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ABSTRACT. Numerical modeling of non-Newtonian flows typically involves the coupling 
between the equations of motion characterized by an elliptic character, and the fluid 
constitutive equation, which is an advection equation linked to the fluid history. In this work 
we propose a coupling between the natural element method which provides the capabilities 
of Lagrangian models to describe the flow front tracking as well as to treat the convection 
terms related to the fluid microstructure evolution – without the mesh quality requirements 
characteristics of the standard finite elements method – with a new approximation of the 
Fokker-Planck equation. This approximation is efficient and accurate, and is based on the 
use of an adaptive model reduction which couples the proper orthogonal decomposition 
(Karhunen-Loève) with an approximation basis enrichment based on the use of the Krylov 
subspaces, for describing the microstructure evolution. 
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1. Introduction 

As a consequence of the increasing use of composite materials, there has been 
much work on constitutive equations and computational mechanics for short fibers 
composites. Since these materials are generally made of a matrix and fibers 
reinforcement, the mechanical properties of the conformed pieces depend greatly on 
the fibers orientation in the solid material. However, it turns out, that this orientation 
is determined by the forming process, so that it is interesting to develop 
mathematical models describing the flow during this conforming process and to 
develop specific numerical strategies to solve the resulting equations. 

Mechanical modeling of short fibers suspensions flows is usually achieved in the 
framework of dilute or semi-dilute suspensions of non-spherical particles in a 
Newtonian fluid. The resulting system of equations involves the coupling of an 
elliptic problem with an advection problem related to the fluid history. The elliptic 
problem is associated with the equations of motion whereas the advection equation 
describes the time evolution of the anisotropic viscosity tensor (fiber orientation) or 
more generally the microstructural state. The second problem presents two 
difficulties: it is non-linear and hyperbolic (see the review paper from Azaiez et al., 
2002). 

Coupled models take into account both the dependence of the kinematics with the 
fiber orientation and the orientation induced by the flow kinematics. Usually the 
coupled models are solved by means of a fixed point strategy. In this case, at each 
iteration the flow kinematics results from the solution of motion and mass 
conservation equations, using the fiber orientation field from the previous iteration. 
From the kinematics just computed, the fiber orientation is updated solving the 
advection equation governing its evolution. Advection equations have been 
integrated by using any accurate numerical technique for hyperbolic equations: the 
method of characteristics, SUPG or discontinuous finite element techniques, 
discontinuous finite volumes... Coupled models solving simultaneously the flow 
kinematics and the fiber orientation (fully coupled models) are rare in literature. The 
main difficulty in using fully coupled models is the distinct character of the model 
equations, which requires specific numerical techniques. 

1.1. The flow kinematics resolution  

The simulation of flows involving moving or free boundaries introduces specific 
difficulties related to the flow front treatment. A first possibility to describe the fluid 
volume evolution is the use of a fixed mesh strategy. In that case, the fluid volume 
updating is carried out from a control volume technique or by using a volume-of-
fluid (VOF) technique, which introduces a new variable (the fluid presence function) 
whose evolution is governed, as described later, by a linear advection equation. 
Some of these techniques solve the flow kinematics exclusively in the fluid domain, 
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whereas other ones operate in the whole domain imposing a pseudo-behavior in the 
empty region (Azaiez et al., 2002). The use of this kind of techniques (fixed mesh 
strategies) induces additional difficulties in the flow front treatment, due to the fact 
that usual fixed mesh discretisation techniques update the fluid properties from their 
values at the previous time step. Thus, when an element starts its filling process, the 
variables related to the fluid, such as the temperature, the fiber orientation... are not 
defined in the empty elements, even though initial values are required to start the 
evolution process. Moreover, in all cases, the position and shape of the flow front is 
more or less uncertain, because in practice, during the filling simulation a great 
number of partially-filled elements appear. To improve the flow front location, some 
alternatives exist, as for example the level set method, but its use is far to be trivial. 

The consideration of a moving mesh strategy (as used for example in the 
Lagrangian finite element formulations) allows to get a good evaluation of the fluid 
domain evolution, although some precautions must be taken into account in the flow 
front tracking: confluent flow fronts, interaction of the flow front with the domain 
boundary... The advection equations related to the fluid history can be accurately 
integrated using the method of characteristics along the nodal trajectories. However, 
as it is well known in the context of the Lagrangian finite element method, the mesh 
becomes too distorted in few iterations to guarantee an accurate field interpolation in 
the mesh elements. In order to alleviate the remeshing constraint, some meshless 
methods have been proposed. However, usual meshless techniques do not define a 
nodal interpolation, and in consequence important difficulties are found in the 
application of the essential boundary conditions. The Natural Element Method – 
NEM – (Sukumar et al., 1998), is a novel meshless method, which has the property 
of nodal interpolation, and its accuracy does not depend on the regularity of nodal 
distribution, i.e. there is not geometrical restriction in the relative position of the 
nodes. Thus, if the NEM is used in the discretisation of the variational formulation of 
motion and mass conservation equations, the nodal position can be updated from the 
velocity field of the fluid, at the same time that advection equations are integrated 
using the method of characteristics. Even in the case of very irregular nodal 
distributions, when the solution can be interpolated by using the approximation 
functional basis, no remeshing is required. Nevertheless, the introduction or the 
elimination of some nodes is an easy task (Martinez et al., 2004). 

1.2. Description of the microstructure evolution  

As previously argued, “complex fluid” is the term commonly used to describe a 
wide class of liquid-like materials, in which the relaxation time towards the 
equilibrium state occurs sufficiently slowly that significant changes in the 
microstructural configuration, and thus in the macroscopic properties, can be 
induced by the flow. Viscoelastic fluids or short fiber suspensions may be considered 
as examples of complex fluids. The Fokker-Planck formalism is a commonly used –
description of kinetic theory problems, for describing the evolution of the 
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configuration distribution function. This function represents the probability of 
finding the microstructure element in a particular configuration.  

In the case of a short fiber suspension, the configuration distribution function 
(also known as orientation distribution function) gives the probability of finding the 
fiber in a given direction. Obviously, this function depends on the physical 
coordinates (space and time) as well as on the configuration coordinates, that taking 
into account the rigid character of the fibers, are defined on the surface of the unit 
sphere. The evolution of the distribution function is given by the Fokker-Planck 
equation, that we introduce later. 

We have proved in a former paper (Chiba et al., 2004) that in the context of the 
short fiber suspensions, the consideration of closure relations for deriving equations 
governing the evolution of different orientation tensors, can induce large deviations 
in the numerical solution with respect to the exact one. Thus, it seems that the use of 
the Fokker-Planck equation is better when very accurate solutions are searched. 
However, this equation is multidimensional due to the dependence of the orientation 
distribution on the physical and conformation variables. Some tentative for solving 
this equation exist in the bibliography: the use of particles or smoothed particles in a 
meshless framework (Chinesta et al., 2003; Chiba et al., 1998; Chaubal et al., 
1997)…, the use of different polynomial basis (wavelets, orthogonal polynomials…) 
or the use of hybrid approximations (polynomials and particles) in the context of an 
operator splitting of the Fokker-Planck advection-diffusion equation. 

However, in all the cases, a lot of polynomials or particles are introduced in the 
approximation despite that their contribution in the final solution can be sometimes 
negligible. In this work we propose a new approximation, efficient and accurate, 
based on the use of an adaptive model reduction which couples the proper 
orthogonal decomposition (Karhunen-Loève) with an approximation basis 
enrichment based on the use of the Krylov subspaces (Ryckelynck, 2004).  

2. Mechanical model 

The mechanical model governing the short fiber suspension (SFS) flow is given 
by the following equations: (Batchelor, 1970; Hinch and Leal, 1975, 1976): 

– The momentum balance equation, when the inertia and mass terms are 
neglected, results 

0=σDiv
 [1] 

where σ  is the stress tensor. 

– The mass balance equation for incompressible fluids  
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0=vDiv
 [2] 

where v  represents the velocity field. 

– The constitutive equation for a dilute suspension of high aspect-ratio particles 
is given, with other simplifying assumptions (Tucker, 1991), by 












+η+−=σ DaNDIp p :2
 [3] 

where p  denotes the pressure, I  the unit tensor, η  the viscosity which depends on 

the chosen model, D  the strain rate tensor, pN  a scalar parameter depending on 

both the fiber concentration and the fiber aspect ratio, “ : ” the tensorial product 

twice contracted (i.e. klijkl
ij

DaDa =


 : ) and a  the fourth order orientation tensor 

defined by  

ρρψρ⊗ρ⊗ρ⊗ρ= ∫ da  )(  [4] 

where ρ  is the unit vector aligned in the fiber axis direction, “⊗ ” denotes the 

tensorial product (i.e. ( ) jiij
ρρ=ρ⊗ρ ), and )(ρψ  is the orientation distribution 

function satisfying the normality condition  

1 )( =ρρψ∫ d  [5] 

If ( ) ( )ρ−ρδ=ρψ ˆ , with ) (δ  the Dirac’s distribution, all the orientation 

probability is concentrated in the direction defined by ρ̂ , and the corresponding 

orientation tensor results ρ⊗ρ⊗ρ⊗ρ= ˆˆˆˆâ .  

We can also define the second order orientation tensor as 

ρρψρ⊗ρ= ∫ da  )(  [6] 

It is easy to verify that if )ˆ()( ρ−ρδ=ρψ , the fourth order orientation tensor can 

be written as  

aaa ⊗=  [7] 
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whose components are defined by klijijkl aaa = . 

For general expressions of )(ρψ  the previous relation is not exact and 
Equation [7] becomes a closure approximation known as the quadratic closure 
relation. However, other closure relations are usually applied (Advani and Tucker, 
1990; Dupret et al., 1998). The main limitation in using the evolution equations 
governing the evolution of the different orientation tensors is due to the necessity of 
introducing a closure relation, whose incidence on the computed results may be 
significant. 

From a physical point of view, we can consider that the eigenvalues of the second 
order orientation tensor represent the probability of finding the fiber in the direction 
of the corresponding eigenvectors. 

If we consider spheroidal fibers immersed in a dilute suspension, we can describe 
the orientation evolution by means of the Jeffery Equation (Jeffery, 1922) 

( )( )( )     :   ρρ⊗ρ−ρ+ρΩ=
ρ

DDk
dt

d

 
[8] 

where Ω  is the vorticity tensor, k  is a constant that depends on the fiber aspect ratio 

r  (fiber length to fiber diameter ratio)  

( ) ( )11 22 +−= rrk  [9] 

On the other hand the evolution of the fiber orientation distribution ψ  is 
governed by the Fokker-Planck equation,  

0)(
)(

=






 ρ

ρψ
ρ∂
∂+

ρψ
dt

d

dt

d
 [10] 

where the material derivative is given by 

ψ+
∂
ψ∂=ψ

Gradv
tdt

d
  [11] 

Now, taking into account equations [6], [8] and [10], the equation that governs 
the evolution of the second order orientation tensor can be deduced  






 


−++Ω−Ω= DaDaaDkaa

dt

ad
:2     [12] 
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A similar equation can be derived for the evolution of the fourth order orientation 
tensor, which in this case involves the sixth-order orientation tensor.  

To take account of fiber interaction effects in semi-concentrated suspensions 
Folgar and Tucker (1984) proposed the introduction of a diffusion term in the 
Fokker-Planck equation, i.e.  













ρ∂
ρψ∂

ρ∂
∂=







 ρ

ρψ
ρ∂
∂+

ρψ )(
)(

)(
rD

dt

d

dt

d
 [13] 

Fiber interaction being taken into account, the equation governing the evolution 
of a then yields 






 −−


 


−++Ω−Ω=
N

I
aDDaDaaDkaa

dt

ad
r4:2     [14] 





=
D

D
N

3  in3

2  in2
 [15] 

3. The alpha-natural element method  

In the last decade considerable research efforts have been paid to the 
development of a series of novel numerical tools that have been referred as meshless 
or meshfree methods. These methods do not need explicit connectivity information, 
as required in standard FEM. The geometrical information is generated in a process 
transparent to the user, alleviating the pre-processing stage of the method. They also 
present outstanding advantages in modelling complex phenomena, such as large 
deformation problems, forming processes, fluid flow, etc, where traditional and more 
experienced techniques, like the FEM, fail due to the need of excessive remeshing.  

The Natural Element Method (NEM) is one of the latest meshless technique 
applied in the field of linear elastostatics. It has unique features among meshless 
Galerkin methods, such as interpolant character of shape functions and exact 
application of essential boundary conditions (see the review paper from Cueto et al., 
2003). In addition to its inherent meshless structure, these capabilities make the 
NEM an appealing choice also for application in the simulation of fluid flows. The 
NEM is based on the natural neighbour interpolation scheme, which in turn relies on 
the concepts of Voronoi diagrams and Delaunay triangulations (see figure 1a), to 
build Galerkin trial and test functions. These are defined as the natural neighbour 
coordinates (also known as Sibson’s coordinates) of the point under consideration, 
that is, with respect to figure 1b, the value at point x of the shape function associated 
with the node 1, is defined by: 
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)(

)(
)(1 abcdArea

abfeArea
x =φ  [16] 

These functions are used to build the discrete system of equations arising from 
the application of the Galerkin method in the usual way. It has been proved, that the 
angles of the Delaunay triangles are not influencing the quality of the results, in 
opposition to the FEM. In addition, the NEM has interesting properties such as 
linear consistency and smoothness of the shape functions (natural neighbour 
coordinates are C1 everywhere except at the nodes, where they are C0). But perhaps 
the most interesting property of the Natural Element Method is the Kronecker delta 
property, i.e. φi(xj)=δij. In opposition to the vast majority of meshless methods, the 
NEM shape functions are strictly interpolants. This property allows an exact 
reproduction of linear (even bilinear in some 3D cases) displacement fields on the 
boundary of convex domains, since the influence of interior points vanishes along 
convex boundaries. This is not true in non-convex ones, where some specific 
treatment is required. The alpha-shape concept allows circumventing this difficulty 
when it is used in the context of a natural neighbour interpolation (Cueto et al., 
2003). 

The application of the NEM for complex fluid flow simulations has been recently 
proposed in Martinez et al. (2003). The main advantage of using the NEM in the 
framework of an updated Lagrangian formulation for simulating free or moving 
surface flows is the fact that the nodal position can be updated from the flow 
kinematics, without remeshing requirements, allowing the accurate description of 
large transformations and the history effects. 

 
 

(a) 
 

(b) 

 
Figure 1. (a) Delaunay and Voronoi diagrams, (b) Natural neighbour interpolants 

4. Coupling the alpha-NEM with a particle approach of the Fokker-Planck 
equation 

The use of the natural element method allows an accurate and robust 
approximation of the fields involved in the weak form of the motion equations when 
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the anisotropic viscosity is assumed to be known (computed at the previous step 
when an explicit algorithm or a fixed point scheme in the implicit case is used). In 
order to approach to the verification of the LBB condition two possibilities exist: (i) 
the use of a natural neighbor interpolation for the velocity field and a discontinuous 
pressure approximation, that despite the fact that it does not verify the LBB 
condition, no locking problems have been noticed, or (ii) the use of mixed 
approximations verifying the LBB condition, that can be constructed for example in 
the framework of the partition of unity (Cueto et al., 2004). More details concerning 
this approach, when it is combined with the integration of the advection equation 
governing the evolution of the second order orientation tensor, can be found in 
(Martinez et al., 2003). 

In order to couple the alpha-NEM with a particle strategy for solving the Fokker-
Planck equation, we assume at each node at the initial time a set of N particles 
(virtual fibers) with the orientations (for the sake of simplicity only the 2D case is 
considered in this paper) defined by the angle θ  respect to the x-axis: 

,
2

N
ii

π×=θ  [ ]1,,0 −∈ Ni �  [17] 

Thus, the center of mass of each one of these N fibers is moving with the fluid, 
and at each time they are located on the considered “material” node. Of course, the 
orientation of these fibers evolves in time according to the Jeffery’s equation [8]. 

In the 2D case the unit vector describing the orientation of each particle can be 
expressed by  







θ
θ

=ρ
sin

cos
 [18] 

that introduced in the Jeffery’s equation results in 
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that pre-multiplying by ( )θθ− cossin  gives the expresion of the fiber rotation 

velocity 
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 [19] 

Thus, the dependence of the rotation velocity on: (i) the fiber orientation θ ; (ii) 
the gradient of velocities and (iii) the fiber aspect ratio, becomes explicit in 
Equation [24], and by simplicity we indicate these dependencies by 

( )θθ=θ
••

,, kvGrad  [20] 

The algoritm can be written in the form: 

• For each time step n 

� For each node k 

� Compute the gradient of velocity at that node from the 
velocity field computed at the previous step: 

1

1

−

−
n
kx

nvGrad  

� Update the particle position: tvxx n
k

n
k

n
k ∆+= −− 11  

� For each one of the N fibers associated with the node k: 

� Compute the rotation velocity:  
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�  Update its orientation:  

t
n
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n
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n

ki ∆θ+θ=θ
−•

−
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,
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,,  

� Compute the components of the fourth order orientation 

tensor at that node k: ρψρ⊗ρ⊗ρ⊗ρ= ∫ da n
k

n

k

  , 
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verifying the symmetry relations:  

2111121111211112 aaaa === ; 

212112122112221112211122 aaaaaa ===== ; ... 

� With the fourth-order orientation tensor just computed at each 
node, we can proceed to update the flow kinematics by solving the 
anisotropic Stokes problem in the framework of an alpha-NEM 
discretisation. The only new term related to the fiber presence in 
the flow kinematics variational formulation is: 
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resulting the extra-stress term: ( ) [ ]∫
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End for each node 
End for each time step 



914     REEF – 14/2005. Composites forming simulation 

� ����� ����� ����� ����� ���� ����� ����� ����� ����� ����

��

��

�

�

�

�

�

��

��

� ��
��

 

� ����� ����� ����� ����� ���� ����� ����� ����� ����� ����

��

��

�

�

�

�

�

��

��

� ��
��

 
 
Figure 2. Extrusion flow simulation: (a) velocity field and (b) fiber orientation  
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Figure 2 depicts at the 19th time step of a suspension flow simulation in an 
extrusion die ( 0.8k ,10 .,007.0 ===∆ pNst ): (a) the velocity field and (b) the fiber 

orientation, when an isotropic fiber orientation is assumed at the initial time. In this 
representation the ellipses axes represents the principal orientation directions, being 
their lengths proportional to the orientation intensity. These axes and their length 
have been obtained as the eigenvectors and eigenvalues related to the second order 
orientation tensor which is computed at each node using the following relations: 
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In a former paper (see Martinez et al., 2003), the coupling between the alpha-
NEM and an integration by characteristics of the equation governing the evolution of 
the second order orientation tensor was considered, in the context of a similar 
scheme, where the evolution equation was integrated along the nodal trajectories. 
When the diffusion effects are accounted, we can proceed in a stochastic manner, 
adding a random rotation term to the purely advective Jeffery rotation. However, in 
this case we need to increase the number of fibers involved in the computation. In 
fact, we have proved in (Chinesta et al., 2003) that at each angle we need to consider 
a lot of number of fibers, which makes inefficient this kind of simulation. The other 
possibility lies in the definition of an advective rotation velocity which takes into 
account the diffusion effects in the context of a smooth particle approximation, as 
described in (Ammar and Chinesta 2005). The main drawback of these kind of 
approximations is the large number of functions or particles involved in the 
computation, despite the fact that sometimes they are not relevant in the searched 
solution. The problem of the model reduction is then addressed. 

5. Reduced order modeling 

As just commented, some 2D or 3D problems remain today untreatable because 
the extremely large number of degrees of freedom –dof– involved. To alleviate this 
drawback, one possibility lies in the use of a model reduction (based on the 
Karhunen-Loève decomposition –KLD–, also known as proper orthogonal 
decomposition –POD–). Model reduction techniques have been successfully applied 
in the finite element framework for modelling dynamic models of distributed 
parameters (Park and Cho, 1996). However, in these applications several direct 
problems must be solved to extract empirical functions that represent the system 
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most efficiently. This set of empirical eigenfunctions is used as functional basis of 
the Galerkin procedure to lump the governing equation. Thus, for example, the 
resulting lumped parameter model can be used to obtain the solution when the 
boundary conditions are changing randomly. To avoid, these preliminary costly 
calculations, Ryckelynck proposed (Ryckelynck, 2004) to start the resolution 
process from any reduced basis, using the Krylov subspaces generated by the 
governing equation residual for enriching the approximation basis, at the same time 
that a proper orthogonal decomposition extracts relevant information in order to 
maintain the low order of the approximation basis. Moreover, he has proved that 
there is an appropriate choice of a reduced number of weighting functions able to 
solve the problem efficiently. He has called this technique “A priori model hyper-
reduction”, (Ryckelynck, 2004) but this approach in not concerned in the present 
work. 

5.1. The Karhunen-Loève decomposition 

We assume that the evolution of a certain field is known ( )txu , . In practical 

applications, this field is expressed in a discrete form, that is, it is known at the 

nodes of a spatial mesh and for some times ( ) p
i

p
i utxu ≡, . We can also write 

introducing a spatial interpolation ( ) ( ) [ ]Pptptxuxu p ,,1 ; , �∈∀∆=≡ . The main 

idea of the Karhunen-Loève (KL) decomposition is how to obtain the most typical or 

characteristic structure ( )xφ  among these ( ) pxu p ∀ , . This is equivalent to obtain a 

function ( )xφ  maximizingα  defined by 
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The maximisation leads to: 

( ) ( ) ( ) ( ) ( ) ( ) φ∀φφα=
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which can be rewritten in the form  

( ) ( ) ( ) ( ) ( ) ( ) φ∀φφα=
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Defining the vectors a  such that its i-component is ( )ixa , Equation [24] takes 

the following matrix form 

φα=φ⇒φ∀φφα=φφ         
~

   ;  
~
  

~
kk

TT
 [25] 

where the two points correlation matrix is given by 

( ) ( ) ( )∑∑
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Tpp
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j
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i
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ij uu
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1
  

1
 [26] 

which is symmetric and positive definite. If we define the matrix Q  containing the 

discrete field history: 
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 [27] 

is easy to verify that the matrix k  in Equation [26] results 

TQQk  =  [28] 

Thus, the functions defining the most characteristic structure of ( )xu p  are the 

eigenfunctions ( )
kk x φ≡φ  associated with the highest eigenvalues.  

5.2 “A posteriori” reduced modeling 

If some direct simulations are carried out, we can determine 

( ) [ ] [ ]PpNiutxu p
i

p
i ,,1 , ,,1 ,, �� ∈∀∈∀≡ , and from these the n eigenvectors 

related to the n-highest eigenvalues ( ) [ ] [ ]nkNixikk
,,1 , ,,1 , �� ∈∀∈∀φ=φ . Now, 

we can try to use these n eigenfunctions for approximating the solution of a problem 

slightly different to the one that has served to define ( ) p
i

p
i utxu ≡, . For this purpose 

we need to define the matrix B   
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( ) ( ) ( )
( ) ( ) ( )
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 [29] 

Now, if we consider the system of equations resulting from the discretization in the 
form  

FUA =  [30] 

then, assuming that the unknown vector contains the nodal degrees of freedom, it can 
be expressed as 

∑
=

=

ζ=φζ=
ni

i
ii BU

1

  [31] 

it results 

FBAFUA =ζ⇒=     [32] 

and multiplying both terms by TB  it results 

FBBAB TT =ζ   [33] 

which proves that the final system of equations is of low order, i.e. the dimensions of 

BABT   are nn × , with Nn << , and the dimensions of both ζ  and FBT  are 

1×n . 

5.3. Reduced model adaptativity: an “a priori” model reduction approach 

In order to compute reduced model solutions without an “a priori” knowledge, 
we propose to start with a low order approximation basis, using some simple 
functions or using the eigenvectors of a “similar” problem. Now, we compute S 
iterations of the evolution problem using the reduced model [33] without changing 
the approximation basis. After each S iterations the complete discrete system [30] is 
constructed, and the residual R  evaluated: 

FUAR −=   [34] 
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If the norm of the residual is small enough, we can continue for other S iterations 
using the same approximation basis. On the contrary, if the residual norm is too 
large, we need to enrich the approximation basis. This enrichment is built using 

some Krylov’s subspaces { }� , ,  , 2 RARAR , which are added to the most 

representative information extracted from the previous solutions { }121 ,, , −ζζζ S
�  as 

well as from the solutions of “a similar” problem, up to the current step 

{ }�1

sim
 , +ζζ SS

sim
. The resulting most significant eigenvectors define the matrix ζ . Then 

the evolution process is restarted using the enriched basis defined by: 

{ }RARARB 2 ,  ,, ζ . After each reduced basis modification, both the previous 

solutions and the ones associated to a “similar problem”, are projected into the new 
basis.  

5.4. Numerical example 

We consider the Fokker-Planck equation [10] governing the 2D evolution of the 

fiber orientation in a simple shear flow ( )0,( yvT = ) involving a suspension of short 

fibers with k=0.2. When an isotropic initial fiber distribution is considered, i.e. 
π==ψ 21)0(t , it evolves in time as depicted in figure 3a, where we can notice that 

fibers align in the flow direction. This solution has been obtained with a finite 
difference technique using 360 degrees of freedom and an appropriate upwind 
stabilization of the advection term.  

From this evolution we can extract the most relevant information using the KL 

decomposition, which results in the four eigenvectors )(2.0 ϕψ =k
n  related to the 

eigenvalues in the interval ],10[ maxmax
8 λλ− . These eigenfunctions are depicted in 

figure 3b. 
 

 
 
  
 
 
 
 
 
 
 
 (a)  (b) 

Figure 3. (a) Evolution of the fiber orientation distribution in a simple shear flow 
and eigenfunctions related to this evolution (b) 

( )ϕψ

it
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Now, we consider the same flow, but for a suspension involving fibers with 
k=0.8, and we compute the fiber orientation evolution using the eigenfunctions 
previously obtained (for the other fibers aspect ratio). Thus, we write 

∑
=

=

== ϕψβ=ϕψ
4

1

2.08.0, )()(),(
i

i

k
ii

kred tt  [35] 

that introduced in the 2D Fokker-Planck equation  

0)( =






 ϕϕψ

ϕ∂
∂+ψ •

dt

d
 [36] 

leads to a linear system of ODE that are integrated using an appropriate finite 
difference technique, allowing the computation of coefficients )(tiβ . 

The reduced order solution obtained for two different times is compared in 
figure 4 with the reference ones, from which we can notice that a significant 
deviation appears up to a certain time. Associated with this deviation we can expect 
a residual, that as previously described, could be used to define the different 
Krylov’s subspaces. To illustrate this enrichment procedure we assume that at a 
certain time step tc we control the residual, which is assumed large enough to assure 
the necessity of a basis enrichment. The beta coefficients at that time are )( ci tβ  

from which we can compute the solution ),(8.0,
c

kred tϕψ =  using Equation [35]. As the 

previous reduced order solution is also known )( 1−β ci t , whose associated orientation 

distribution results ),( 1
8.0,

−
= ϕψ c

kred t , we can compute the time derivative in 

Equation [36]: 

t

tt

dt

d c
kred

c
kred

∆
ϕψ−ϕψ

=ψ −
== ),(),( 1

8.0,8.0,

 [37] 

The second term in Equation [36] is evaluated using stabilized finite differences 
at time ct with respect to the angular coordinate. In this way the residual is perfectly 

defined, and taking into account the angular discretization, it can be written in a 
vector form )( ctR . Now, in order to define the other Krylov’s subspaces, we need to 

define the matrix related to the Fokker-Planck evolution problem. From Equations 
[35] and [36] we can write 

0  =β+β
•

DA  [38] 

where the columns of the matrix A  contain the eigenfunctions )(2.0 ϕψ =k
i , assuming 

a discretization in the angular coordinate. Thus, the ij-component of A  contains the 
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i-component of the j-eigenvector, i.e. )(2.0
i

k
j ϕψ = . The matrix D  results from the 

stabilized discretization of the advection operator in Equation [36]. As both matrixes 

are not square, we proceed to multiply both terms in Equation [38] by TA  

0   =β+β
•

DAAA TT  [39] 

that using an implicit temporal discretization, results  

)()(  C 1−β=β cc tt  [40] 

which leads to the definition of the n-Krylov’s subspace 

RCKS n
n =  [41] 

 
  
 
 
 
 
 
 
 
 
 
Figure 4. Fiber orientation distribution for a suspension of fibers with k=0.8: 
reduced order solutions versus the reference ones 

Figure 5. Three first Krylov’s subspaces related to the low order solution at time t4. 
(left) and low-order solution (with –red curve– and without –blue curve– basis 
enrichment) versus the reference solution (continuous blue curve) at time t4 (right) 

( )ϕψ = 2tt
( )ϕψ = 3tt
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Now, we consider the approximation basis enrichment using the first three 
Krylov’s subspaces shown in figure 5 (left), that have been computed at the time 
related to the solution depicted in figure 4 (right). 

When the evolution of the fiber orientation distribution is computed again using 
the basis obtained by adding to the previous one the three Krylov’s subspaces shown 
in figure 5 (left), we obtain at the last time step (t4) the solution shown in figure 5 
(right). In this case the enriched low-order solution (curve in red) fits much more 
better the reference solution than the one obtained by using the low-order basis 
before the enrichment (doted blue curve). 

6. Conclusion 

The use in tandem of a NEM for solving the macroscopic flow kinematics and a 
more specific technique for solving the kinetic theory problem related to the 
microstructure evolution seems to be a powerful tool for simulating complex flows. 
The extension of this strategy for simulating general complex flows involving 
viscoelastic fluids using a kinetic theory description is a work in progress. In the 
same way, the strategy just described opens new perspectives for treating the multi-
bead-springs, whose treatment using other kind of techniques (finite elements or 
stochastic techniques) is still today untreatable due to the multidimensional character 
of the problem. 
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