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ABSTRACT. The present work aims to reduce the computational burden associated with 3D 
simulations of Resin Transfer Molding (RTM). The goal is achieved by minimizing the number 
of elements required to describe the geometrical domain. A 2D mesh refinement technique 
based on edge subdivision and swapping is coupled to a mesh extrusion algorithm to generate 
a three-dimensional computational domain composed of multiple layers of planar elements. 
The refinement optimizes the mesh by stretching or concentrating the elements in desired 
locations while the full geometry is constructed from relatively low number of elements. 
Beyond the extrusion algorithm robustness, the solid mesh extruded through the thickness of 
the composite mirrors the detailed structure of the laminate, including sandwich components. 
Mold filling calculations are carried out on the extruded mesh using a non-conforming finite 
element formulation. 
KEYWORDS: Resin Transfer Molding, mesh refinement, mesh extrusion, prismatic element, non-
conforming finite element. 
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1. Introduction 

Because they tend to replace classical materials with a lighter weight alternative 
and equivalent or improved mechanical properties, composites have nowadays 
reached a critical importance. Engineering advances quickly and composite uses 
have already extended to boat manufacture, sports equipment, biomedical 
components, underground pipes, and notably automotive components and aerospace 
structures. In the last fifteen years a set of processes have been developed to 
manufacture composite parts and termed, Liquid Composite Molding (LCM). As a 
member of LCM family of processes, RTM involves injecting a liquid resin through 
fibrous reinforcements previously placed in the cavity of a closed and rigid mold. 
From the resin injection to curing of the final part, several physical phenomena 
affect quality at each stage of the process. Process improvement has been the driving 
force for a better understanding of these phenomena and has resulted in the ability to 
predict mold filling (Trochu et al., 1993), saturation (Ruiz et al., 2004, Bréard et al., 
2003) and heat exchanges in the mold during resin injection and cure (Ruiz et al., 
2004). Modeling and simulation are thus key steps in the design and optimization of 
RTM molds.  

Much like many engineering physics problems, the filling and curing stages in 
RTM can be modeled by a set of partial differential equations (PDEs). The mold 
often has a complex shape and the PDEs cannot be solved by analytical means. 
Moreover, complex interactions occur during the filling stage due to simultaneous 
momentum, heat and mass transfers. Hence, numerical methods are used to seek a 
solution and predict the evolution in time of physical process parameters, such as 
pressure and temperature, throughout the mold cavity. Several approaches can be 
taken depending on the degree of coupling assumed. In general, for a given 
discretization of the domain under consideration, the more complex the coupling, 
the larger the computational time required to analyze the process. A successful 
simulation also results from a proper domain discretization. Indeed, mesh generation 
associates degrees of freedom, (i.e., unknown values of the variables to a finite 
number of points judiciously selected in the geometric domain). The mesh has to be 
fine enough to capture the physical phenomena investigated and coarse enough to 
allow rapid calculations. Model simplification also allows running simplified 
simulations during the design stage before a full analysis is carried out. However, 
several situations exist where no simplification is possible and all previously 
mentioned physical phenomena need to be considered in the model. This typically 
occurs when the mold is heated at a different temperature than the resin. In which 
case, the resin viscosity changes through the thickness of the part. This results in 
irregular flows, usually faster inside the skin when the mold is maintained at a 
higher temperature than the resin. Yet, through thickness flow may also occur if the 
parts contain multi-layer fibrous reinforcement or high fiber volume contents. In 
such situations full coupled three-dimensional analyses have to be conducted. 
Otherwise model simplification would lead to poor predictions. 
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The goal of this study is to minimize the number of elements required in the 
simulation of resin transfer molding. Numerical simulation efficiency is improved 
by using a remeshing technique that refines the mesh or stretches the elements in 
desired geometric regions. The development of 3D remeshing techniques is still at 
the leading edge of mesh generation and implementation requires tremendous 
efforts. This paper examines how 2D remeshing is undertaken. This capability is 
enhanced by an extrusion algorithm to generate 3D multi-layer data mesh structures 
composed of prismatic elements. The mesh extrusion performed through the 
thickness of the composite not only has the ability to build the 3D meshes, but can 
also reflect accurately the structure of the laminate. A new non-conforming 
prismatic element has been developed. It is shown that this type of element can lead 
to more efficient and accurate RTM mold filling simulations. 

2. The resin transfer molding process 

As mentioned above, RTM consists of injecting a resin through fibrous 
reinforcements already placed in the mold cavity. The main assumptions made about 
RTM modeling are summarized as follows: 

– the reinforcement is considered as a porous medium. Fibrous reinforce-ment 
includes empty spaces (inner tow and inter fiber spaces), is permeable to a wide 
variety of fluids and can then be considered porous (Dullien 1979); 

– the medium is assumed to be homogeneous. Volume averaging techniques 
based on intermediate characteristic lengths between the size of inter-fiber spaces to 
the overall extent of the material have been successfully applied to model porous 
media (Parnas 2000). However, this assumption has limitations, for example, when 
the heat transfer in the liquid phase (resin) follows a different regime than in the 
solid phase (fibers). However this type of situation can still be handled using 
empirical or semi-empirical correlations to include hydrodynamic or thermal 
dispersion; 

– the resin flow is assumed to be in a creeping regime. This is almost always 
true. Indeed, resin injection is slowly and carefully conducted to ensure proper fiber 
impregnation and prevent the formation of voids and confinement of air during the 
filling stage; 

– the resin is assumed to behave as a Newtonian fluid, (i.e., during flow, the fluid 
strain rate is equal to the velocity gradient defined perpendicularly to the flow 
direction). 

In the case of the above-mentioned assumptions, the resin flow is governed by 
the widely known Darcy’s equation (Darcy 1856). It states that the amount of fluid 
(resin) flowing through a particles bed (fibers) confined in a cavity (mold) is 
proportional to the gradient of fluid pressure. This law establishes a relationship 
between the average fluid velocity (Darcy’s velocity) vK , (i.e., the flow rate per 
unit area), and the pressure gradient ∇ as follows: P
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[ ] PKv ∇−=
µ

G
 [1] 

where [K] is the permeability tensor and µ  the resin viscosity, 

Equation [1] represents an undetermined system since both the velocity and the 
pressure are unknowns. Another relation must be established to close the system and 
solve for the resin flow in the fibrous reinforcement. The continuity equation is used 
here with the following assumptions: 

– the mold is considered rigid. This is always valid in RTM since the mold is 
usually metallic (steel or aluminum). One need only ensure that the mold cover is 
not allowed to move in any direction; 

– the reinforcement placed in the cavity is also considered rigid. Although this is 
not always true, the fiber bed can be considered as non-deformable as long as it is 
properly confined in the mold cavity and its deformations remain negligible; 

– the resin is incompressible, which is true for liquids. 

Under these considerations, the equation of mass conservation for the fluid phase 
simplifies into: 

0).( =rvdiv ρ  [2] 

where ρ  is the density of the resin injected and  is the superficial resin velocity, 
i.e., the velocity of the flow front during mold filling. Note that this latter term is 
related to Darcy’s velocity via the porosity  of the porous medium by: 

rv

φ

vvr φ=  [3] 

Finally injecting equation [1] in [2] leads to the partial differential equation that 
governs the fluid flow: 

[ ] 0=







∇PKdiv

µ
 [4] 

Considering isothermal filling conditions the viscosity of the resin is assumed to 
be constant. Equation [4] has been solved successfully using a finite element/finite 
volume mixed formulation with conforming (Bruschke et al., 1990, Fracchia et al., 
1989) or non-conforming shell elements (Trochu et al., 1993). 

3. Finite element formulation 

To solve the elliptic PDE stated in equation [4] that governs the resin flow a 
weak formulation can be expressed in terms of weighted residuals (Trochu et al., 
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1993, Remacle et al., 1998). Defining the shape function as scalar p and introducing 
a space F(Ω) of test functions w, equation [4] is replaced by an equivalent integral 
on the domain Ω, namely: 

[ ] 0.1
=Ω∂








∇−⋅∫

Ω

pKdivw
µ

        ∀  [5] )(Ω∈Fw

Integrating by parts and applying Green’s theorem leads to: 

[ ] ( )∫ ∫
Ω Γ

Γ∂⋅⋅=Ω∂







∇−⋅∇ d

d

vnwpKw  )ˆ(.1
µ

,  ,  [6] )(Ω∈∀ Fw 21 ΓΓ=Γ ∪d

where  and Γ  represent the domain boundaries where natural and essential 
boundary conditions are to be assigned respectively. 

1Γ 2

The finite element method consists of finding a set of functions w that 
approximate the scalar potential p on the whole domain Ω. The domain Ω is divided 
into sub-domains (elements) of simple geometrical shape, where p is approximated 
by a linear combination of shape functions. For general shape functions sn and test 
functions sj associated to the group of nodes in the finite sub-domain Ω , the scalar 
p is then estimated using: 

e

∑
=

=
N

n
nn xspxp

1
)()(  [7] 

where sn(x) is a piecewise linear shape function and x denotes the position vector in 
the domain Ω. The Galerkin formulation gives: 
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1 µ
,       [8] ejs Ω∈∀

where Ne are the element nodes and  denotes the boundary of the finite sub-
domain Ω . In matrix notation, equation [8] can be rewritten as follows: 

eΓ

e

[ ]{ } { }RpM =  [9] 

where [M] represents the NxN stiffness matrix of the scalar potential field. An 
element of matrix M is defined as: 

 



824     REEF – 14/2005. Composites forming simulation 

[ ]
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and {R} is a vector {rj} containing Neumann boundary conditions, i.e., the injection 
flow rates imposed along some parts of the boundary: 

( )∫
Γ

Γ∂⋅⋅=

e

esjj vnsr

1

1)ˆ(  ,     and  [11] Nj ,...,1= 11 ΓΓ=Γ ∩ee

where sv  is the velocity specified on . The approximate solution of the scalar 
potential p is then obtained by solving the linear system [9] of N equations with N 
unknowns. 

1Γ

3.1. Non-conforming triangle  

In the present approach, the finite element is considered to represent the control 
volume where the mass balance equation is solved. The fluid mass transported 
between adjacent elements is the scalar product of the normal vector at the interface 
by the mass velocity v⋅ρ  (Figure 1a). In order to ensure mass conservation at 
elements interface, non-conforming finite element approximations are used. A 
discontinuous shape function may be obtained by interpolating the pressure field on 
the element edges as depicted in Figure 1c in the 2D case. In the 3D case, the 
interpolation is performed on the faces of each solid element. This non-conforming 
interpolation ensures a continuous mass flux, i.e., a constant vn ρ⋅ˆ  across the 
interface (Trochu et al., 1993). 
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(a)        (b)               (c) 

Figure 1. Triangular finite element: (a) resin flow; (b) conforming shape function; 
(c) non-conforming shape function 

For the triangular non-conforming finite element of Figure 2a, the three degrees 
of freedom are assigned at the mid-points of the element edges. 

In an isoparametric approximation, the element shape functions se write as 
follows (Figure 2b): 
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where  and ζ η are the local coordinates in a reference system.  
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Figure 2. Non-conforming shape functions on a triangle and reference element: 
nodes are located at the middle of element edges 

3.2. Non-conforming prism 

In RTM processing, most composite parts are considered to be thin shells and 
simulated using 2D finite element approximation with through-thickness averaging. 
However in the case of laminates, 3D simulations are often required to accurately 
predict the injection time and verify that no air is entrapped during mold filling. 
Prismatic elements constructed by extrusion from a triangular mesh simplify 
considerably the mesh generation task. For this reason, the non-conforming 
prismatic element (shown in Figure 3) is introduced with degrees of freedom 
extended on the edges of the bottom and top triangular faces. 
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Figure 3. Non-conforming prismatic element 
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The linear function space will have now 6 degrees of freedom. The element 
shape functions se are: 
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where the third dimension  is referenced from the element midplane. τ
When 3D simulations are required to predict accurately the injection time and 

detect local filling problems, this new prismatic element can advantageously replace 
tetrahedrons to save computer time by reducing the number of degrees of freedom. It 
provides also a good accuracy with the non-conforming formulation because it 
ensures a local mass conservation (Ruiz, 2004). This element contains 6 nodes and 
results from an extrusion of a triangular shell element. Its straightforward generation 
from triangle extrusion avoids a tedious mesh generation while also allows the 
simultaneous processing of layers of stacked elements for composite laminate 
analysis. 

The unsteady flow can be solved by considering a succession of approximations 
in space and time. Every time step the resin front is relocated using the computed 
velocity field and the previous front location. A technique based on volume of fluids 
is used to track the resin front using a so-called “saturation coefficient” of the 
elements (Trochu et al., 1993). This “fill factor” is defined by the scalar field S(x,t) 
on Ω,. For completely filled elements S is equal to one, while S is zero in empty 
elements. For the elements crossed by the front, S(x,t) lies between these two values. 
The fill factor is transported in the partially and fully saturated regions until it finally 
reaches the value of full saturation (S=1) everywhere in the domain.  

4. Mesh refinement algorithm 

Mesh generation consists of decomposing a geometrical domain into a partition 
of simple elements such as triangles, rectangles, tetrahedrons, bricks or prisms. 
Depending on the nature of the elements and the way they are interconnected, the 
resulting mesh can be either structured or unstructured. In RTM flow simulation, 
due to the complex mold shapes, unstructured meshes of triangles or tetrahedrons 
are often needed. However, the construction of 3D unstructured meshes remains a 
challenging task. Delaunay triangulation (Delaunay, 1934) is usually the most 
wanted triangulation since it maximizes the minimum angles of the constructed 
triangles (Green et al., 1978). For the triangulation to be a true Delaunay, the 
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circumcircle of each triangle must not contain any point of the triangulation, which 
is usually called the “empty circle” property (Figure 4). 
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Figure 4. The Delaunay criterion 
 
 

From an initial Delaunay triangulation, that may be obtained using appropriate 
mesh generation algorithms (Lee et al., 1980, Guibas et al., 1985, Su et al., 1995), 
refinement techniques (Chew 1989, Chew 1993, Ruppert 1995) are used to finalize 
the mesh under the empty circle property (Lawson 1977, Bowyer 1981, Watson 
1981). More interestingly, a close relationship exists between Delaunay 
triangulation and triangle edge flipping in 2D (Lawson 1977). Sibson (Sibson 1978) 
showed that a convex hull triangulation can be converted into a Delaunay 
triangulation by performing topological modifications based on diagonal swapping. 
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Figure 5. Example of edge flipping: (a) Delaunay criterion is not verified  
(b) Delaunay criterion is verified after edge flipping 
 
 

Figure 5 shows a case where edge flipping can be applied to ensure Delaunay 
conformity. Before edge flipping in Figure 5a, all vertices of triangles T1 and T2 lie 
inside circles C1 and C2. The edge connecting vertices V2 and V3 is removed and 
replaced in Figure 5b by an edge connecting vertices V1 and V4. The resulting mesh 
verifies Delaunay criterion since only the vertices of triangle Ti lies inside the 
circumscribing circle Ci. 
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Based on these efforts, Bechet (Bechet et al., 2002) provided an implementation 
to refine 3D surface meshes. The algorithm has been successfully extended to 
handle anisotropic mesh refinement. Local metrics have been introduced to provide 
more resolution by concentrating the fine scale elements in some specific regions 
thus minimizing the global mesh size. The adaptive remeshing strategy (Bechet et 
al., 2003) used in the present work is based on node insertion through edge bisection 
and local mesh improvement via edge flipping combined with anisotropic or 
isotropic metrics. The main contribution in (Bechet et al., 2003) is to adapt the 
anisotropic remeshing technique to a moving boundary problem. This technique 
allows stretching the elements in any desired direction or refining the mesh in a 
specific region. Anisotropic line metrics can therefore be implemented to create 
channels in the geometry to account for edge effects (also called “race tracking”). 

Mesh anisotropy at any point X in a triangulated domain Ω can be achieved by 
considering a metric tensor that defines the stretching extent of the elements. In 2D, 
the tensor is represented by a d x d positive definite symmetric matrix (d = 
dimension of Ω) denoted by: 

( ) ( ) ( )
( ) ( )






=

XcXb
XbXa

XM  [14] 

with ,  and . The distance between two 
points A and B belonging to Ω may be defined as: 

( ) 0>Xa ( ) 0>Xc ( ) ( ) ( ) 02 >− XbXcXa

( ) ( ) ( )( ) ( )
∫ ⋅







∂
∂

⋅⋅






∂
∂

=
1

0

dt
t
tstsM

t
tsABdist  [15] 

where  is the parametric representation of a path connecting A and B for 
parameter t varying from 0 to 1 (Borouchaki et al., 1997). In an Euclidean space of 
origin O, the path from A to B is a line segment and  can be expressed as 

, so the distance becomes: 

( )ts

tAO
G
+

( )ts

( ) BAts
G

=

( ) ( )( )∫ ⋅⋅⋅=
1

0

dtBAtsMBAABdist T GG
 [16] 

In the case of isotropic remeshing, the metric is given by  

IM α=  [17] 

 



A novel approach to RTM simulation     829 

where I represents the identity matrix and  is a positive number. Borouchaki 
(Borouchaki et al., 1997) have related the size of the elements h with the coefficient 

 by the relation: 

α

α

21 h=α  [18] 

In the anisotropic case, the elements are stretched in a given direction. In a base 
associated to the element, the metric diagonal components are related respectively to 
the normal and tangential dimensions of the element with respect to the stretching 
direction. 

The remeshing algorithm can be summarized as follows: 
1. Classify all triangle edges according to their length, which is estimated using 

the predefined metric; 
2. Create a vertex at the middle of the largest edge (bisection); 
3. Insert the vertex in the current topology, which results in a star shaped 

structure; 
4. Check Delaunay conformity for each surrounding triangle. Swap triangle 

edges if necessary; 
5. Resort edges after bisection; 
6. Verify if refinement criterion has been reached. If not go back to step 2, 

otherwise, terminate refinement algorithm. 

5. Examples of metrics 

The flexibility of the remeshing technique and its ability to concentrate or stretch 
elements wherever desired is demonstrated through several examples. The key step 
in achieving any mesh refinement lies in the definition of the appropriate metric that 
reevaluates the distances between triangle vertices. 

5.1. Isotropic refinement in a square 

The first example as depicted in Figure 6 shows a square meshed with a 
progressive refinement from the edges to the center. The corresponding metric can 
be formulated as follows: 











≡

2

2

/10

0/1

s

s
M  [19] 

with parameter s given by 
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λ/)(min rLsns −−=   [20] 

where 

n is the ratio between the largest and the smallest edge in the final mesh, 

mins  is the length of the smallest edge of the mesh (refinement criterion), 
L is a characteristic length of the domain (half of the square diagonal), 
r is the distance from the center of the square to a vertex of the mesh 
λ  is a constant defining the linear progression of the element size. 

 

 

 
Figure 6. Pointwise refinement in a square 

5.2. Isotropic refinement in a rectangle 

The parameter s can be changed to follow any analytical function defined over 
the domain to be meshed. To achieve an elliptical mesh for example; the distance re 
of a point on the ellipse to its center is first expressed function of the eccentric angle 

 by: θ

θθ 2222

22
2

sincos ab
bare +

=  [21] 

where a and b are the major and the minor ellipse axis respectively. The ellipse 
major axis may be expressed as a function of the ellipse eccentricity e and the polar 
coordinates as 
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( )
2

22

1
cos1
e

era e −
−

=
θ  [22] 

The size distribution of the elements is finally described by equation [20] where 
the distance r is replaced by the above major axis a of the ellipse to result in the 
mesh shown in Figure 7. 
 

 
Figure 7. Elliptic refinement in a rectangle 

5.3. Anisotropic mesh refinement 

In order to achieve an anisotropic mesh refinement, the metric is reformulated in 
the following way (Borouchaki et al., 1997): 

QMQM T≡*   [23] 

 
where Q represents the desired transformation matrix from the global geometry to a 
local frame centered at each triangle vertex. In a similar way as in matrix [19], M is 
given in 2D by: 











≡

2
2

2
1

/10

0/1

s

s
M  [24] 

where, in this case, the two parameters s1 and s2 describe the stretch of the element 
in the two orthogonal directions of a local reference frame. Figure 8a illustrates the 
case of a stretching direction at 45° with the horizontal. 
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                     a-                                                          b- 

 
Figure 8. Anisotropic remeshing: a- Tilted stretch of angle 45, b- Remeshing around 
a square 

Analogously, in order to create boundary channels, each boundary edge defines 
its own remeshing direction. Figure 8b shows the inclusion of a channel with two 
layers of triangles around a simple square, while Figure 9 illustrates the more 
complex case of a 3D surface of a car hood. As depicted in this figure, remeshing of 
the hood is performed along the boundaries without altering the initial mesh. 
 

 
 

Figure 9. Remeshing of the hood boundary 

6. Multi-layer mesh generation by extrusion 

The mesh refinement technique previously described remains a difficult task in 
3D. However, the concept of mesh extrusion offers a wide range of possibilities to 
improve the geometric modeling of 3D parts in RTM flow simulations. Moreover, 
composite laminates are most often made out of several stacked layers of materials 
with different properties, which make extrusion best suited for composite analysis 
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especially since the in-plane and through-thickness properties of the fibrous 
reinforcement can be easily set for each extruded layer. 

A midplane mesh usually constructed for thin shell simulations can be 
extrapolated in a certain number of layers Nl to automatically create a 3D mesh with 
a multi-layer structure. The extrusion starts by the extrapolation of mesh nodes. The 
normal vector to the discrete geometry at point Ni can be evaluated using the normal 
vectors to the adjacent elements and their aspect ratios. For a typical element e1, the 
normal at one of its nodes Ni is deduced from the cross product of the vectors 
representing the edges sharing this node (Figure 10a), namely: 
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Figure 10. Estimation of the direction of the normal vector at a node 
 
 

From the evaluation of the normal, two different weighted values are estimated 
in order to account for the elements aspect ratio, namely: 

– a normal weighted by the angle formed by the edges used in the cross 
product: 

1eϕ

111
ˆˆ eee nn ϕϕ ⋅=  [26] 

– a normal weighted by the element area  and the angle : 
1eA
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where the angle  is given by: 1eϕ
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Denoting by Ne the number of elements sharing node Ni , the generalized angle-
based and area-weighted normals at node Ni can be written as follows: 
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Based on Pillai (Pillai et al., 2000) approach that minimizes the net deviation of 
the projected thickness, the normal vector can be estimated using: 
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Note that the extruded height may be limited by the curvature of the geometry 
and proper care is needed during implementation of the algorithm to set practical 
limitations to the extrusion height. 

Performing extrusion along the estimated direction of the normal, the height of 
the layer is used to displace the nodes. The new node position is therefore directly 
given by: 

heightlayernNN ii
new
i _ˆ ⋅+=  [32] 

After the new nodes have been created, the 3D finite element must be generated 
following the connectivity of the 2D mesh. Note neither material properties nor 
boundary conditions are necessarily identical for each extrapolated layer. 

7. Applications 

Since edge effects are important in RTM, they will be considered in application 
of the proposed modeling strategy. In RTM, prior to resin injection, the fiber bed is 
cut and placed within the mold cavity. Due to the fibrous nature of the 
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reinforcement, a clearance appears at the edges of the part, which causes a 
preferential channel flow, i.e., a zone where the resin flow is much faster than in the 
rest of the cavity (Hammami et al., 1998). This gap is actually a zone that exhibits 
different characteristics than the porous medium represented by the fibrous 
reinforcement. In order to model this type of effect, the channel along the 
boundaries has to be identified. 

Two applications are presented in this section: 
– A 2D example illustrates the capability of the remeshing algorithm to create 

channels along the edges of the part and their effect on the total filling time. 
– A 3D example demonstrates the coupling of mesh refinement with the 

extrusion algorithm to generate a 3D mesh of the automotive hood. Filling of the 
part will also be displayed. 

7.1. 2D example 

An analytical approach (Hammami et al., 1998) considers the gap along the part 
boundaries as a porous medium. An equivalent permeability for the channel is 
estimated to allow application of Darcy’s law in the whole domain. This equivalent 
averaged permeability has been correlated to the thickness d of the gap by the 
formula: 

122
, dk avec =  [33] 

which gives the equivalent permeability in a porous medium of an infinite planar 
crack of thickness d. 

A test simulation was performed in Figure 11 for a rectangular plate with process 
parameters taken from Hammami (Hammami et al., 1998). The clearance between 
the fabric and the top mold edge was set to 3mm. The isovalues representing the 
filling time in seconds are displayed in Figure 11 and show how the gap drastically 
affects the flow pattern. With a uniform resin velocity profile along the line gate on 
the left side of the rectangular mold, a regular filling with a straight flow front would 
have been expected for a fabric matching perfectly the mold boundaries. This is not 
the case as the resin races along the upper edge of the cavity. Edge effects reduce 
considerably filling times. 
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7850 130 182 28
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Figure 11. Filling of a rectangular part with edge effect on the top side 
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7.2. 3D example 

A more complex application is considered in order to demonstrate the remeshing 
and extrusion capabilities of the present technique. The case of the automotive hood 
with the initial mesh of Figure 12 is considered. A sandwich structure is generated 
consisting of a central foam layer confined between two fabrics of different 
permeability. Edge effects are also considered and the mesh boundaries are 
consequently modified by the remeshing algorithm. 

 

 
 
Figure 12. Initial mesh of the automotive hood 
 
 

As shown in Figure 13, the remeshing algorithm stretches the elements of the 
initial mesh in order to delimitate the central zone 1 where the top and bottom 
fabrics are separated by the impermeable foam. The same technique is applied to 
generate zone 3 for the edge effects to represent a clearance between the fibrous 
reinforcement and the mold boundaries. An injection port is also generated at the 
center of the part. Finally the mesh is extruded to generate the three desired layers 
(Figure 14). The characteristics of each zone are described in Table 1 (only 
permeability is presented in SI units, the permeability of zone 3 is estimated from 
equation [33]). 

Figure 15 shows the flow front at different times during mold filling stage. 
At 60 sec (Figure 15a), the resin flow is faster on the bottom layer because of its 
higher permeability. The top and bottom fabrics are separated by the impermeable 
foam in zone 1. As the resin penetrates into zone 2 in the bottom side, it flows 
through the stack and reaches the top side of the part (see arrow in Figure 15a). This 
continues as the resin crosses completely into zone 2 as depicted in Figure 15b. 
When the resin gets to zone 3 the flow is much faster due to the edge effects. As 
seen in Figure 15c, almost all the edges of the part are already filled with resin. 
Finally, Figure 15d shows the flow front near the end of mold filling. 
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Figure 13. Remeshed automotive hood 
 
 

Extruded layersExtruded layers

 
 
Figure 14. Zoom of the right top corner of the hood showing extruded layers 
 
 
Table 1. Layers permeability for the different zones 
 

zone Top layer Mid layer Bottom layer 

1 10-10 impermeable 10-9 

2 10-10 10-10 10-9 

3 10-7 10-7 10-7 
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                top  bottom                                top  bottom 
  a- 60 sec    b- 420 sec 
 

     
                top  bottom                                top  bottom 
  c- 600 sec    d- 820 sec 
 

 
Figure 15. Flow front at a- 60 sec, b- 420 sec, c- 600 sec and d- 820sec 

8. Conclusion 

A 2D remeshing technique has been coupled to a mesh extrusion algorithm to 
generate appropriate computational domains for the numerical simulation of the 
RTM process. A remeshing technique was presented based on edge bisection and 
swapping with different metric examples. The algorithm allowed local refinement of 
finite element meshes without altering part geometry. A desired level of anisotropy 
can easily be achieved with proper definition of remeshing metrics. Coupling with 
the mesh extrusion algorithm allows defining accurately a multi-layer composite 
laminate structure while ensuring a minimum size of the final 3D mesh. A non-
conforming finite element formulation was developed to solve the resin flow in the 
fibrous reinforcement using triangles and prismatic elements. This approach allows 
local conservation of the fluid mass on the mesh. The filling of an automotive hood 
with the inclusion of edge effect was presented as example of application. 
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