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ABSTRACT. In this work, an efficient finite element procedure for high speed thin gas film
lubrication problems, which is based on the Galerkin weighted residual method with high
order shape functions, is employed to analyze the effects of the face coning on spiral groove
face seal performance. Opening force, dynamic force coefficients and leakage flow are
determined for different face seal coning angles and operating conditions. Finite element
predictions bring some insights into the influence of the face coning on gas-lubricated spiral
groove face seal performance characteristics at high speeds.

RÉSUMÉ. Dans ce travail, un efficace procédé numérique pour des problèmes de film de
lubrification à gaz de haute vitesse, basé sur la méthode des éléments finis des résidus
ponderés de Galerkin avec fonction de forme d’ordre élevé, est employé pour l’analyse des
effets de la face conique sur l’efficacité d’une garniture en spirale. Les coefficients des forces
dynamique et d’ouverture et le débit de fuite de gaz sont déterminés pour différents angles de
la face conique et différentes conditions d’opération. Les previsions obtenues avec l’analyse
numérique apportent quelque connaissance de l’influence de la conicité de la face par
rapport aux caractéristiques d’efficacité de la garniture pour des vitesses élevées du gaz.
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1. Introduction

Gas bearings and noncontacting gas seals are finding increase use in machinery
applications that require low energy consumption and an oil-free environment. The
development of efficient sealing systems for rotating machinery in processing
industries has been demanded by strict environmental protection laws, which require
the virtual elimination of release of harmful work fluids into the atmosphere.
Advances in the fluid sealing technology have been accompanied by the
development of efficient and accurate numerical methods capable of predicting the
seal behavior under stringent operating conditions.

The spiral groove is one of the most successful groove geometries used in gas
face seals. Efficient unidirectional spiral groove gas face seals (SGGFSs) have been
widely employed in industrial machinery (Burgmann, 1997). Spiral grooves are
introduced into face seal designs mainly to increase their load capacity and decrease
fluid leakage (Muijdermann, 1966). Even though gas face seals have been largely
used in high speed rotating machinery, predictions and experimental measurements
of SGGFS static and dynamic performance characteristics at high speeds have not
been reported in the literature. At high operating speeds, coning on the face seal due
to high pressures and thermal effects can strongly affect the seal performance.

The finite element method (FEM) has been largely used in thin gas film lubrication
problems due to its ability to represent complex seal geometries and associated
boundary conditions. The Reynolds equation for compressible fluids is a convective-
diffusion transport equation. At high speeds, the advection transport terms dominate
the gas flow. Reddi and Chu (1970) pioneered the application of the FEM to gas
lubricated spiral groove face seals using an incremental formulation. Procedures based
either on central finite difference schemes or on the classical Galerkin weighted
residual method usually exhibit numerical oscillations in the solution of high speed
thin gas film flows, where convective flow terms are important. Upwind schemes have
been used to build efficient FEM procedures able to render numerically stable
solutions for the Reynolds equation at high speeds. FEM upwind schemes in gas
lubrication are generally based on the Petrov-Galerkin weighted residual method and
can be implemented either using non-symmetrical weighting functions (Heinrich et al.,
1977) or special numerical integration schemes of the advection terms (Hughes, 1978).
Bonneau et al. (1993) developed one of the few upwind FEM schemes for spirally
grooved gas face seals, however they presented the seal performance characteristics
only at low speeds. Upwind FEM schemes not only require special numerical
integration procedures for the advection terms of the Reynolds equation but also
introduce numerical artificial diffusion into the solution.

A finite element study of gas-lubricated spiral groove face seals (SGGFSs) is
performed by using a novel finite element procedure specially devised for high-
speed thin gas film lubrication problems. This procedure is based on the Galerkin
weighted residual method with high order shape functions, which are derived from
an approximated solution to the non-linear Reynolds equation within an element
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(Faria, 2001). The high-order FEM scheme has been successfully implemented to
predict the seal face misalignment effects on SGGFSs operating at high speeds
(Faria, 2004) disregarding the face coning effects. The high-order shape functions
not only eliminate the need of special integration schemes for the convective terms
but also do not introduce artificial diffusion into the solution (Faria, 1999). The main
concern of this work is to analyze the effects of the face coning on the static
performance characteristics of gas SGGFSs operating at high speeds. At high
speeds, the viscous energy dissipation and large pressure ratios may introduce
coning on the seal faces. Seal opening force, flow leakage rate and dynamic force
coefficients are predicted for coned gas SGGFSs at high speeds.

2. Gas SGGFS model

Figure 1 shows the geometry and parameters of a SGGFS. The seal
configurations are described following the same procedure as that used by Faria
(2001). The seal geometry includes the ridge clearance c, the groove depth cg, the
ridge width wr, the groove width wg, the number of grooves Ng, the groove angle β,
the seal inner radius ri, the seal outer radius ro, the seal grooved portion inner radius
rgi and the seal grooved portion outer radius rgo. The groove depth ratio ccg=δ
and groove width ratio )ww(w grgg +=α  are dimensionless geometric

parameters.
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Figure 1. Geometry and physical parameters of a SGFS with rotating and
stationary grooved surfaces
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The seal configuration is described in relation to a coordinate system attached to
the grooved seal face. The (r,θ, z) coordinate system is attached to the rotating
grooves at speed Ω (Figure 1b). The (r,Φ, z) coordinate system is attached to the
stationary face (Figure 1a). The relation between the two coordinate systems is
given by Φ = θ + Ω.t.

The laminar flow of an isothermal, isoviscous ideal gas within the film lands of a
spirally grooved face seal is described by (Faria,2001)
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Here, p represents the hydrodynamic pressure, h is the fluid film thickness, and µ
is the fluid viscosity. B is a parameter that describes the groove rotation direction.
Table 1 shows the values of B for the different seal configurations (Faria, 2001).

Table 1. The groove rotation direction parameter with seal configuration

Groove Angle (β) Range Stationary Grooves Rotating Grooves

0o< β < 90o Outward Pumping (B = -1) Inward Pumping (B = 1)

90o< β < 180o Inward Pumping (B = 1) Outward Pumping (B = -1)

The seal is subjected to pressures pi and po at its inner and outer radii ri and ro,
respectively. Typically po > pi.

ii ptrp =),,( θ  and oo ptrp =),,( θ [2]

The fluid film thickness is described accounting for the face coning effects. The
face coning is caused either by thermal distortions due to viscous friction (Pan and
Sternlicht, 1967) or by mechanical distortions due to the radial pressure gradient
(Green, 1987). The coning effects are given by γtan)rr()r(h ic −= , where γ
represents the coning angle of the seal surface (see Figure 2). The seal face angular
misalignment is not taken into account in this work. The seal mating faces are
manufactured with compatible materials of different moduli of elasticity and
coefficients of thermal expansion (Burgmann, 1997). The face with lower modulus
of elasticity and coefficient of thermal expansion is more likely subjected to face
coning. The film thickness ho at an equilibrium position can be written as

)(),( rhcrh co +=θ , in the ridge region [3a]

)(),( rhccrh cgo ++=θ , in the groove region [3b]
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Figure 2. Schematic view of a coned face mechanical seal

3. Perturbation analysis

Small dynamic axial (∆Z) perturbations at excitation frequency ω about an
equilibrium position of the moving rotating face cause perturbations in the film
thickness and pressure distributions. The perturbed film thickness h(r,θ, t) and
pressure field are given by

ti
o eZrhtrh ωθθ .),(),,( ∆+= ; 1i −= [4]

ti
zo Zerprptrp ωθθθ ∆+= ),(),(),,( [5]

where po represents the zeroth-order pressure field, and zp  is the first-order

pressure distribution caused by the small axial perturbations. Expressions for the
zeroth- and first-order lubrication equations are obtained by substituting
equations [4] and [5] into equation [1]. The zeroth- and first-order equations have
the following forms.
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The seal opening force, Fz, and dynamic axial force coefficients, Kzz and Czz, are
computed by
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∫∫
Π

−= drdrppF refoz ..).( θ [8]

∫∫
Π

−=+ drdrphCiK zzzzz .... θω [9]

where pref is the reference pressure and Π represents the flow domain within the seal.

4. Finite element modeling

Four-node quadrilateral isoparametric elements are used to represent the flow
domain. The finite element procedure is based on the Galerkin weighted residual
method. Both zeroth- and first-order pressure fields are interpolated by using the
novel class of shape functions, which are derived from an approximate solution to
the non-linear Reynolds equation within an element. To show the derivation of the
high-order shape functions, the steady-state Reynolds equation for an element (e) is
written in relation to an arbitrary system of coordinates (x,y).
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Equation [11] is a linear partial differential equation, which is solved by
separation of variables. For simplicity, the two ordinary differential equations are
solved assuming that the constant generated by the separation principle is zero
(Faria, 2001). The linearized solution of equation [10] gives the form of the shape
functions for the two-dimensional high order Galerkin FEM formulation. These
shape functions are expressed in natural coordinates (ξ,η) as
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where 
2
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e
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uL6µλ =  is a local speed or Peclet number. Le is the averaged element

length computed in the circumferential direction. The high-order Galerkin scheme
not only eliminates the need of special integration procedures for the advection
terms but also does not introduce artificial diffusion into the solution. Then, the
finite element zeroth- and first-order lubrication equations are obtained in the
following form.
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nm�  and nzm�  are the zeroth-order and first-order mass flow rates, respectively,

normal to the element boundary The element domain is represented by Ωe and its
boundary by Γe. The successive approximations method is employed to solve the
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global zeroth-order lubrication obtained by the superposition of element
equations [13]. Then, the global first-order lubrication equation is solved using the
pre-determined zeroth-order pressure field.

5. Numerical results

A preliminary evaluation of the high-order Galerkin FEM scheme computational
efficiency is carried out for an example of high-speed SGGFS with very arcuate and
deep grooves, whose parameters are shown on Table 2. The normalized
hydrodynamic pressure field (p/pi) is predicted for a ridge-groove pair using both the
high-order and the classical Galerkin FEM schemes. Figure 3.a depicts the the
normalized hydrodynamic pressure distribution over a groove-ridge pair obtained by
the high-order FEM scheme for 110 elements, while Figure 3.b shows the same
distribution computed by the classical Galerkin FEM scheme for 600 elements. The
classical Galerkin FEM scheme renders solution numerically unstable at the region
of large pressure gradients, i.e., at the trailing edge of the ridge. The normalized
pressure field predicted by the classical Galerkin scheme tends very slowly to the
solution computed by the high-order scheme as the mesh is refined.

Table 2. Gas SGFS data for evaluation of computational efficiency

ri = 0.00635 m     (stationary grooves) c = 2.75 µm

ro = 0.01651 m     Λ=1759 cg = 16.5 µm

β =110o     ρ =1.12 kg/m3 µ = 32.37x10-6 Pa.s

Ng = 12 grooves pi = 0.1 MPa

αg = 0.8 po = 0.1 MPa

Figure 4 depicts comparative results for seal opening force (Fz) versus ridge
clearance (c) in a gas SGGFS, whose parameters are given in Table 3. Xue and
Stolarski employed an upwind control volume method to analyze SGGFSs operating
at low and medium operating speeds. The high-order FEM scheme (squares)
produces results practically identical to those obtained by Xue and Stolarski
(circles). Also, the validation of leakage flow rate computation was performed for
narrow flat mechanical face seals. The predictions of flow leakage, obtained by the
high-order FEM scheme, for gas narrow flat face seals, agree very well with the
results generated by the approximated analytical solution. Flow leakage rate
comparisons are omitted here for brevity.
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(a) Solution by the high-order Galerkin FEM with 110 elements 

(b) Solution by the classical Galerkin FEM with 600 elements 

ridge 

groove 

Figure 3. Normalized pressure field on a ridge-groove pair of a SGGFS computed
by the high-order and classical FEM schemes (Λ=1759)

Table 3. SGFS parameters for validation

ri = 0.062 m      (stationary grooves) c varies

rgi = 0.069 m Ω = 4774.7 rpm cg = 6 µm

ro = 0.0805 m ρ =1.09 kg/m3 µ = 18x10-6 Pa.s

β = 161.4o pi = 0.1 MPa

Ng = 12
grooves

po = 0.3 MPa

αg = 0.567

      352 elements for each ridge-
groove

  pair  (22 circumferential and 16
radial elements)

Λ varies from 13.7 to 218.7
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Figure 4. Comparative results for seal opening force

Table 4. Gas SGGFS baseline parameters

Stationary grooves

ri =  0.07112 m β = 160o pi = 0.101 MPa

rgi =  0.076454 m αg = 0.5 po = 0.505 MPa

ro =  0.0889 m Ng =12 Λ = 300 or 1,253

c = cg = 2.54 µm µ = 10.963x10-6 Pa.s (Ω = 3,600 or 15,000 rpm)

Mesh: 1,320 elements

(132 circumferential x 10 radial elements)

The performance of a perfectly symmetric, aligned SGGFS operating at high
speeds is evaluated for positive (γ > 0) and negative (γ < 0) coning angles. Rubbing
contact between the seal mating faces occurs at approximately γ = -0.008o. In this
study, the minimum value of coning parameter corresponds to an almost zero outer
clearance (about 90% of reduction), while the maximum coning parameter
corresponds to an outer clearance four times larger than the seal inner clearance. The
seal clearance at the outer radius increases for γ > 0 and decreases for γ < 0. Table 4
provides the seal baseline parameters. Figure 5 shows the variation of the
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dimensionless flow rate (Q ) and seal opening force ( zF ) versus the dimensionless

coning parameter computed at two values of speed number, )(6 22 cpr refoΩ=Λ µ .

By using different scales for negative and positive coning angles for graphical
representation purpose, dimensionless coning parameter ( γ ) is defined as

( )c.180r.. oπγγ =     for positive γ [20]

( )c.180r..5 oπγγ =   for negative γ [21]

As the outer clearance decreases (γ decreases), the flow resistance increases
resulting in higher opening force and lower inward flow. Q and zF  increase as the

speed number (Λ) increases due to the increase in the hydrodynamic pressure over
the seal domain.
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Figure 5. Dimensionless seal opening force and inward flow rate versus the
dimensionless coning angle at two speed numbers, Λ=300 (dotted line) and Λ=1253
(solid line)

Figure 6 shows the static axial stiffness coefficients versus the coning parameter
at moderate (dotted line) and high speed numbers (solid line). These coefficients are
evaluated at a very low axial excitation frequency (σ = 1). For large γ (γ >
0.045 degrees) the stiffness coefficients tend to very low asymptotic values. Coned
faces with increasing radial clearance (divergent coning) have low stiffness to axial
motions. On the other hand, small convergent coning angles (negative γ) can
enhance the seal performance characteristics.
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Figure 6. Dimensionless seal static axial stiffness coefficients versus the
dimensionless coning angle at two speed numbers, Λ =300 (dotted line) and Λ
=1253 (solid line)
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Figure 7. Dimensionless seal static axial damping coefficients versus the
dimensionless coning angle at two speed numbers, Λ =300 (dotted line) and
Λ =1253 (solid line)
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The variation of the dimensionless static axial damping coefficients in relation to
the coning parameter is shown in Figure 7. Stiffness and damping increase as the
outer clearance decreases (γ < 0) because of the increasing flow resistance. For

small outer clearances ( 12−<γ ), the direct axial damping ( zzC ) increases

significantly as the coning angle decreases at high speed number (Λ = 1253).

Solid lines represent the characteristics evaluated at Λ=1 253 and dotted lines
represent those at Λ=300. The dimensionless variables used in the analysis of the
coning effects are computed as ).(. 22

ioavzz rrpFF −= π ;

)).(.(. 22
ioavzzzz rrpcKK −= π ; )).(.(.. 22

ioavzzzz rrpcCC −Ω= π ; and

))ln(..6()()(. 3
iooigav rrppccpQ µπ −+= ; where 2)( ioav ppp += .

6. Conclusion

A finite element study of the influence of the face coning on the behavior of gas-
lubricated spiral groove face seals operating at high speeds is carried out by using an
efficient procedure specially devised for thin gas film lubrication problems. It is
clearly shown that the coning effects have a strong influence on the gas seal
performance mainly at negative coning angles due to the increasing flow resistance
associated with the reduction of the outer clearance.
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