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Abstract

To analyze the rheological and mechanical properties as well as the vibration-
mechanical forbidden zone effect of row pile foundations, this paper employs
time-dependent modulus to examine the rheological mechanics of soil.
Drawing from viscoelastic theory, we derive the expression of deformation
modulus in the frequency domain to analyze the frequency dependence of
the shear modulus of rheological soils. We construct a continuous medium
dynamics model of the pile-soil periodic structure, taking into account soil
rheology, and derive the dispersion equation of shear waves in the periodic
structure using the multiple scattering method. The band gap characteristics
and parameters that influence the law of shear waves in rheological soil-
row pile foundations are studied through the analysis of arithmetic cases.
The results show that under the loading condition, the zero-frequency shear
modulus of soil is larger than the initial modulus value, and the real part of the
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shear modulus decreases monotonically with the increase of frequency and
finally converges to the initial modulus value; under the unloading condition,
the zero-frequency shear modulus of soil is smaller than the initial modulus
value, and the real part of the shear modulus increases monotonically with the
increase of frequency and finally converges to the initial modulus value; the
larger the relaxation time of soil, the faster the convergence rate; the imag-
inary part of the shear modulus of soil The imaginary part of the soil shear
modulus is positive under loading condition and negative under unloading
condition, the value of the imaginary part increases and then decreases with
increasing frequency and finally converges to 0. The imaginary part reaches
the peak at the critical frequency, the larger the relaxation time the smaller the
critical frequency, and the peak of the imaginary part is independent of the
relaxation time. This study analyzed the dispersion curve of shear waves in
a pile-soil periodic structure and found that increasing low-frequency shear
wave velocity in rheological soil pile foundation shifts the band gap position
to a higher frequency band, resulting in a smaller band gap width than in
linear elastic soil. The relaxation time of soil affects the frequency position
and width of the band gap, with larger relaxation times resulting in higher
frequency positions and smaller widths. Additionally, soil rheology widens
the forbidden vibration band gap of the pile periodic structure when the filling
rate of the pile foundation is larger.

Keywords: Fluid mechanics, row pile foundation, vibration mechanics,
periodic structure, multiple scattering mechanism, elastic wave bandgap.

1 Introduction

The total area of soft ground in China is widely distributed, for example,
the red layer type in southwest China accounts for 33% of the total area of
the country, about 82 million km2, which is the most distributed area of soft
ground in China. The red layer is mainly soft rock, which is interstratified or
laminated, with poor physical and mechanical properties, low strength, easy
to soften in water, easy to disintegrate when losing water, rapid weathering
in the open air, certain swelling and rheology, and poor engineering perfor-
mance. For a long time, during the construction of highways, railroads, water
conservancy, and hydropower projects, many professionals in rock mechanics
have conducted studies on their special physical and mechanical proper-
ties, kinetic properties, and engineering characteristics, including weathering
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properties [1, 2], disintegration properties [3, 4], swelling properties [5–10],
rheological properties [11–17], and mechanical properties of modified fillers
of red soft rocks [18–20]. Among which the rheological properties of soils are
the most complex, characterizing significant mechanical properties at both
microscopic and macroscopic levels.

In addition, with the rapid economic development, various artificial vibra-
tion pollution such as traffic and engineering construction is becoming more
and more frequent, and setting vibration isolation barriers in the foundation
is an effective method for vibration pollution management [21]. Compared
with the traditional methods, barrier vibration isolation has the advantages
of low cost, not easy to damage, good durability, simple construction, and
can be used as part of the structure, thus it is widely used in practical
engineering. Vibration isolation barriers are available in various forms, such
as empty trenches, filled trenches, and row piles, which are commonly used
in engineering. Although the vibration isolation effect of air ditches and
filled ditches is better, the setting depth is generally shallow considering
the problems of soil stability and project cost. When the incident wave
wavelength is long, the empty trench and filling trench can not play an
effective vibration isolation effect, at this time, the row pile is a better choice.
Many scholars at home and abroad have conducted a lot of experimental
studies and numerical analyses on the vibration isolation of row piles. Woods
et al. [22] conducted an experimental study on the vibration isolation effect
of discontinuous barriers (such as hole columns and pile columns) using
holographic photography. Liao et al. [23] conducted a proportional model test
on the vibration isolation of pile columns and hole columns in water using
the water wave comparison method. Aviles et al. [24] used the wave function
Baroomand et al. [25] studied the vibration isolation of pile columns based on
a simplified foundation model, but only the vertical vibrations of the founda-
tion and piles were considered in the analysis while the horizontal vibrations
were neglected. [26] conducted a computational analysis of the vibration
isolation effect of a pile column using a 3D BEM and proposed a method to
equate the row of piles to a filled trench based on a composite mechanic’s
approach. Breaking the conclusion that the diameter of the discontinuous
barrier monolith must be larger than 1/6 of the shielded wavelength proposed
by Woods et al. Qiu Chang and Gao Guangyun et al. [27] studied the row pile
far-field passive vibration isolation problem by using the integral equation
method.

For the aspect of vibration mechanical properties of pile-soil periodic
structures, early scholars followed the traditional periodic structure theory
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and regarded the soil as an ideal linear elastic material. The forbidden band
gap and vibration attenuation law of single- or multi-layered soil-row pile-
periodic structures were studied. Chen [28] used finite element software to
simulate the vibration isolation performance of a four-component cased pile
periodic structure. Although the above-mentioned studies have given a great
impetus to the application of the periodic structure in foundation vibration
reduction, the study only considers the elastic effect of the soil and ignores
the rheological effect of the soil, and the defects of the analytical model
cause the analysis results are not accurate enough. The rearrangement and
skeletal misalignment of soil particles under stress due to relaxation and creep
effects in the actual soil have obvious time effects [29, 30]. Based on the
Terzaghi one-dimensional consolidation theory, Yuanqiang Cai [31] analyzed
the nonlinear asymptotic process of soil stress-strain under cyclic loading
under time effect. Zeng Qingyou [32] calculated the long-term settlement of
pile foundations in viscoelastic soils using the Mesri creep model considering
soil rheology. Ai Zhiyong [33, 34] did a study on the time-varying behavior
of layered viscoelastic foundations with piles as well as beams by using
a coupled finite-element-boundary element approach. Lijun He [35] used
fractional order derivatives to describe the soil rheology and proposed a creep
model for viscoelastic soils, and then made an accurate analysis of the time
effect of soil stress-strain.

The above study shows that the stress-strain of rheological soils is time-
dependent, and corresponding to the frequency domain analysis, the dynamic
response of rheological soils must be frequency-dependent. Thus, it can be
seen that for pile-soil periodic structures, whether the frequency dependence
of soil stress-strain has a significant effect on the band gap characteristics
needs to be further investigated.

To investigate the band gap characteristics of the rheological soil-row
pile-cycle structure and the influence law of soil rheology. In this paper,
the time-dependent modulus is used to describe the soil rheological effect
and construct a continuous medium dynamics model of the pile-soil periodic
structure. The multiple scattering method is used to derive the dispersion
equation of the periodic system. The periodic pile-graph structure in the
structure of this paper forms a phonon crystal structure with a circular pile
embedded in a square, forming the first Brillouin zone. On this basis, the for-
bidden vibration band gap of the rheological soil row pile foundation and the
influence law of core parameters are further analyzed, and the mechanical
model is shown in Figure 1.
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Figure 1 Mechanical analysis model of pile-soil periodic structure (a) Pile-soil dynamics
model (b) Bragg two-dimensional analysis plane (c) Micromechanical illustration of soil body.

2 Soil Rheology

The modulus with time dependence is used to describe the rheological effect
of the soil, and its integral form of the instanton equation is

σs =

∫ t

−∞

[
λs(t− τ)δij

dζs
dτ

+ 2µs(t− τ)
dεs

dτ

]
dτ (1)

where t is the time variable. ω is the circular frequency. σs and εs are the
stress and strain vectors of the soil body, respectively, δij is the Kronecker
delta function. ζs is the body strain; λs = λs(t), µs = µs(t) are Lamé
constants, and λs, µs are functions of time t because of the time dependence
of the soil modulus is considered, and τ is the relaxation time.

From the definition of Lamé’s constant, it follows that

λs(t) =
Es(t)vs

(1 + vs)(1− 2vs)
(2)

µs(t) =
Es(t)

2(1 + vs)
(3)

where vs is the Poisson’s ratio and E(t) is the time-dependent modulus of
elasticity. The relaxation function of E(t) takes the form [22]:

Es(t) = E∞ + (E0 − E∞)e−t/τ (4)

where E0,

E∞ is the initial and final steady-state moduli of elasticity, respectively, and
e denotes the constant exponential function.

Introducing the Fourier transform of time t to the above equation, the
expression in the frequency domain is obtained as

Es(ω) = ER
s (ω) + iEI

s (ω) (5)
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Where ω is the circular frequency and i is an imaginary unit, EI
s (ω)

represent the real and imaginary parts and have:

ER
s (ω) =

E∞ + E0ω
2τ2

1 + ω2τ2
(6)

EI
s (ω) =

(E∞ − E0)ωτ

1 + ω2τ2
(7)

The Fourier transform of time t is also performed on Equation (1), and
the principal equation in the frequency domain is obtained as follows:

σs = λs(ω)δijζs + 2µs(ω)ε
s (8)

where λs(ω), and µs(ω) are the corresponding Lamé constants in the
frequency domain, whose expressions are

λs(ω) =
λ0(η + ω2τ2)

1 + ω2τ2
+ i

λ0ωτ(η − 1)

1 + ω2τ2
(9)

µs(ω) =
µ0(η + ω2τ2)

1 + ω2τ2
+ i

µ0ωτ(η − 1)

1 + ω2τ2
(10)

where λ0 = vsE0
(1+vs)(1−2vs)

, µ0 = E0
2(1+vs)

are the initial Lamé constants; t is
the time variable. ω is the circular frequency; The modulus ratio between
initial and final states η = E∞/E0. It can be seen from Equation.

Figure 2 gives the variation law of Lamé constant µs (shear modulus) with
frequency for different values of modulus ratio η (µ0 is taken as 30 MPa), in
which Re and Im denote the real and imaginary parts, respectively. The figure
shows that when η > 1, the real part of the shear modulus Re(µs) decreases
with the increase of frequency from the zero-frequency shear modulus (the
shear modulus at frequency 0, i.e., the static shear modulus) and finally
converges to µ0. When η < 1, it is less than µ0, and Re(µs) increases with the
increase of frequency from increasing to µ0. And when η = 1, Re(µs) does
not change with frequency, and its value is constantly equal to µ0. As can be
seen from the figure, the imaginary part of the shear modulus Im(µs) > 0
when η > 1; and Im(µs) < 0 when η < 1; when η = 1, then Im(µs)
is constant to 0. When η > 1, Im(µs) increases positively and peaks with
the increase of frequency, and then gradually decreases and converges to 0;
and when η < 1, Im (It should be noted that in actual engineering), η > 1
represents the loading condition (soil is compacted, E∞ > E0), while η < 1
represents the unloading condition.
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The above analysis shows that the static shear modulus of the soil µs|ω=0

and the real and imaginary parts of the shear modulus is closely related to
the constant state modulus ratio η, and there exists a critical frequency ωcr,
at which the imaginary part of the shear modulus will have a peak Im(µ)smax.
To obtain the quantization results of, ωcr and Im(µ)smax, Equation (10) is
further analyzed analytically. By taking ω = 0 from Equation (10), it is
obtained that

µs|ω=0 = ηµ0 (11)

The above equation shows that the static shear modulus of the soil is only
related to the always-state modulus ratio η, and is linearly related.

Using the extremum theorem to calculate the extremum point of the
imaginary part of Equation (11), the critical frequency ωcr: is obtained

σs = λs(ω)δijζs + 2µs(ω)ε
s (12)

Solving the equation then yields (with negative roots rounded off)

∂Im(µs)

∂ω
= 1− 2τ2ω2 = 0 (13)

ωcr =
1√
2τ

(14)

Equation (13) is the critical frequency of the peak of the imaginary part
of the shear modulus, and it can be seen that the critical frequency is only
related to the relaxation time τ and is inversely proportional. Substituting
Equation (14) into the imaginary part of Equation (7), we obtain the critical
frequency ωcr corresponding to the peak of the imaginary part of the shear
modulus Im(µ)smax:

Im(µs)max =

√
2

3
µ0(η − 1) (15)

Equation (15) further shows that the peak of the imaginary part of the
shear modulus depends entirely on the constant-state modulus ratio η and is
independent of the relaxation time.

Figures 3 and 4 show the curves of shear modulus µs versus frequency
for different values of relaxation time τ . As can be seen from the figures,
the larger τ is, the faster the real part of µs converges to µ0, and the critical
frequency ωcr at which the imaginary part reaches its peak is smaller, which
is consistent with the law reflected in Equation (10). It should be noted that
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Figure 2 Frequency variation law of shear modulus at τ = 1×10−2 s (a) real part (η = 1.8)
(b) imaginary part (η = 1.8).

Figure 3 Frequency variation law of shear modulus (a) real part (η = 1.8) (b) imaginary
part (η = 1.8).

Figure 4 Frequency variation law of shear modulus (a) real part (η = 0.3) (b) imaginary
part (η = 0.3).



Study of Rheological-Mechanical Properties and VibrationMechanics Bandgap 39

from Equation (7), it can be seen that when τ = 0, the real part of µs will be
constantly equal to ηµ0, while the imaginary part is constant 0. At this time,
the soil degenerates into a linear elastic material.

3 Wave Mechanics Equation

Based on the theory of elastic fluctuations, write the Navier vibration mechan-
ics equations for the soil and pile foundation in the frequency domain
as follows:

(λs + µs)∇(∇ · us) + µs∇2us + ρsω
2us = 0 (16)

(λp + µp)∇(∇ · up) + µp∇2up + ρpω
2up = 0 (17)

Where, us, up, ρs, ρp are the displacement vector and density of soil
and pile foundation respectively; unlike rheological soil, pile foundation is a
homogeneous elastic material and its Lamé constants λp, µp are constants.

Introducing the potential function, ψs the Helmholtz decomposition of
the displacement vector us of the soil body in the polar coordinate system
yields:

usr =
∂ϕs
∂r

+
1

r

∂ψs

∂θ
(18)

usθ =
1

r

∂ϕs
∂θ

− ∂ψs

∂r
(19)

Substituting Equation (18) into Equation (19), we obtain:{
∇2ϕs + k2l1ϕs = 0

∇2ψs + k2t1ψs = 0
(20)

Where kl1 = ω/cl1, kt1 = ω/ct1 are the wave numbers of compressional
and shear waves in the soil, respectively, and cl1, ct1 is the wave velocities of
the two waves. It is possible to obtain:

σsr = λs(ω)∇2ϕs + 2µs(ω)
∂

∂r

(
∂ϕs
∂r

+
1

r

∂ψs

∂θ

)
σsrθ = µs(ω)

(
2

r

∂2ϕs
∂r∂θ

− 2

r2
∂ϕs
∂θ

+
1

r2
∂2ψs

∂θ2
− ∂2ψs

∂r2
+

1

r

∂ψs

∂r

) (21)
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Similarly, the Helmholtz decomposition of the pile fluctuation equation
by introducing the potential functions, ψp yields{

∇2ϕp + k2l2ϕp = 0

∇2ψp + k2t2ψp = 0
(22)


σpr = λp∇2ϕp + 2µp

∂

∂r

(
∂ϕp
∂r

+
1

r

∂ψp

∂θ

)

σprθ = µp

(
2

r

∂2ϕp
∂r∂θ

− 2

r2
∂ϕp
∂θ

+
1

r2
∂2ψp

∂θ2
− ∂2ψp

∂r2
+

1

r

∂ψp

∂r

)
(23)

Where kl2 and kt2 are the wave numbers of compressional and shear
waves in the pile foundation.

According to the elastic wave scattering theory [25], the potential func-
tions, ψs, ψ, ψp of the soil and pile are expanded by the column wave function
to obtain: 

ϕs =
∞∑

m=−∞
[Am1Jm(kl1r) +Bm1Ym(kl1r)]e

imθ

ψs =
∞∑

m=−∞
[Am2Jm(kt1r) +Bm2Ym(kt1r)]e

imθ

ϕp =
∞∑

m=−∞
Cm1Jm(kl2r)e

imθ

ψp =

∞∑
m=−∞

Cm2Jm(kt2r)e
imθ

(24)

Where, Am1, Am2, Bm1, Bm2, Cm1, and Cm2 are the pending integration
constants, determined by the pile-soil interface conditions; Jm, Ym denote the
first and second class Bessel functions of order m, respectively, and m is an
integer.

The main computational boundary conditions in this paper are free
periodic boundary conditions, which are the basis for computing periodic
structures/phonon crystals. Substituting into Equation (24), the expressions
for the levels of the displacement and stress fields of the soil and pile
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foundations are obtained as follows[
usr

usθ

]
=

+∞∑
m=−∞

eimθ

{
Fm

[
Am1

Am2

]
+Gm

[
Bm1

Bm2

]}
[
σsr

σsrθ

]
=

+∞∑
m=−∞

eimθ

{
fm

[
Am1

Am2

]
+ gm

[
Bm1

Bm2

]}
[
upr

upθ

]
=

+∞∑
m=−∞

eimθDm

[
Cm1

Cm2

]
[
σpr

σprθ

]
=

+∞∑
m=−∞

dme
imθ

[
Cm1

Cm2

]
(25)

where the coefficient matrices Fm,Gm, fm, gm,Dm, dm are known second-
order matrices, and their specific expressions are shown in the Appendix.

From the displacement continuity and stress continuity at the pile-soil
interface (r = r0), the interface conditions are obtained as follows:

usr = upr , u
s
θ = upθ, σ

s
r = σpr , σ

s
rθ = σprθ,

lim+x = lim−x
(26)

Substituting Equation (20) into Equation (21), the relationship between
the coefficients to be determined Am1, Am2, and Bm1, Bm2 can be organized
as follows [

Am1

Am2

]
= Pm

[
Bm1

Bm2

]
(27)

The soil displacement can be further written as[
usr

usθ

]
=

+∞∑
m=−∞

eimθQm

[
Bm1

Bm2

]
(28)

where Pm and Qm are known second-order matrices and their expressions
are given in the Appendix.

To derive the dispersion equations for the pile-soil periodic structure, the
soil displacements in the polar coordinate system need to be converted to the
right-angle coordinate system (x-y) of the metric system with the following
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conversion relations:[
usx

usy

]
=

[
cos θ − sin θ

sin θ cos θ

][
usr

usθ

]
=

+∞∑
m=−∞

eimθQ̄m

[
Bm1

Bm2

]
(29)

where.
Express the normal displacement on the four boundaries of the beta cell

in Figure 1c as
∂

∂n

[
usx

usy

]
Γ

= Ω

[
usx

usy

]
Γ

(30)

where Γ = [Γ1,Γ2,Γ3,Γ4] denotes the four boundaries of the beta cell,
n = [nx, ny,−nx,−ny] is the unit normal vector corresponding to the four
boundaries; the coefficient matrix Ω is a matrix of order 8N × 8N whose
matrix elements consist of the matrix elements of Q̄m and N is the number of
computational points selected on each boundary. Ω corresponds to the matrix
elements as follows:

Ω = Ω2Ω
−1
1 (31)

Among them:

(Ω1)jk = [Q̄k−1−2N (rj , θj)] . . .

(Ω2)jk =
∂

∂n
[Q̄k−1−2N (rj , θj)], j, k = 1, 2 . . . 4N.

According to the Bloch-Floquet theorem, all field quantities Φ in the
periodic structure satisfy the following periodic condition:

Φ(X + a) = Φ(X)eika (32)

whereX = [x, y] is the coordinate vector and k = [kx, ky] is the wave vector.
Applying the period condition (27) to the displacements on the beta cell

boundary, we obtain: [
usx

usy

]
Γ3

= eikya

[
usx

usy

]
Γ1

&

[
usx

usy

]
Γ4

= eikxa

[
usx

usy

]
Γ2

(33)
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Substituting Equation (33) into Equation (30), the characteristic equation
of the pile-soil system is obtained as[

Ω31 Ω32

Ω41 Ω42

][
us|Γ1
us|Γ2

]
=

[
M11 M12

M21 M22

][
us|Γ1
us|Γ2

]
(34)

where Ω31, Ω32, Ω41, Ω42 are the two-dimensional chunk matrices in Ω
and the coefficient matrices M11, M12, M21, and M22 are determined by the
following equations:

M11 = Ω13e
2ikya + (Ω11 −Ω33)e

ikya . . .

M12 = Ω12e
ikya −Ω34e

ikxa +Ω14e
i(kx+ky)a . . .

M21 = Ω21e
ikxa +Ω23e

i(kx+ky)a −Ω43e
ikya . . .

M22 = Ω24e
2ikxa + (Ω22 −Ω44)e

ikxa.

The above equation is further organized into the standard equation form:[
T1e

ikx,ya + T2 T3

−I Ieikx,ya

][
V

U

]
= 0 (35)

The above equation is a matrix equation of order 8N × 8N, where I is
a unit matrix of order 4N × 4N; U is the displacement matrix on the metric
cell boundary, U = [usx|Γ1, usy|Γ1, usx|Γ2, usy|Γ2]T denotes the transpose of
the matrix, and the expressions of the matrices T1,T2,T3 are shown in the
appendix.

Using the extraordinary solution condition, one obtains:

det

[
T1e

ikx,ya + T2 T3

−I Ieikx,ya

]
= 0 (36)

Equation (36) is the dispersion equation for the pile-soil periodic struc-
ture, and det denotes taking the determinant. Given an angular frequency
ω, the dispersion curves (frequency-wave number relationship) of compres-
sional and shear waves in the periodic system are obtained by searching
for wave vectors kx, ky in the first integrable Brillouin domain Γ-X-M.
Note that for the Γ-X boundary (0 ≤ kx ≤ π/a), the exponential term in
the equation is taken as, eikxa and for the X-M (0 ≤ ky ≤ π/a) boundary,
the exponential term is taken as. When calculating the dispersion curves in the
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Figure 5 First Brillouin zone in mechanical mode.

text, the number of plane waves m taken should be large enough to ensure the
convergence of the results. The exact size taken usually depends on the size
and characteristics of the system being simulated. In this paper, the number
of plane waves is 101.

4 Analysis of Mechanical Calculations

Firstly, the vibration mechanics solution method and calculation procedure
of this paper are verified, and it is known from the previous analysis that
the soil model degenerates to a linear elastic model when the relaxation
time τ is taken as 0. Figure 6 gives the shear wave dispersion curve on
the Γ-X boundary of the degraded model in this paper, and the required
computational parameters are taken in Table 1 and compared with the results
of the simulation. The normalized dimensionless frequency f∗ = ωa/(2πct2)

Figure 6 Comparison of mechanical band gap results.
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Table 1 Table of mechanical parameters
Density of soil ρs (kg-m)−3 1900
Initial shear modulus of soil µ0 (MPa) 30
Poisson’s ratio of soil vs 0.25
Density of pile ρp (kg-m)−3 2500
Lamé constants of pile λp (GPa) 8.3

µp (GPa) 12.5
Radius of pile r0 (m) 0.65
Periodic constant an (m) 2

Figure 7 Dispersion curve of shear wave dynamics.

is used as the vertical coordinate in the figure, and the results of both can be
found to match by comparison. The shaded area in the figure is the forbidden
band gap of the periodic structure, and two band gaps appear in the range of
0 ≤ ω ≤ 500 rad/s. fu, fl is the upper and lower bound frequencies of the
band gap, respectively. The band gap range in these two parts is mainly due
to the bragg scattering effect in the first two orders.

In this paper, the band gap characteristics of shear waves in pile-soil
periodic structures are analyzed. Figures 7 and 8 give the dispersion curves
of shear waves in the periodic structure when considering the soil rheology.
It can be seen that the shear wave velocities in the low-frequency and high-
frequency regions increase to different degrees when the relaxation time
increases and the increase in the low-frequency region to be significantly
larger than that in the high-frequency region, which causes the width of the
forbidden band gap to decrease. Figure 7 shows the variation curve of the
band gap width W ∗ with the relaxation time, W ∗ = fu − fl. The figure
shows that the band gap width decreases gradually with the increase of the
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Figure 8 Time-varying curves of the kinetic bandgap width.

Figure 9 Filling rate variation curve for kinetic band gap width.

relaxation time, and the larger the modulus ratio η, the larger the reduction of
the band gap width.

Figure 9 shows the variation curve of band gap width with pile filling
rate Fs. The graph shows that the variation curve of band gap width with Fs in
the rheological soil pile-periodic structure is similar to that of the elastic soil
pile-periodic structure in that the band gap width increases and then decreases
as the filling rate increases. At the same filling rate, the band gap width in
rheological soil row pile structure is larger than that in linear elastic soil, and
the larger the filling rate (Fs ≥ 0.4), the larger the soil relaxation time is,
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the larger the band gap width is. Therefore, when the filling rate of the pile
foundation is larger, the soil rheology is beneficial to widen the forbidden
band gap of the pile-periodic structure, and the use of large diameter piles
has a better vibration isolation effect for rheological soil pile foundations.

5 Conclusion and Discussion

In this paper, the rheology of soil is described using the time-dependent
modulus, and the frequency dependence of the shear modulus is analyzed by
deriving expressions for the deformation modulus in the frequency domain.
The dispersion curves of shear waves in pile-soil periodic structures are then
calculated using the multiple scattering method to investigate the band gap
characteristics of these waves in more detail. Based on these analyses, several
conclusions can be drawn:

(1) When η > 1 (loading condition), the zero-frequency shear modulus
of the soil is greater than the initial modulus value, and the real part
of the shear modulus decreases monotonically with the increase of
frequency, and finally converges to the initial modulus value. when
η < 1 (unloading condition), the zero-frequency shear modulus of the
soil is less than the initial modulus value, and the real part of the shear
modulus increases monotonically with the increase of frequency.

(2) The imaginary part of the soil shear modulus is positive during loading
and negative during unloading. Its value increases and then decreases
with frequency, eventually converging to zero. The peak of the imag-
inary part occurs at the critical frequency, which decreases as the
relaxation time increases. However, the peak value of the imaginary
part is independent of the relaxation time. These findings suggest that
the frequency dependence of the shear modulus of rheological soils
is significant and should be taken into account in soil mechanics and
foundation engineering.

(3) The low-frequency shear wave velocity in rheological soil pile foun-
dation increases, so that the band gap position moves to the higher
frequency band, and the band gap width is smaller than that of linear
elastic soil. The larger the soil relaxation time, the higher the frequency
position of the band gap and the smaller the width.

(4) When the filling rate of the pile foundation is larger, the soil rheology is
conducive to widening the forbidden vibration band gap of the periodic
structure, and the use of large diameter piles has a better vibration
isolation effect for rheological soil row pile foundation.
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