study will be carried out
by varying the plate’s aspect ratio, anisotropy ratio and/or lamination angle.
The aim of these studies is to construct a planar loading margin for the plate
while remaining elastically stable, and to determine a physically admissible
limit where we can approximate the behavior of symmetrical laminates to
that of specially orthotropic plates (easy to study). We will base ourselves on
a Rayleigh-Ritz energy formulation of the problem because of the difficulty
of finding closed-form solutions. Following validation of this formulation,
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a numerical survey of the results will be carried out to quantify the effect
of bending/torsion coupling on the instability of this type of plate. Various
conditions on the plate boundaries will be used.

Keywords: Static instability, buckling, coupling, natural frequency, critical
load, Rayleigh, Ritz method.

1 Introduction

Rectangular laminated plates made of composite materials are combined
structures of a first material (matrix) reinforced by another material with pow-
erful properties (fibers). These plates are the most widespread and practical
elements for the construction of structures in aeronautics as well as in a vast
industrial field [1, 2], so the study of their static stability and free dynamic
behavior is of crucial interest. Indeed, when a plate is statically loaded in
its plane, there comes a time when transverse displacement is no longer a
linear function of the applied excitations. Perhaps these displacements even
become very dangerous under infinitesimally small external disturbances.
So it’s impossible for the engineer not to know the conditions under which
a critical load that triggers the elastic instability of a plate is reached. In the
open literature, many researchers have focused on the study of plate elastic
instability, [3–6] have studied the buckling of plates made of FGM functional
gradient materials, [7–12] propose models for studying the buckling of rolled
plates. Similarly, the treatment of the free vibratory behavior of the plate leads
to the determination of the natural frequencies at which the plate vibrates in
the resonance regime. Consequently, in the literature of works that deal with
the free dynamics of plates such as [13–17] which study the instability of
plates in free vibration, [18] uses a three-dimensional method for the analysis
of the dynamic stability of a plate. Thermal excitation and its effect on plate
stability in both buckling and free dynamics is a topic that is taking its place in
the literature, with researchers [19–30] using the thermal field as an external
excitation and looking for different critical values of structural stability.

In this paper, we investigate quantitatively the effect of mutual coupling
between the flexural/torsional behaviors of a symmetrical laminated plate
with angular folds,1 on the buckling stability and free vibration of this type

1The layers are symmetrical with respect to the neutral plane of the laminate, with the
orientation angle of the reinforcing fibers in the laminate strictly greater than 0◦ and strictly
less than 90◦.
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of plate. In fact, the presence of the non-zero flexural/torsional coupling stiff-
nesses D16 and D26 is one factor, among others, influencing the operating sta-
bility of these plates. Furthermore, we know that in the elasticity of laminated
plates, the flexural/torsional coupling coefficients D16 and D26 are inversely
proportional to the number of layers making up the plate. To understand
this effect, we compare the stability of the symmetrical, angularly-folded
laminated plates studied here with that of a specially orthotropic laminate
with no flexural/torsional coupling (D16=D26=0) [31]. The impact of
buckling load and natural frequency depends, as we shall see in this study,
on geometry, material properties [32, 33], and the way the plate is loaded.
In a parametric study, all these effects will be taken into account.

On the other hand, in a situation that verifies simply supported boundary
conditions, we can explain exact analytical solutions based on Navier’s sine
series developments [34], which is possible if there is no flexural/torsional
coupling. On the other hand, if we analyze plates with various boundary
conditions (simple supports, embedded, free, . . . etc.), and/or for symmetrical
lamination with which we have flexural/torsional coupling, exact closed-
form analytical solutions will be impossible. For these reasons, we have
choices between numerical or semi-numerical solution methods such as the
Rayleigh-Riz method [35–38] adopted in this article.

2 Mathematical Formulation of the Problem

2.1 Deflection Equation Taking Account of Elastic Buckling
Instability

Let’s consider a laminated plate with a thin rectangular shape (Kirchhoff-
Love assumptions are adopted), overall thickness h, length b and width a,
composed of layers Nc symmetrical layers with respect to the neutral plane,
the main coordinates of the fibers (xk, yk, zk) linked to the kème layer are
oriented at an angle θk to the axes of the plate reference frame (x̂, ŷ, ẑ)
referred to as the global or problem frame (see Figure 1a). The positive z-
axis is oriented upwards, so that the ordinates of the k-layer are z = zk and
z = zk+1 (see Figure 1b).

The equation of motion of a thin symmetrical laminated plate (no in-
plane coupling Bij = 0) governing transverse deflection (1) is decoupled
from those governing in-plane membrane displacements (readers interested
in knowing where these equations come from can consult [1]). In this study,
the plate buckling analysis assumes that the only applied loads are in-plane
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(a): Cartesian coordinates of k-layer (b): Layer ordinates and numbering 

Figure 1 Diagram of a laminated plate made of the composite material studied.

forces and that all other mechanical/thermal loads are zero. Whereas, the free
vibration analysis assumes that all loads are zero. The equilibrium equation
governing buckling deformation w is given for a linear analysis, as

D11w,xxxx + 4D16w,xxxy + 2(D12 + 2D66)w,xxyy + 4D26w,xyyy

+D22w,yyyy − Fxw,xx − 2Fxyw,xy − Fyw,yy

= I0w,tt − I2(w,xx + w,yy),tt (1)

With Dij , (ij = 11, 12, 22, 16, 26, 66) are the bending stiffness coeffi-
cients of the plate, with

Dij =

Nc∑
k=1

∫ zk

zk−1

Q
(k)
ij z2dz (2)

Q
(k)
ij are the stiffness coefficients of layer number k transformed into the

global laminate reference frame (x̂, ŷ, ẑ) their expressions are:

Q
(k)
11 = Q11cos

4θ(k) + 2(Q12 + 2Q66)cos
2θ(k)sin2θ(k) +Q22sin

4θ(k)

Q
(k)
12 = Q12cos

4θ(k) + (Q11 +Q22−4Q66)cos
2θ(k)sin2θ(k) +Q12sin

4θ(k)

Q
(k)
22 = Q22cos

4θ(k) + 2(Q12 + 2Q66)cos
2θ(k)sin2θ(k) +Q11sin

4θ(k)

Q
(k)
16 = (Q11 −Q12 − 2Q66)cos

3θ(k)sinθ(k)

+ (2Q
(k)
66 +Q12 −Q22)cosθ

(k)sin3θ(k)

Q
(k)
26 = (Q11 −Q12 − 2Q66)cosθ

(k)sin3θ(k)

+ (2Q66 +Q12 −Q22)cos
3θ(k)sinθ(k)
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Q
(k)
66 = (Q11 +Q22 − 2Q12 − 2Q66)cos

2θ(k)sin2θ(k)

+Q66(cos
4θ(k) + sin4θ(k)) (3)

Qij are the stiffness coefficients of the material in the (xk, yk, zk) related
to the kème layer, their expressions are:

Q11 =
E1

1− v12v21
; Q12 =

v12E2

1− v12v21
; Q22 =

E2

1− v12v21
;

Q66 = G12; Q44 = G23 = G13; Q55 = G13 (4)

In the case of plane stresses, the reduced rigidities require independent
engineering constants as shown in Table 1 in the Appendix.

The in-plane forces per unit length acting on the plate edges in the x and y
directions respectively are Fx(y) and Fy(x). Assume that the in-plane shear
force per unit length xy is zero Fxy = 0. In this study, we’ll take loads (Fx(y)
and Fy(x)) as:

Fx(y) = −F0(1− αy/b) and Fy(x) = −F0(1− βx/a) (5)

With, the intensity of the critical buckling load in the plane is F0.
The coefficients α and β are numbers chosen as (α, β = {0, 1, 2}) and are
called load parameters. Examples of possible uni-axial and bi-axial loading
are given in Figures 2 and 3.

The coefficients of inertia of the plate are:

{I0, I2} =

∫ h
2

−h
2

ρ{1, z2}dz (6)

 

  

Figure 2 Examples of uniform compression loading in the plane.
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Figure 3 Examples of non-uniform loading in the plane.

2.2 Energy Formulation of the Buckling Problem

In the general case, we cannot formulate closed-form solutions of the Navier
or Levy type for symmetrical rectangular plates in laminated composite
materials that do not satisfy boundary conditions simply supported on at least
two edges. Therefore, in this work, we seek semi-numerical solutions using
the Ritz approximation. The deformation energy of a symmetrical laminated
plate is given by.

Ud =
1

2

∫∫
[D11(w,xx)

2 + 2D12w,xxw,yy +D22(w,yy)
2

+ 4(D16w,xx +D26w,yy)w,xy +D66(w,xy)
2]dxdy (7)

The virtual work of the forces applied to the edges in the plane is:

VP =
1

2

∫∫
[Fx(w,x)

2 + Fy(w,y)
2]dxdy (8)

The kinetic energy of the plate is:

Ec =
1

2

∫∫
[I1ẅ − I3(ẅ,xx + ẅ,yy)]δwdxdy (9)

The statement of the principle of minimum total potential energy of the
buckling problem in the dynamic case is:

δΠ(w(x, y)) = δ

∫ tf

ti

(Ud − VP − Ec)dt = 0 (10)
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Substituting Equations (7), (8) and (9) into (10) gives:

δΠ(w(x, y)) =

∫ b

0

∫ a

0
{D11w,xxδw,xx +D12(w,yyδw,xx + w,xxδw,yy)

+D22w,yyδw,yy + 4D66w,xyδw,xy

+ 2D16(w,xyδw,xx + w,xxδw,xy)

+ 2D26(w,xyδw,yy + w,yyδw,xy) + Fxw,xδw,x

+ Fxy(w,yδw,x + w,xδw,y) + Fyw,yδw,y}dxdy

− I0(wδw),t − I2(w,xδw,x + w,yδw,y),t (11)

2.3 Treated Boundary Conditions

In the present study we use so-called beam functions Xr(x) and Ys(y) which
satisfy at least the geometric boundary conditions:

Case 1: Simply supported at x = 0, a and simply supported at y = 0, b

Xr(x) = sin(rπy/a)

Ys(y) = sin(sπy/b)
(12)

Case 2: Flush-mounted x = 0, a and simply supported at y = 0, b

Xr(x) = sin(λrx/a)− sinh(λrx/a) + αr(cosh(λrx/a)− cos(λrx/a))

Ys(y) = sin(sπy/b)
(13)

Case 3: Free to x = 0, a and simply supported by y = 0, b

Xr(x) = sin(λrx/a) + sinh(λrx/a)− αr(cosh(λrx/a) + cos(λrx/a))

Ys(y) = sin(sπy/b)
(14)

These basis functions verify the boundary conditions in x = 0 and y = 0.
But we still have to satisfy the boundary conditions in x = a and y = b to be
verified:

cos(λr)cosh(λr) = 1 (15)

αr = (sinh(λr)− sin(λr))/(cosh(λr)− sos(λr)) (16)

The parameters λr and αr are illustrated in Table 2 in Appendix.
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3 Numerical Formulation of the Problem

We will approximate the harmonic solution sought by the following series
according to the Ritz approximation:

w(x, y) =
M∑

m=1

N∑
n=1

Wmne
−jωtXm(x)Yn(y) (17)

Knowing ω is the free vibration pulsation of the plate and that the
functions Xm(x) and Yn(y) constructs a functional basis and are selected
after its verification of the essential (or geometric) boundary conditions. The
terms Wmn terms are then determined after the stationarity conditions have
been applied:

∂Π̃

∂Wmn
= 0 (18)

After explaining all the terms making up the expression of the deforma-
tion energy and the work of the forces applied to the edges, as well as the
kinetic energy, we obtain:
M∑
i=1

N∑
j=1

{∫ a

x=0

∫ b

y=0
[D11Xm,xxXi,xxYnYj + 4D66Xm,xXi,xYn,yY j,y

+D12(Xm,xxXiYnY j,yy +XmXi,xxYn,yyYj) +D22XmXiYn,yyYj,yy

+ 2D16(Xm,xxXi,xYnYj,y +Xm,xXi,xxYn,yYj)

+ 2D26(XmXi,xYn,yyYj,y +Xm,xXiYn,yYj,yy)]dxdy

}
Wij

−
M∑
i=1

N∑
j=1

{∫ a

x=0

∫ b

y=0
[FxXm,xXi,xYnYj

+ FyXmXiYn,yYj,y]dxdy

}
Wij

− ω2
M∑
i=1

N∑
j=1

{∫ a

x=0

∫ b

y=0
[I0XmXiYnYj

+ I2(Xm,xXi,xYnYj +XmXiYn,yYj,y)]dxdy

}
Wij = 0 (19)
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For m ∈ {1, 2, 3, . . . ,M} and n ∈ {1, 2, 3, . . . , N}.
To make it easier to write programs in MATLAB, we can simplify

Equation (19) into a more compact form, such as the following:

M∑
i=1

N∑
j=1

[D11k
2200
minj + 4D66k

1111
minj +D12(k

2002
minj + k0220minj ) +D22k

0022
minj

+ 2D16(k
2101
minj + k1210minj ) + 2D26(k

0121
minj + k1012minj )]Wij

− F0

M∑
i=1

N∑
j=1

[g(α)1100minj + g(β)0011minj ]Wij

− ω2
M∑
i=1

N∑
j=1

[I0m
0000
minj + I2(m

1100
minj +m0011

minj )]Wij (20)

For m ∈ {1, 2, 3, . . . ,M} and n ∈ {1, 2, 3, . . . , N}.
Knowing that the terms krspqminj , g(α)

rspq
minj , g(β)

rspq
minj and mrspq

minj are respec-
tively expressed as:

krspqminj =

∫ a

x=0

∂rXm

∂xr
∂sXi

∂xs
dx

∫ b

y=0

∂pYn
∂yp

∂qYj
∂yq

dy (21)

g(α)rspqminj =

∫ a

x=0

∂rXm

∂xr
∂sXi

∂xs
dx

×
∫ b

y=0
((−1 + αy/b))

∂pYn
∂yp

∂qYj
∂yq

dy2 (22)

g(β)rspqminj =

∫ a

x=0
((−1 + βx/a))

∂rXm

∂xr
∂sXi

∂xs
dx

×
∫ b

y=0

∂pYn
∂yp

∂qYj
∂yq

dy (23)

mrspq
minj =

∫ a

x=0

∂rXm

∂xr
∂sXi

∂xs
dx

∫ b

y=0

∂pYn
∂yp

∂qYj
∂yq

dy (24)

2The coefficients α and β determine the nature of the loading in the plane, uniform or
non-uniform
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The system of Equations (20) is made up of MN linear algebraic equa-
tions. MN possible modes. The discrete form (20) of the system governing
motion can be written in matrix form, as:

In the case of buckling stability analysis (all displacements are indepen-
dent of time):

[K]{W} − F0[G]{W} = {0} (25)

In the case of free vibration (no loading):

[K]{W} − ω2[M ]{W} = {0} (26)

The preceding systems (25) and (26) lead to the following eigenvalue
problems:

([K]− F0[G]){W} = {0} (27)

([K]− ω2[M ]){W} = {0} (28)

In these forms of the eigenvalue problem, the symmetrical square plate
stiffness matrix [K]MN is:

[K] =



K1111 · · · K111N · · · K1i1j · · · K1M11 · · · K1M1N

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

K11N1 · · · K11NN · · · K1iNj

. . . K1MN1 · · · K1MNN

...
. . .

. . .
. . .

. . .
. . .

. . . · · ·
...

Km1n1 · · · Km1nN · · · Kminj · · · KmMn1 · · · KmMnN

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

KM111 · · · KM11N · · · KMi1j · · · KMM11 · · · KMM1N

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

KM1N1 · · · KM1NN · · · KMiNj · · · KMMN1 · · · KMMNN


(29)

Calculation of the terms Kminj is based on the integrals (21), with:

Kminj = D11k
2200
minj + 4D66k

1111
minj +D12(k

2002
minj + k0220minj ) +D22k

0022
minj

+ 2D16(k
2101
minj + k1210minj ) + 2D26(k

0121
minj + k1012minj ) (30)
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The geometric square symmetric matrix of the plate [G]MN is:

[G] =



G1111 · · · G111N · · · G1i1j · · · G1M11 · · · G1M1N

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

G11N1 · · · G11NN · · · G1iNj

. . . G1MN1 · · · G1MNN

...
. . .

. . .
. . .

. . .
. . .

. . . · · ·
...

Gm1n1 · · · Gm1nN · · · Gminj · · · GmMn1 · · · GmMnN

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
GM111 · · · GM11N · · · GMi1j · · · GMM11 · · · GMM1N

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
GM1N1 · · · GM1NN · · · GMiNj · · · GMMN1 · · · GMMNN


(31)

To obtain the coefficients Gminj the integrals (22) and (23) are used, with:

Gminj = g(α)1100minj + g(β)0011minj (32)

The square symmetrical mass matrix of the plate [M ]MN is:

[M ] =



M1111 · · · M111N · · · M1i1j · · · M1M11 · · · M1M1N

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

M11N1 · · · M11NN · · · M1iNj

. . . M1MN1 · · · M1MNN

...
. . .

. . .
. . .

. . .
. . .

. . . · · ·
...

Mm1n1 · · · Mm1nN · · · Mminj · · · MmMn1 · · · MmMnN

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
MM111 · · · MM11N · · · MMi1j · · · MMM11 · · · MMM1N

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
MM1N1 · · · MM1NN · · · MMiNj · · · MMMN1 · · · MMMNN


(33)

Determining the terms Mminj is determined by calculating the integrals
(24), with:

Mminj = I0m
0000
minj + I2(m

1100
minj +m0011

minj ) (34)

The column vector {W}MNx1 of unknown deviations has the following
transposed form:

{W} =
{
W11 · · · W1N · · · Wmn · · · WM1 · · · WMN

}T
(35)
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4 Numerical Results and Interpretation

The first is to quantify the effect of bending/torsion coupling in terms of the
critical buckling load, and the second is to determine the contribution of this
effect to the free vibration behavior of this type of plate. In the remainder
of this study, we will accept approximately a 14-layer plate as a specially
orthotropic3 plate for any comparison made.

4.1 Formulation Validation

In order to determine the accuracy of the method adopted in this study and
the convergence of the numerical formulation used, we record the critical
buckling load and the fundamental free vibration frequency of a symmetrical
laminated plate. To do this, a MATLAB program is run with a ratio of
anisotropy E1/E2 and slenderness a/h for two schemes (Nc = 4 layers and
Nc = 12 layers), and the results are listed in Table 3 in the Appendix.

To validate the theoretical method used, a comparison is made with
the results obtained by ASHTON and WADDOUPS, who use experimental
approaches in their studies [39]. According to Table 3, a good agreement
can be observed between our results and those of Ashton and Waddoups for
a 12-layer plate. However, to obtain acceptable accuracies for plates with a
reduced number of layers, a large number of deformation modes of the plate
must be taken into account. (m,n) of plate deformation, which immediately
increases the stiffness matrices [K] geometry [G] and mass matrices [M ].

4.2 Effect of Bending/Torsion Coupling on Critical Buckling
Load

We determine the effect of the number of layers Nc = (4, 8, 12 or 14
layers) on the critical buckling load of a symmetrical laminated plate simply
supported on two parallel edges and free on the other two. In addition, two
types of uniform and non-uniform loading are adopted. The results are shown
in Table 4 in the Appendix.

Firstly, we need to agree on the method for quantifying the effect of cou-
pling on stability. The principle is to increase the number of plate layers, i.e.
by decreasing the flexural/torsional coupling stiffnesses, thereby bringing it
closer to a specially orthotropic configuration (where the coupling stiffnesses
are zero). So, according to the results in Table 4, a significant difference

3Where, the effect of bending/torsion coupling is absent D16 = D26 = 0.
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between the critical buckling loads of the two plate configurations Nc = 4
and Nc = 14 (an error of more than 14% is made if we want to approximate
the case Nc = 4 by the especially orthotropic plate configuration). This
difference shows that bending/torsion coupling has a significant effect on
buckling behavior for plates with a reduced number of layers. The error can
reach 46.68% in the case of an anisotropy of E1/E2 = 40 and a slenderness
ratio of a/h = 25. On the other hand, for a square boron-epoxy symmetrical
plate with angular folds θ = 45◦ 12-layer uniaxially plane-loaded square
boron-epoxy plate, the error on the critical buckling load is 0.49% when
the specially orthotropic approximation is used, whereas this error becomes
1.45% for the same plate but with an anisotropy of E1/E2 = 40 and a
slenderness ratio of a/h = 25. We note that the bending/torsion coupling
effect disappears very rapidly as the number of layers increases.

Figure 4 shows the non-dimensional critical buckling load Fcr as a
function of slenderness ratio a/h and Figure 5 shows the same load as a
function of anisotropy E1/E2. The plate studied is a symmetrical laminate
with angular folds whose angle of lamination is θ = 45◦ for different patterns
Nc = (4, 8, 12 or 14 layers).

Figure 4 shows that the non-dimensional critical buckling load Fcr

increases exponentially with increasing plate slenderness for a/h ∈ [5, 30]
the increase in this load is explained by the absence of the shear effect for
higher ratios of a/h. This load approaches a fixed load when the anisotropy
ratio E1/E2 continues to increase, as shown in Figure 5. We also note
that for a plate of Nc = 4 layers plate, the buckling load is small but

Figure 4 Non-dimensional critical buckling load as a function of the ratio a/h.
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Figure 5 Non-dimensional critical buckling load as a function of anisotropy E1/E2.

Figure 6 Simulation of non-dimensional critical buckling load Fcr as a function of a/b for
both types of loading.4

increases with Nc and approaches the curve for the Nc ≥ 14 layers case
(which represents, approximately, the specially orthotropic configuration),
this behavior justifying the absence of coupling between bending/torsion
when Nc increases.

In Figure 6 we have drawn the curves representing the critical buckling
load Fcr as a function of aspect ratio for uniform/non-uniform loading.
Figure 7 shows the behavior of the symmetrical laminated plate in terms
of elastic stability under three boundary conditions: simply supported,
embedded or free.

4α and β Are load coefficients that determine the nature of the loading Fx(y) and Fy(x)
uniform or non-uniform, as specified in the previous sections.
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Figure 7 Simulation of the non-dimensional critical buckling load Fcr as a function of a/h
for the three types of boundary conditions.5

The decrease in critical buckling load (illustrated in Figure 6) is clear with
increasing aspect ratio, but it is also concluded that the plate bends faster
under uniform loads with two layers and resists better against non-uniform
loads. (α = 1 and β = 2). Figure 7 shows that when the plate has a small
aspect ratio (a/h < 5) the boundary conditions have almost the same effect
on the buckling load of a laminated plate with angular folds, but if this ratio is
larger we need to be careful when analyzing problems with varying boundary
conditions.

The variation of the critical buckling load as a function of the lamination
angle θ is shown in Figures 8 and 9. Figure 8 illustrates the effect of loading
type (un-axial or bi-axial) for the different lamination patterns, while Figure 9
shows the buckling behavior for the three types of boundary conditions.

Irrespective of slenderness and aspect ratio, the critical buckling load of
a symmetrical laminated plate increases as the angle of lamination is varied
from 0◦ to 45◦ and decreases for a continuous and increasing variation of
the angle from θ From 45◦ to 90◦, this applies to a symmetrical angle-
ply laminated plate with simply supported boundary conditions and biaxial
loading in the planes. The approximation of critical buckling load values
to that of a specially orthotropic plate (the 14-layer case), is clear from
the results drawn in Figure 8. Furthermore, the lowest and highest loads
correspond to the cases of plates (SSSS and Nc = 2 layers) and CCSS
and Nc = 14 layers respectively, as shown in Figure 9. This behavior can be

5SS: simply supported, CC: clamped and FF: free.
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Figure 8 Fcr as a function of lamination angle θ for different types of loading.

Figure 9 Fcr as a function of lamination angle θ for different types of boundary conditions.

explained by the fact that higher stresses on the plate boundaries increase the
plate’s transverse stiffness, which makes the plate’s buckling response higher.

4.3 Effect of Bending/Torsion Coupling on Free Vibration

The natural frequencies of the fundamental mode (m = 1, n = 1) for the free
vibration analysis of symmetrical laminated plates are presented in Table 5.
The analysis is carried out for the three types of boundary conditions (SS, CC
and/or FF), and we have processed 4 schemes (Nc = 4, 8, 12 or 14 layers) in
order to quantify the effect of bending/torsion coupling on the free vibration
of the structure.
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Figure 10 Fundamental frequency as a function of aspect ratio for different lamination
patterns.

According to Table 5, approximating the case where (Nc = 2 layers) by
a specially orthotropic plate leads to a relative error of 64.08% in the case of
an anisotropy ratio of E1/E2 = 40 and an aspect ratio of a/b = 10. This
error drops to 1.21% for Nc = 12 layers. We note that the bending/torsion
coupling effect disappears very quickly as the number of layers increases.

Figure 10 shows the fundamental free vibration frequency of an angularly
ply laminated plate with simply supported edges as a function of aspect ratio
a/b. A comparison between the fundamental frequencies for the three types
of boundary conditions treated in this study (simply supported, fixed or free)
as a function of plate anisotropy is presented in Figure 11.

The fundamental frequency of free vibration of a symmetrical laminated
plate decreases as the aspect ratio increases and also as the number of layers
becomes small, this remark is valid for an angularly folded symmetrical
laminated plate with simply supported boundary conditions and uniaxial
loading in the planes, the convergence of the critical buckling load towards
that of a specially orthotropic plate is very clear from the results presented
in Figure 10. Furthermore, the lowest and highest frequencies correspond,
respectively, to the cases of plates (SSSS and Nc = 14 layers) and CCSS
and Nc = 4 layers respectively, as shown in Figure 11.

Figure 12 shows the fundamental free vibration frequency as a function
of lamination angle θ for two lamination schemes (Nc = 4 and 14 layers).
In order to see the effect of bending/torsion coupling of a laminated plate with
angular folds on the free vibration, this study is carried out with three aspect
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Figure 11 Fundamental frequency as a function of the anisotropy ratio for different types of
boundary conditions.

Figure 12 Fundamental frequency as a function of lamination angle for different aspect
ratios.

ratios. Figure 13 shows the same behavior of the same plate, but in this case
we change the anisotropy. E1/E2.

According to Figures 12 and 13, the fundamental free-vibration fre-
quencies of an angularly-folded symmetrical laminated plate decrease for
lamination angles greater than 25◦, irrespective of the plate’s anisotropy and
aspect ratios. The effect of bending/torsion coupling is most significant for
lamination angles around 45◦, and becomes absent for angle 0◦ (especially
orthotropic plates) and 90◦ (symmetrical cross-ply plates).
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Figure 13 Fundamental frequency as a function of lamination angle for different anisotropy
ratios.

5 Conclusion

In this study, bending/torsion coupling was analyzed with different parame-
ters in a symmetrical laminated composite plate with angular folds, reducing
the effective bending and bending/torsion stiffnesses. As a result, the crit-
ical buckling load decreases and the fundamental free vibration frequency
increases. The effect of this coupling on the buckling load for a symmetrical
laminate rapidly disappears as the number of layers increases, but for less
than fourteen layers we cannot neglect this effect. As the lamination angle
approaches 45◦, the critical buckling load takes on its maximum value,
whereas it decreases for symmetrical laminates with angular folds as the
aspect ratio increases. The increase in plate anisotropy makes the critical
buckling load and the fundamental frequency of free vibration greater. As a
general rule, engineers should be very cautious about approximating the
behavior of an angle-ply symmetrical laminated composite plate to that of
a specially orthotropic plate in the case of plates with fewer than 14 layers.
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Appendix

Table 1 Engineering constant values for materials* [2]
Material Properties E1 E2 G12 G13 v12

Graphite – Epoxy 20.0 1.3 1.03 0.90 0.30
Boron – Epoxy 30.0 3.0 1.00 0.60 0.30

*Moduli are expressed in msi = million psi;
1 psi = 6,894.76 N/m2 ; Pa = N/m2 ; kPa = 103 Pa;
MPa = 106 Pa; GPa = 109 Pa.

Table 2 Values λr and αr verifying boundary conditions
r 1 2 3 4 5 6 7 8

λr 4,73004 7,85320 10,99560 14,13716 17,27875 20,42035 23,56194 26,70353
αr 0,982502 1,000777 0,999966 1,000001 0,999999 1,000000 1,000000 1,000000

Table 3 Validation of theoretical results
Nc = 4 layers Nc = 14 layers*

Size Measured E1/E2 a/h Present Ref [39] Error Present Ref [39] Error

Critical 5 10 0.3083 0,3002 2,70% 0.3589 0,3534 1,56%
buckling 25 1.5729 1,5859 0,82% 2.2050 2,2025 0,11%
load 40 10 0.4200 0,4285 1,98% 0.5377 0,5302 1,41%
Fcr 25 1.8413 1,8154 1,43% 3.2792 3,2424 1,13%

Fundamental 5 10 2.2270 2,2240 0,13% 1.8187 1,8187 0,00%
free 25 2.5175 2,5895 2,78% 1.9156 1,9175 0,10%
vibration 40 10 8.0637 7,9921 0,90% 6.3161 6,3685 0,82%
frequency ω11 25 9.2989 9,1245 1,91% 6.7225 6,6425 1,20%

*The case where Nc = 14 layers will be treated in the following, approximately, as a
specially orthotropic plate.

Table 4 The critical buckling load Fcr of a symmetrical laminated plate as a function of
anisotropy, aspect ratio and slenderness
Load Type Uni-Axial Loading Bi-Axial Loading
E1/E2 5 40 5 40
a/h 10 25 10 25 10 25 10 25
Nc = 4 layers 0.2443 1.2924 0.3162 1.4383 0.1952 0.4260 0.2512 0.4588

Error1 14.55% 26.56% 23.65% 43.31% 14.87% 26.96% 24.96% 46.68%
Nc = 8 layers 0.2781 1.6736 0.3957 2.3317 0.2231 0.5606 0.3194 0.7991

Error 2.72% 4.90% 4.45% 8.10% 2.73% 3.88% 4.58% 7.13%
Nc = 12 layers 0.2845 1.7443 0.4108 2.5003 0.2282 0.5793 0.3320 0.8502

Error 0.49% 0.88% 0.80% 1.45% 0.49% 0.68% 0.82% 1.19%
Nc = 14 layers2 0.2859 1.7599 0.4142 2.5374 0.2294 0.5833 0.3348 0.8605
1Relative error is calculated by Error% = 100.(Fcr(Nc = 14 layers) − Fcr(Nc))/Fcr(Nc = 14 layers)
for a plate of Nc layers.
2The shaded line is reserved for the case representing a specially orthotropic plate.
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Table 5 Effect of boundary conditions on the contribution of bending/torsion coupling to the
fundamental frequency 1ω11 of a symmetrical laminated plate

SS at x = 0, a CC at x = 0, a CC at x = 0, a

Number of SS at y = 0, b SS at y = 0, b FF at y = 0, b

Layers Nc a/b E1/E2 = 5 E1/E2 = 40 E1/E2 = 5 E1/E2 = 40 E1/E2 = 5 E1/E2 = 40

2 layers 2 0.7585 4.8549 1.8029 11.7057 1.7764 11.5531

Error 21.66% 34.19% 18.16% 29.52% 17.96% 29.22%

12 layers 0.9645 7.3309 2.1958 16.5181 2.1584 16.2357

Error 0.39% 0.63% 0.33% 0.54% 0.32% 0.53%

14 layers 0.9683 7.3773 2.2031 16.6087 2.1655 16.3237

2 layers 10 0.1597 0.8566 0.3285 1.4462 0.3252 1.4467

Error 33.85% 53.29% 39.97% 64.70% 39.55% 64.08%

12 layers 0.2400 1.8160 0.5431 4.0473 0.5340 3.9792

Error 0.62% 0.99% 0.74% 1.23% 0.73% 1.21%

14 layers 0.2415 1.8343 0.5472 4.0977 0.5379 4.0282

Fundamental pulsation and frequency are linked by ω11 = 2πf11 .
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