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ABSTRACT. In this paper a finite element solution of the modified Reynolds equation using
isoparametric, bilinear quadrilateral elements with an adaptive meshing strategy is
presented. The modified hydrodynamic stiffness method (Smith, 1995) was used to obtain a
coupled solution of the air bearing equation with the slider equilibrium equations. The vertex
label based adaptive meshing algorithm of Cheng et al. (1999) was also implemented. The
problem is initially solved with a regular quadrilateral FE mesh. The mesh adaptation (h-
refinement) is based on the relative pressure gradients in the initial solution, and on the
geometry of the slider. The refinement is implemented on an existing element, if preset
criteria on the pressure gradient and/or slider geometry are exceeded. The method is
described in detail. Examples are presented. Two types of sliders have been used, namely the
50% taper flat slider, and the negative air bearing slider.

RÉSUMÉ. Cet article présente une solution de l’équation modifiée de Reynolds utilisant une
stratégie adaptative de maillage basée sur des éléments finis qui sont quadrilatéraux,
isoparamétriques et bilinéaires. La méthode hydrodynamique modifiée de rigidité (Smith,
1995) a été employée pour obtenir une solution commune entre l’équation d’écoulement
fluide compressible et les équations d’équilibre d’un patin articulé. L’algorithme adaptatif
de maillage de Cheng et co-auteurs (1999) a été utilisé. Au début, le problème est résolu en
utilisant des éléments finis quadrilatéraux conventionels. L’adaptation de maillage (stratégie
de raffinement h) est basée sur les gradients relatifs de pression de la solution initiale et sur
la géométrie du patin. Le raffinement est implémenté sur un élément existant, si des limites
présélectionnées sur le gradient de pression et/ou la géométrie du patin sont dépassées. La
méthode est décrite en détail et des exemples sont présentés.
KEYWORDS: air lubrication, finite elements, adaptive mesh, head-disk interface.
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1. Introduction

Today, magnetic hard disk drives (HDD’s) constitute a large portion of digital
data storage capacity. The overall performance of hard disk drives may appear to
depend on simple components; however their design and manufacture require
leading-edge capabilities in device modeling, materials science, photolithography,
vacuum deposition processes, ion beam etching, reliability testing, mechanical
design, machining, air bearing design, tribology, and head/disk interface (Mee et al.,
1996, Bhushan, 1996).

Magnetic recording requires relative motion between the magnetic media and a
read-write head (Mee et al., 1996). In a computer HDD a shaped slider, attached to a
flexible suspension-arm, glides over a rigid cylindrical disk, which rotates at
rotational rates reaching 10 000 rpm or more. The trailing edge of the slider contains
a built-in magnetic read-write head (Figure 1). Different tracks over the magnetic
disk are addressed by moving the suspension-arm in the radial direction. A small gap
(hmin) on the order of 5 – 20 nm is maintained between the disk and the slider. The
size of the gap is dictated by the signal-to-noise ratio of the magnetic recording,
which deteriorates exponentially with increasing separation between the magnetic
medium and the read-write head (Mee et al.¸ 1996). Air lubrication between the
rotating disk and the slider is critical to maintain this gap; a delicate balance is
established between the suspension preload, air bearing pressure and restoring forces
due to small perturbations from the equilibrium flying height.
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Figure 1. Schematic description of the pivoted slider bearing at equilibrium

The numerical modeling of the pivoted slider bearing provides a means to
evaluate different configurations without actually having to build them. This
involves the simultaneous solution of the two dimensional (2D) compressible
Reynolds Equation (RE) with slip flow correction for the air bearing and the force
and moment equilibrium equations for the slider. The 2D compressible RE is a non-
linear partial differential equation. Since the analytical solution of the Reynolds
equation is not possible for a generic slider, a numerical solution is used.
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Different spatial discretization methods have been used for solving the non-
linear, compressible RE for the head-disk interface (HDI) problem. These include
finite difference (FD) (White et al., 1980; Castelli et al., 1968), finite volume (FV)
(Wu et al., 2000; Wu et al., 1999) and finite element (FE) methods (Smith et al.,
1995; Wahl, 1994; Garcia-Suarez, 1984; Hendricks, 1988; Kubo et al., 1988; Peng
et al., 1995). The slider equilibrium position is coupled to the air pressure, also in a
non-linear manner. The coupling between the two sets of equations can be handled
by considering the dynamical effects of the system. In that case the squeeze film
effect for the RE and the translational and rotational inertia effects for the slider need
to be considered (Tang, 1972; Ono, 1972; White et al., 1980; Miu et al.). The steady
state flying height can be found by the transient solution approach by running the
code until steady state conditions are found. Alternatively, the coupled solution can
be obtained by formulating the problem entirely for steady state (Yamaura et al.,
1990; Choi et al., 1994; Smith et al., 1995; Wahl, 1994).

One of the challenging problems with numerical methods is the need to represent
a continuous domain with a spatially discretized mesh. The FD method typically
requires a structured mesh and is limited in the choice of mesh refinement that it
offers. Wu and Bogy presented a FV method with unstructured triangular meshing to
solve the modified RE. They implemented a three level adaptive meshing strategy
based on Delaunay triangulation (Wu et al., 1999; Wu et al., 2000). In general, use
of a structured mesh is not required in the FE method. This trait is very suitable for
local adaptive refinement in regions where the solution displays large gradients of
the solution parameter or the slider geometry changes abruptly. In this paper a finite
element solution of the modified RE using isoparametric, bilinear quadrilateral
elements with an adaptive meshing strategy is presented.

In this paper the modified hydrodynamic stiffness method (Smith et al., 1995;
Wahl, 1994) was used to obtain a coupled solution of the air bearing equation with
the slider equilibrium equations. The adaptive meshing algorithm given by Cheng et
al., was also implemented (Cheng et al., 1989). A computationally efficient storage
for the global stiffness matrix and solution methods for the solution involving large
number of degrees of freedom were investigated and used (Holani, 2002).

Here, the problem is initially solved with a regular quadrilateral FE mesh. The
mesh adaptation (h-refinement) is based on a) the relative pressure gradients in the
initial solution, and b) the geometry of the slider. The refinement is implemented on
an existing element, if preset criteria on the pressure gradient and/or slider geometry
are exceeded. Such an element is simply divided into smaller ones keeping the
original element boundaries intact. This approach could result in dangling nodes,
where an element with mid-side nodes is joined to a linear element with no such
nodes. In this work, the admissible function algorithm, of (Cheng et al., 1989), is
implemented to prevent such dangling nodes. This algorithm describes a way to
subdivide a few adjacent elements apart from the master element, which causes the
dangling nodes. A bandwidth reduction algorithm has been applied in order to keep
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the bandwidth of the system as small as possible for efficient memory management
and minimizing computational time (Collins, 1973).

2. Governing equations and boundary conditions

2.1. Reynolds equation

The airflow in the head-disk interface (HDI) of a HDD is modeled by using the
modified Reynolds equation. As the spacing in the HDI is smaller than the molecular
mean free path (λ) of air, the continuum theory does not apply, and rarefaction
effects must be considered. To this end the first order slip-flow correction was
introduced by Burgdorfer (Burgdofer, 1959), and the second order slip flow
correction by Hsia and Domoto (Hsia et al., 1983). Fukui and Kaneko rederived the
Reynolds equation based on the Boltzman equation (Fukui et al., 1988). In standard
vector notation, the general form of the two dimensional compressible Reynolds
equation with slip flow corrections is given as follows:

{ } ( )3. 6 . ( ) 12 ( ),rph Q p V ph ph
t

µ µ ∂∇ ∇ = ∇ +
∂

�

[1]

where∇  is the gradient operator, p is the air pressure, h is the head-to-disk

interfacial clearance, ˆ ˆ
x yV V i V j= +

�

 is the disk velocity with the components Vx and

Vy in the x- and y-directions, respectively, µ is the dynamic viscosity of air, t is time,
and Qr is the flow rate correction coefficient due to slip-flow. This coefficient
depends on the Knudsen number Kn = λ/h, and, for different slip-flow models it is
defined as follows:

Qr = 1, classical compressible RE,

Qr = 1 + 6Kn, for 1st order slip-flow correction,

Qr = 1 + 6Kn + 6 Kn2, for 2nd order slip-flow correction,

Qr = f(Kn), for Boltzman Reynolds equation.

The functional dependence of the flow correction for the Boltzman RE is derived
by Fukui and Kaneko (Fukui et al., 1988, 1990) and also presented by (Crone et al.,
1992). In this work the second order slip flow correction is considered, however the
method developed is valid for all of the cases. Using the relation pλ = paλa for
constant temperature (Burgdofer, 1959) the steady state form of the second-order
modified, compressible RE becomes:
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where λa is the molecular mean free path, and pa is the pressure of air at standard
ambient conditions. The air pressure is assumed to be ambient p = pa on the outside
periphery of the slider.

2.2. Slider equilibrium equations

The HDD slider is attached to a suspension arm which provides three degrees of
freedom (dof) as shown in Figure 1; hp is the translational degree of freedom (dof),
in the direction perpendicular to the disk surface; and α and β are the pitch and the
roll degrees of rotational freedom, about the y- and x-axes, respectively. The
translation in the vertical direction is associated with the vertical stiffness kz of the
suspension, whereas the pitch angle and the roll angles are related to the rotational
stiffnesses, kα and kβ, respectively. The steady state force and moment balance about
the “equilibrium” state of the slider yields:
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[3]

where ���� �α and �β are the small perturbations in the translational and rotational
degrees of freedom of the slider about the equilibrium state, a is the area of the foot-
print of the slider, ���� is the external normal load including the preload in the slider
spring and extMα and extM β are the external moments acting on the system. for

notational simplicity equation [3] is expressed by using the following matrix
notation:

Ks du = f(p) - fext [4]

where the slider dof vector is u = {hp α β}T and the slider stiffness matrix is Ks

external force vector is fext and the air bearing load vector is f. Note that the f vector
is a function of air pressure p which in turn is a function of slider position u. Thus,
Equation [4] is a non-linear equation. The geometric shape of the slider is given as:

( ) ( ) ( ) ( )0, ,p p ph x y h x x y y h x yα β= + − + − + [5]

where h0(x,y) is the slider contour with respect to the reference surface, as shown in
Figure1.
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2.3. Simultaneous solution of slider and reynolds equations

The Reynolds equation and the slider equilibrium equations are coupled. In this
work the slider equilibrium is obtained by using the modified hydrodynamic stiffness
method (Wahl, 1994) described in Section 2.3.1. The air pressure is obtained by
solving non-linear RE numerically as described in Section 2.3.2. The slider
equilibrium and the air pressure are solved iteratively as described in Section 3.6.

2.3.1. Solution of the slider equilibrium equations

In the modified hydrodynamic stiffness method (Wahl, 1994), Equations [2] and
[4] are solved in an iterative manner. First, Equation [4] is linearized by using
multivariable Taylor series expansion on the air bearing load f(p(u)), which yields
(Holani, 2002):

(Ks - Kt
(n))du = f(p)(n) - fext [6]

where Kt
(n) is the tangent (air-bearing) stiffness matrix and f(p)(n) is the external load

vector at iteration level n. In general, the tangent stiffness matrix is defined as
( ) ( )=n n∂ ∂tK f u . In the modified hydrodynamic stiffness approach, however, the

tangent stiffness matrix is obtained by considering the geometric relation for the
slider shape given by Equation [5] and by using the chain rule of differentiation
(Wahl, 1994). Then the tangent stiffness matrix becomes:
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Note that all terms of ( )n
tK depend on the pressure gradient ( )( )n

p h∂ ∂ . An

expression for this variable is obtained by considering a linear perturbation of the
modified RE by:

( )nh h ε= −  and ( )np p εψ= + [8]

where 
( )np

h
ψ ∂=

∂
 and � is a small perturbation parameter. Neglecting the higher

order terms ofε , while combining Equations [2] and [8] yields:
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with the boundary condition ψ  = 0 on the boundary. A finite element formulation of

Equation [9] is obtained by using the Galerkin finite element method (Zienkiewicz et
al., 2000). In this work quadratic elements with bilinear shape functions are used in
an isoparametric formulation. The finite element form of Equation [9] is expressed in
matrix notation as follows:

( ) ( ) (e)
�

 e e
ψ =k rψ [11]

where 
4 4

( )e
ψ ×

k  is the element stiffness matrix for pressure gradient calculations,

{ }( )
1 2 3 4

Te ψ ψ ψ ψ=ψ  is the vector for pressure gradients at element nodes and

4×1

e)
p
(r  is the right hand side vector. The details of the element stiffness matrix and the

right hand side vector are given in Appendix 1. Note that the superscript indicating
the iteration level (n) is omitted from Equation [11] for notational simplicity. The
element stiffness matrix and the right hand side vector of each element are assembled
into a global system of equations. This yields the following matrix equation:

) ( ) ( ) n n n
ψ ψ=(K RΨ [12]

where ( )

n nd d

n
ψ ×

K  is the global stiffness matrix for pressure gradient calculations, 1dn ×Ψ

is the global degrees of freedom for pressure gradients, 
1

( )

nd

n
ψ ×

R  is the global right

hand side vector and nd is the total number of dofs. Solving Equation [12] yields the
pressure gradient ψ (n) = (∂p/∂h)(n) at each node. Substituting Ψ(n) into Equation [6]
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yields the simplified air-bearing coupling matrix. The solution algorithm is described
in Section 3.6.

2.3.2. Solution the modified reynolds equation

In addition to finding the pressure gradients, the coupling algorithm also requires
calculation of the pressure value p at each node. As the modified RE (2) is non-
linear, the solution is obtained iteratively:

( 1) ( ) ( )m m m
i i ip p dp+ = +  for i = 1,…, nd [13]

where m is the iteration level for the pressure calculations. The pressure correction

vector for the entire solution domain { }( ) ( ) ( )
1 1 2 ...

d d

T
(m) m m m
n ndp dp dp× =dP  is

obtained by finite element method. Equation [2] is linearized by substituting [13]

into [2] and neglecting terms that are non-linear in ( )m

i
dp . The Galerkin method is

used to obtain the weak form of the linearized equation. The finite element method is
implemented by using isoparametric, bilinear quadrilateral elements. The element
stiffness equations are symbolically represented as follows:

( ) ( ) ( ) e e e
p p=k dp r [14]

where 
4 4

( )e
p ×

k  is the element stiffness matrix for pressure calculations,

{ }( )
1 2 3 4

Te dp dp dp dp=dp  is the nodal degree of freedom vector for

incremental change in pressure and 
4×1

e)
p
(r  is the right hand side vector. The details of

( )e
pk  and e)

p
(r  are given in Appendix 2. Assembly of the element stiffness matrices

and application of ambient pressure boundary conditions around the outer periphery
of the slider results in the global stiffness equations:

) ( ) ( )m m m
p p=(K  dP R [15]

where ( )

n nd d

m
p ×

K  is the global tangent stiffness matrix for air pressure and 
1

( )

nd

m
p ×

R  is the

global right hand side vector. Solving Equation [15] yields the change in pressure dp
at each node. The pressure for each node is obtained iteratively as described in
Section 3.6.

3. Adaptive subdivision of the finite element mesh

The accuracy of the finite element solution depends on the mesh density. In
particular, for the solution of the Reynolds equation, a high mesh density is required
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in regions of large pressure gradients. The cost of analysis becomes prohibitively
expensive if the number of elements in the mesh is too large. In general, it may not
be possible to know the exact locations and/or levels of the pressure gradients except
for regions of large height discontinuity on the slider surface (Wu et al., 1999, Wu et
al., 2000). In order to bring some flexibility to creating the finite element mesh the
vertex label based adaptive meshing strategy for quadrilateral elements introduced
by (Cheng et al., 1989) is adopted in this work.

The adaptive meshing algorithm, described next, uses the pressure gradient as the
metric for making subdivision decisions. A pressure gradient metric is calculated for
each element and then distributed to the each node (called vertex hereafter) of the
element. In the vertex label assignment scheme of (Cheng et al., 1989), subdivision
decisions are based on the labels assigned on the vertices of the mesh rather than the
subdivision levels assigned to elements. This method ensures conformity of the
subdivided mesh, where a conforming mesh is defined as a mesh where any two
elements either share two pints and one edge, or share one point, or have no edges or
points in common. This method prevents creation of dangling nodes that are not
attached to another node, and ensures creation of reasonably shaped elements.

3.1. Element level subdivision label assignment

Two factors are considered in making a decision about the subdivision level of a
given element. The first is the pressure gradient of the element, and the second is
whether the element is located over a step of the slider (Holani, 2002).

Let P be the regular quadrilateral mesh, and V and F be the sets of vertices and
elements of P, respectively. Consider an element f ∈ F: the element level subdivision
label assignment, S is indicated by S(f). The function S can be zero or any integer

number, (i.e., S: F →  { }0N ∪  where N is the set of all positive integers.)

3.1.1. Pressure gradient based subdivision level, S1(f)

The element subdivision assignment S1 is an integer value based on the pressure
gradient of a given element and the maximum value among all the elements. For
each element, f, two element subdivision levels indicated by S1x and S1y are
calculated in the x- and y-directions as follows:

( )
elem mesh

1
max max

if   then  = low high x

dp dp
R R S f I

dx dx
   ≤ ≤   
   

( )
elem mesh

1

max max

if   then  = low high y

dp dp
R R S f

dy dy
I

   ≤ ≤   
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where Rlow and Rhigh are the lower and upper limits of the pressures gradient ratios

and I { }( )0N∈ ∪  is an integer value indicating the level of subdivisions. As the

pressure gradient ratio approaches 1 the value of I should be increased to ensure
finer refinement. In the implementation, the pressure gradient of each element is
checked and an approporiate class number Ci is assigned for each element. The
refinement classes Ci used in this work are given in Table 1. The refinement level
assignments are typically higher for higher classes. For example, a choice could be
C1 = C2 = C3 = 0, C4 = 1 and C5 = 2. For a given element the maximum of the two
refinement levels is used:

Table 1. Limits of the element level, pressure gradient based, adaptation criterion
used in Section 3.1.1

lowR highR
Refinement

Class,
Ci

1×10-4 5×10-4 1

5×10-4 5×10-3 2

5×10-3 2.5×10-1 3

2.5×10-1 8.5×10-1 4

8.5×10-1 1 5

S1(f) = max (S1x, S1y) [16]

3.1.2. Step height based subdivision level, S2(f)

It is extremely important to refine the mesh locally along all of the edges where
there is an abrupt change in the height, as this condition causes very large changes in
pressure in the vicinity of such edges. It is also important that these refinements be
made at the maximum level among the ones mentioned in Section 3.1.1, so that they
do not cause any convergence problems. Then the step height based subdivision
assignment around the outer periphery of a geometric step is carried out by using the
S2 function:

S2(f) = max (S1(f)) [17]

3.1.3. Effective adaptation criterion, S(f)

The effective adaptation criterion is defined as follows:

S(f) = max (S1(f), S2(f)). [18]

It may look odd for a moment, to take the maximum among the two again, where
S2 is already the maximum of the two. However, note that this criterion is only used
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for the elements associated with edges of the geometry. For all other elements the
S2(f) = 0 (Holani, 2002).

3.2. Vertex label assignment

Once the element label assignment is made for all elements, the vertex label
assignment can be made for all vertices v (v ∈ V) of the mesh. The vertex label
assignment is indicated by the function L(v). The vertex label assignment is done in
such a way that for each vertex v, the vertex label L(v), is the maximum of the
element labels surrounding that vertex (Cheng et al., 1989). Thus each vertex is

assigned either a zero or a positive integer label, (i.e. L: V →  { }0N ∪ .) A vertex

label assignment, L, of P with respect to S is a function defined as:

L(v) = max(S(f) | f ∈ F and v is the vertex of f).

In addition to this, to ensure conformity requirements of the mesh an admissible
label assignment G(v) is defined (Cheng et al., 1989). This assignment, described in
Section 3.4, prevents creation of dangling nodes and ensures geometrically well
shaped elements.

Figure 2. a) Balanced and b) unbalanced subdivision of an element
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3.3. Element subdivision

After each vertex is assigned a label the mesh subdivision takes place based on
two subdivisions procedures: the balanced subdivision and the unbalanced
subdivision (Cheng et al., 1989).

3.3.1. Balanced subdivision

Consider a four-noded quadrilateral element f, with vertices v1, v2, v3 and v4,
indicated by f = v1 v2 v3 v4. The balanced subdivision is performed on a four-noded
quadrilateral, f = v1 v2 v3 v4, having at least two non-zero labels assigned to its
vertices. (Exceptions to this are discussed in Section 3.4). At first this procedure
generates four sub-quadrilateral elements f1 = q1 q2 q3 q4, f2 = r1 r2 r3 r4, f3 = s1 s2 s3

s4, f4 = t1 t2 t3 t4 and assigns a label to each of its vertices as shown in Figure 2a. The
new vertex assignments are defined as follows (Cheng et al., 1989):

q1 = v1, r2 = v2, s3 = v3, t4 = v4

q2 = r1 = (v1 + v2)/2, s2 = r3 = (v2 + v3)/2

t3 = s4 = (v3 + v4)/2, t1 = q4 = (v1 + v4)/2

q3 = r4 = s1 = t2 = (v1 + v2 + v3 + v4)/4

The label assignments for the new vertices are as follows:

L(q1) = max (0, L(v1) – 1); L(r2) = max (0, L(v2) – 1)

L(s3) = max (0, L(v3) – 1); L(t4) = max (0, L(v4) – 1)

L(q2) = L(r1) = min (L(q1), L(r2)); L(r3) = L(s2) = min (L(r2), L(s3))

L(s4) = L(t3) = min (L(s3), L(t4)); L(t1) = L(q4) = min (L(t4), L(q1))

if ( L(q2) = L(r3) = L(s4) = L(t1) = 0 )

L(q3) = L (r4) = L(s1) = L(t2) = 0

else

L(q3) = L(r4) = L(s1) = L(t2) = max (L(v)|v ∈{q2, r3, s4, t1}, L(v) > 0 ).

3.3.2. Unbalanced subdivision

The unbalanced subdivision is performed on a four-noded quadrilateral, f = v1 v2

v3 v4, having exactly one non-zero label assigned to any one of its vertices (Cheng et
al., 1989). This procedure generates three sub quadrilaterals f1 = q1 q2 q3 q4, f2 = r1 r2

r3 r4, f3 = s1 s2 s3 s4, and assigns a label to each of its vertices. For instance if v1 is the
vertex with the non-zero label then the vertices and the labels are defined as shown
in Figure 2b. The new vertices are defined as follows (Cheng et al., 1989):

q1 = v1, r2 = v2, r3 = s3 = v3, s4 = v4

q2 = r1 = (v1 + v2)/2, s1 = q4 = (v1 + v4)/2

s2 = q3 = r4 = (v1 + v2 + v3 + v4)/4
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The label assignments for the new vertices are as follows (Cheng et al., 1989):

L(q1) = L(v1) – 1

L(qi) = L(ri) = L(si) = 0, for i = 2, 3, 4

Refining of elements requires a conforming refinement of the neighboring
elements if the subdivision levels are not equal. This is done by creating appropriate
transition elements. The choice of these transition elements could yield bad results, if
elements with very acute angles are constructed. The reason for this is that in the
second refinement step elements with sharp angles are spilt up which leads to the
creation of elements with even more acute angles. Cheng et al. showed a way to
overcome this difficulty for structured meshes (Cheng et al., 1989), discussed next.

Figure 3. Inadmissible vertex label assignments

3.4. Admissible label function

A label assignment is non-admissible if it contains one of the four cases shown in
Figure 3 (Cheng et al., 1989). It can easily be shown that such an assignment in a
mesh leads to non-conforming elements, which manifest themselves most commonly
with dangling nodes, i.e. nodes that do not belong to the vertex set of some of the
adjacent elements. Cheng et al., have devised an admissible function construction,
which removes such cases without violating the conformity requirement (Cheng et
al., 1989). Their algorithm is based on a regular quadrilateral network whose
vertices form an m × n rectangular grid, V = {vi,j| 1 ≤ i ≤ m, 1 ≤ j ≤ n}. In case the
mesh is not a regular quadrilateral mesh, they suggest using fictitious nodes to render
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it quadrilateral, and to remove the fictitious nodes once the algorithm is complete.
An element fi,j is defined by four vertices vi ,j v i+1, j v i, j+1 v i+1, j+1.

The label assignment L on V can be rendered an admissible label assignment G
by applying the algorithm specified by (Cheng et al., 1989). First, two special
functions Lo and Le are defined for use in the algorithm as follows (Cheng et al.,
1989):

( ),

1
 if  is odd

2
0 if  is even

o i j

i j
L v

i j
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 +
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Figure 4. Admissible label assignment
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The algorithm to construct the admissible label assignment function G is as
follows (Cheng et al., 1989):

1) Construct Ge

for each vi, j
Ge(vi, j) = max (L, Le(vi, j) )

for each vi, j such that Ge(vi, j) = 
1

2

if Ge(vi, j) > 
1

2
 for at least one adjacent vertex of vi, j

then Ge(vi, j) = 1
else Ge(vi, j) = 0.

2) Construct Go

for each vi, j Go(vi, j) = max (L, Lo(vi, j) )

for each vi, j such that Ge(vi, j) = 
1

2

if Go(vi, j) > 
1

2
 for at least one adjacent vertex of vi, j

then Go(vi, j) = 1
else Go(vi, j) = 0.

3) Construct G

             if | 0
oGV  | > | 0

eGV  |

       then return G = Ge

       else return G = Go,

where ,

0
e oGV  is the set of vertices vi,j such that Ge,o(vi,j) = 0. Looking at the example,

shown in Figure 4, after the vertex label assignment is done, the algorithm assigns
labels to all the four nodes of only that element. If admissible label assignment is
performed on this set of labels, it yields another set of labels with more positive
labels, as shown in the Figure 4, which on subdivision prevents the creation of the
dangling nodes.

3.5. Mesh clean up and bandwidth reduction

Once the subdivision on the mesh is performed with the admissible label
assignment, the problem of the dangling nodes is taken care of. However, clean up is
still required on the resultant mesh to maintain the conformity requirement. The
nodes with more than one node number assignment, as a result of subdivision, need
to be handled. In this work, when such a node is encountered the program removes
the higher of the node numbers, decreases the node numbers correspondingly, and
finally, adjusts the element connectivity matrix.
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The addition of new nodes changes the node numbering scheme and
consequently the bandwidth of the global stiffness matrix. Bandwidth reduction is an
important issue as Equations [12] and [15] are solved by a direct solver. In this
work, the algorithm proposed by (Collins, 1973) for the bandwidth reduction is
implemented.

                                 

Figure 5. Flowchart for the entire code developed during the course of this work

3.6. Adaptive meshing strategy

In this work the mesh subdivision is performed in two steps (Holani, 2002). First
the domain is discretized into a regular rectangular mesh and the coupled solution of
Equations [2] and [3] is found. Second, the mesh subdivision assignments, as
described in Sections 3.1 - 3.4 are performed, and the coupled solution of Equations
[2] and [3] is found for the second time. The algorithm of the method is presented in
Figure 5.

In either one of the solutions the steady state position for a slider is obtained by
solving Equations [4] and [13] iteratively. After choosing an initial solution, the
solution is repeated in an iterative manner until convergence is achieved. The

do k = 1, 2

     if k = 1 set uniform mesh

     if k = 2 then
        calculate mesh adaptation criteria
        perform mesh adaptation
        minimize bandwidth
        use p and Ψ from k = 1 as initial guess
     endif

     repeat until  εs < 10-2

         repeat until εp < 10-2

            Solve 
) ( ) ( )m m m

p p=(K  dP R

                    
1) ) ( )m m m+( (P  = P + dP

         end repeat

       Solve 
n) (n) (n) ψ =(K RΨ

 end repeat
end do



FEA of the HDI using adaptive meshing     171

criterion for convergence for both the pressure solution and the slider position, are as
follows:

1
2 2( 1) ( )

(1) ( )
1

1 d n nn
i i

p n
id p i

p p

n p
ε

ε

+

=

  − =  
   
∑ [19]

1
2 2 2 2( 1) ( ) 1 ( ) ( 1) ( )

(1) ( ) ( ) ( )

1 n n n n n n

s n n n
s

h h

h

α α β βε
ε α β

+ + +      − − − = + +     
       

[20]

where pε  is the error in the pressure distribution, sε  is the error in the slider

position, and (1)
pε  and (1)

sε  are the error values in the first iteration. Convergence is

achieved when the following equation is satisfied simultaneously,

, 0.01p sε ε ≤ [21]

Figure 6. Mesh layout for the taper slider a) with two subdivision levels (initial
mesh: 45 × 45 nodes; adapted mesh: 8345 nodes, 8153 elements), b) with three
subdivision levels (initial mesh: 35 × 35 nodes; adapted mesh: 16790 nodes, 16534
elements)
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Figure 7. Comparison of the air pressure distributions under the 50% slider with a)
Uniform 45 × 45 mesh, and b) with the mesh given in Figure 6a

4. Results and discussion

The numerical design simulator for the head disk interface has been applied to
two different slider geometries, one of them is a 50% taper-flat, two-rail slider and
the other is a negative pressure air bearing slider.

4.1. 50% Taper-flat, two-rail slider

The parameters of the taper-flat slider modeled are tabulated in Table 2. The
initial mesh consists of regular rectangular four noded elements. After adaptation,
various finite element meshes with different adaptation levels are shown in Figure 6.
Figure 6a shows a mesh initially with 2 025 (45×45) nodes, with a maximum
adaptation level of two, resulting in 8 345 nodes and 8 153 four noded elements. The
refinement class assignments for this case were �� � �� � �� �� � �� � � ��	 �� � 
�

Figure 6b shows a mesh initially with 1 225 (35×35) nodes, with a maximum
adaptation level of three, resulting in 16 790 nodes and 16 534 four noded elements.
The refinement class assignments for this case were �� � �� � �� �� � �� �� � 
 ��	

�� � �� Observe that the mesh density is high at the trailing edge, and at the
intersection of the taper with the flat surface. Also the mesh is refined at the steps
where a large change in slider height is detected.

A typical 2D pressure profile for this air bearing is shown in Figure 7. The
solution shows two pressure peaks on each rail, one at the trailing edge of the rail
and the other at the rail-taper intersection. The pressure profile given in Figure 7a
was calculated with an initial mesh of 2 025 (45×45) nodes. The mesh size is
insufficient to resolve the pressure gradients at the trailing edge region.
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Table 2. Model parameters for the 50% taper flat, two-rail slider bearing
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The refined mesh given in Figure 6a, which has 8 345 nodes, was used to obtain
the results given in Figure 7b. Observe that the pressure distribution is very smooth
with the adapted mesh when compared with the one with the initial mesh. This
refinement is done automatically in the software.

4.2. Negative pressure air bearing slider

A schematic of a negative pressure slider is shown in Figure 8. Typical overall
dimensions of the slider are 1.25 × 1 mm. Areas A, C and E, marked with a
checkerboard pattern are at the same height level, and they are 4 µm above the
unmarked white area. The areas B and D, marked with cross-hatched lines,
are 200 nm tall protrusions with respect to areas A, C and E. The pivot point is at the
geometric center of the slider, other parameters, such as viscosity, velocity, stiffness
are same those used for taper flat slider, given in Table 2. The pre-load on the slider
is 35 mN and the inertia effects are neglected.
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Figure 8. Geometry of the negative pressure air bearing slider

Figure 9. Mesh layout for the negative bearing slider a) with one subdivision levels
(initial mesh: 81×81 nodes; adapted mesh: 13 505 nodes, 13 327 elements), b) with
two subdivision levels (initial mesh: 87 × 87 nodes; adapted mesh: 15 519 nodes,
15 338 elements)



FEA of the HDI using adaptive meshing     175

50000

100000

150000

200000

250000

300000

A
ir

pressure
(P

a)

0

0.0005

0.001

x (m)

0

0.0004

0.0008

y (m)

50000

100000

150000

200000

250000

300000

A
ir

pressure
(P

a)

0

0.0005

0.001

x (m)

0

0.0004

0.0008

y (m)
�� ��

The initial mesh consists of regular rectangular four noded elements. Two finite
element meshes with different adaptation levels are shown in Figure 9. Part-a of this
figure shows a mesh initially with 6 516 (81×81) nodes, with a maximum adaptation
level of one, resulting in 13 505 nodes and 13 327 quadrilateral elements. The
refinement class assignments for this case were �� � �� � �� � �� �� � � ��	 �� � ��

Figure 9b shows a mesh initially with 7 569 (87×87) nodes, with a maximum
adaptation level of two, resulting in 15 519 nodes and 15 338 four noded elements.
The refinement class assignments for this case were �� � �� � �� � � � �� � � ��	

�� � 
� Observe that the mesh density is high at the trailing edge. Also the mesh is
refined at the steps where a large change in slider height exists.

Figure 10. Comparison of the air pressure distributions under the negative bearing
slider with a) Uniform 87 × 87 mesh, and b) with the mesh given in Figure 9b

Pressure distribution under the negative air bearing slider is shown in Figure 10.
In general, three pressure peaks occur, one at the trailing edge of the slider and two
at the rear ends of the front pads. Figure 10 shows the 3D pressure distribution for
the air bearing with an initial mesh of 6 561 (81×81) nodes in part-a, and with an
adapted mesh having 15 519 nodes in part-b. Observe that the pressure distribution
is very smooth with the adaptively refined mesh, when compared with the one with
the initial mesh.

5. Summary, conclusions and future work

This paper provides a numerical design tool to analyze the head-disk interface for
magnetic head sliders used in hard disk drives. The finite element method has been
used discretize modifed Reynolds equation. The hydrodynamic stiffness approach



176     REEF – 14/2005. Finite elements in tribology

has been implemented to improve the solution of the coupled system of air
lubrication and slider equilibrium equations. An adaptive mesh algorithm is
implemented to capture the fine aspects of the slider geometry, and regions of high
pressure gradients. A bandwidth reduction algorithm has been applied for efficient
memory management and minimizing computational time.

Two sliders have been analyzed, namely the 50% taper flat slider, and a negative
air bearing slider. I twas shown that using the adaptive mesh gives more flexibility
and control over the placement of nodes, and also enables the user to obtain smooth
pressure contours with considerably less effort. Improvements to this work in the
future should include a) placement of nodes exactly on the recess boundaries, b)
implementation of iterative solution scheme, c) implementation of contact pressure
between the disk and the slider.
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Appendix 1

Using bilinear shape functions, four point Gauss quadrature, the components of
the element stiffness matrix for Equation [10] become,
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and the elements of the right hand side vector for Equation [10] become,
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where i, j = 1, 2, 3, 4. In these equations Ni are the bilinear shape functions and J is
the Jacobian. The operator 2 2x∏  represents four point Gauss quadrature.

Appendix 2

Using bilinear shape functions, four point Gauss quadrature, the components of
the element stiffness matrix for Equation [13] become,

,

3

3 2

( )

( ) ( ) ( )
( ) 2

( )2

( )
( ) ( ) ( ) 2

2 2 ( )

( ) ( )
( )

k

6( )

6 6( )

6

i j

e
p

m m m
m i i

a a jm

m
j jm m n i i

x a a a a m

m m
j jm

i x y j x y

N Nh p p
h p N

x x y yp

N NN Nh
h p p h p

x x y yp

N N h h
N h V V N V V

x y x y

λ

λ λ

µ

=

  ∂ ∂∂ ∂− + +  ∂ ∂ ∂ ∂  
∂ ∂   ∂ ∂

= ∏ + + + +   ∂ ∂ ∂ ∂  
∂ ∂   ∂ ∂+ + + ∂ ∂ ∂ ∂ 

det .J

 
 
 
 
 
 
 
          

(A.3)

and the elements of the right hand side vector for Equation [13] become,
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where i, j = 1, 2, 3, 4.




