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ABSTRACT. In lubricated contacts, moving solids are separated by a strongly sheared thin fluid
film. The resulting temperature rise due to viscous dissipation can greatly affect the
behaviour of the contact. Therefore, it is essential to determine the temperature field in such
contacts. Temperature is obtained by solving the energy equation (convection diffusion
equation), which is modified to take into account the particular shape of the fluid film.
Upwind schemes for the finite element method are presented for both the one- and two-
dimensional steady configurations. They are then applied to simple lubrication problems and
their results are compared. In some cases numerical oscillations occur. Modifications of the
initial schemes are proposed to avoid those numerical problems. The influence of the
boundary conditions and the effect of the orientation of the flow are analysed in more detail.
Finally, the resolution of the three dimensional energy equation in a mechanical face seal is
presented. There is a good correlation between the numerical results and the experimental
data and this confirms the accuracy of the upwind scheme.

RÉSUMÉ. Dans les contacts lubrifiés, les solides en mouvement sont séparés par un film fluide
fortement cisaillé. L’élévation de température due à la dissipation visqueuse peut nettement
modifier le comportement du contact. Il est donc nécessaire de déterminer la température
dans le film fluide. Elle est obtenue en résolvant l’équation de l’énergie qui prend une forme
particulière du fait de la très faible épaisseur du film. Les schémas « upwind » pour les
éléments finis sont présentés pour les problèmes stationnaires uni et bidimensionnel. Ils sont
ensuite appliqués à des problèmes de lubrification simples et leurs résultats sont comparés.
Dans certains cas, des oscillations apparaissent. Pour éviter cela des modifications sont
proposées. L’influence des conditions aux limites et de la direction de l’écoulement est plus
particulièrement analysée. Pour finir, la résolution numérique de l’équation de l’énergie
tridimensionnelle dans une garniture mécanique est présentée. Les résultats numériques sont
en bonne corrélation avec les données expérimentales, confirmant ainsi la précision du
schéma « upwind ».

KEYWORDS: energy, temperature, convection, upwinding, lubrication, mechanical face seal.

MOTS-CLÉS : énergie, température, convection, lubrification, garniture mécanique.



214     REEF – 14/2005. Finite elements in tribology

1. Introduction

The efficiency of the finite element method in solving thermo elastic problems of
complex-shape structures has been since several decades. It was natural to extend the
method to fluid mechanics and, more particularly, to fluid film lubrication. The
Reynolds equation that gives the pressure field in a lubricated contact has been
solved by the finite element method since the mid-60’s (Huebner, 1975). In fact, this
equation is elliptic and can be easily solved using the well known Bubnov-Galerkin
method, or by minimising a functional.

Thermal effects play an important role in the behaviour of a lubricated contact
(Frêne, 1990), the key parameter of fluid viscosity being greatly dependent on
temperature. Moreover, thermal distortions can be of the same order of magnitude as
the fluid film thickness separating solids. It is therefore essential in fluid film
lubrication to solve the energy equation in order to determine temperature..

However, the available methods (such as that of Bubnov-Galerkin) gave a poor
fit in the solving of transport equations for fluids. Indeed, the convection terms in
equations lead to numerical oscillations (Zienkiewicz, 2000). At the end of the 70’s
and in the early 80’s many authors developed new schemes for tackling this problem.
Several authors used them to solve the energy equation for hydrodynamic bearings
(Kim, 1994, Kucinschi, 2000). But this energy transport equation is quite different
from those relating to classical fluid flow. Consequently, upwind finite element
schemes were modified to operate accurately for fluid film lubrication. However, it
appears that what is lacking is a “state of the art” account relating to upwind schemes
and the modifications needed to solve the energy equation in thin fluid film flows.
Hence, this is the aim of the present paper.

In the first part of this paper, upwind schemes for the finite element method are
presented for one- and two-dimensional steady state configurations. The second
section concerns their application to simple lubrication problems. In some cases
numerical oscillations occur and modifications to the initial schemes are proposed to
avoid these calculation problems. The influence of the boundary conditions and the
effect of the flow direction are analysed in more detail. In the third part of this paper,
the resolution of the three-dimensional energy equation for a mechanical face seal is
presented. The good correlation of the numerical results with experimental data
confirms the accuracy of the upwind scheme.

2. Finite element schemes for the energy equation

For an incompressible fluid, the equation relating to the conservation of energy
can be written as follows:



Energy equation with FEM     215

φ=





∂
∂

∂
∂−





∂
∂+

∂
∂ρ

iii
i x

T
k

xx

T
V

t

T
C [1]

where ρ, C and k are respectively the fluid density, the fluid specific heat and the
fluid thermal conductivity. The temperature of the fluid is T and Vi is the fluid
velocity in the xi direction. φ is the dissipation function. The first term on the left
hand side represents energy convected by the fluid and consists of first order
derivatives of T. This leads to problems during resolution and oscillations can occur
in the calculated temperature field. In order to obtain a more accurate solution,
several authors developed upwind schemes for the one-dimensional energy equation.

2.1. The one-dimensional problem

The stationary one-dimensional energy equation is expressed as:

φ=−ρ
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Td
k
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dT
CV
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[2]

The temperature T can be discretized in the following way:

∑≈ iiTNT [3]

where Ni are shape functions and Ti the nodal temperature values. By using a general
weighting procedure, a linear system can be obtained:

ijij fTK = [4]

The terms are calculated by integration on the domain of the problem (0≤ x ≤ L):
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Wi is a weighting function.

2.1.1. Bubnov – Galerkin method

In the Bubnov-Galerkin method, weighting functions are equal to shape
functions:
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ii NW = [6]

For the linear shape function and equal elements size Le, a typical assembled
equation between nearby nodes is obtained (Zienkiewicz, 2000):
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where Pe is the mesh Peclet number:
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If the source term φ is null, the temperature Ti must match the inequality:
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If |Pe|>1, the inequality [9] is violated by the equation [7]. In fact, oscillations
appear in the temperature field given by the Bubnov-Galerkin method. A solution is
to reduce Pe by reducing the element size Le. But, in a convection-dominated
problem, the number of nodes could become prohibitive. Another solution is to use
an upwind scheme.

2.1.2. Upwind schemes

The general solution of the differential equation [2] is:
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where A and B are integration constants. This exact solution could be expressed in
an assembled form:

[ ] [ ] [ ] 0T1)1(PeTPe12T1)1(Pe 1ii1i =−−α−+α++−+α− +− [11]

where the factor α is a function of the mesh Peclet number:

Pe

1
Pecoth −=α [12]
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The various upwind schemes lead to the equation [11] between nearby nodes and
thus to the exact solution of the differential equation [2] without numerical
oscillations.

The first possibility is to use a Petrov-Galerkin type of weighting in which
Wi.≠ Ni. The weighting functions are constructed in the following way
(Zienkiewicz, 2000):
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Ωe is the domain of one element. α is the factor defined in equation [12] and initially
introduced by Christie et al. (Christie, 1976). According to the authors, one can find

several expressions for the function iW
~

. Heinrich et al. (Heinrich, 1977) used a

polynomial of the second degree. In 1979, Griffiths and Mitchell (Griffiths, 1979)
proposed a simpler function:
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Finally, the terms of the linear system are written in the following way:
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If the source term φ is null, the equation [15] can be obtained by applying the
Bubnov Galerkin method to the equation:

( ) 0
dx

Td
'kk

dx

dT
CV

2

2

=+−ρ ����
2

LVC
k eρ

α=′ [16]

This method called balancing diffusion was simultaneously introduced by
Hughes and Brookes (Hughes, 1979) and Kelly et al. (Kelly, 1980). However, if the
source term is different from zero, it is necessary to use a weighting function defined
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by equation [13] for the source term, in order to obtain an accurate solution (Brooks,
1980). Another way for upwinding was proposed by Hughes (Hughes, 1978). His
solution operates if the integrals defined by equation [15] are calculated with a one-
point Gauss method. It is based on the following property:

)(N)0(W
~

)0(N)0(W iiii α=α+= [17]

Thus, Hughes applied the Bubnov-Galerkin method to equation [2] and used a
Gauss point located at the abscissa α instead of 0. It should be noted that there exist
various other schemes for transport equations not presented here. Donea (Donea,
1991) used a Galerkin least square method. Faria and San Andrès (Faria, 2000)
proposed a Galerkin method with high-order weighting and shape functions. An
original method based on the Laplace transform was presented by Bou-Saïd and
Colin (Bou-Saïd, 2000). In the present study, only the simplest and most useful
upwind schemes have been described.

2.2. Multidimensional schemes

On the basis of the previously presented “one dimensional” schemes, it is
possible to define two methods to solve the energy equation in two or three
dimensions: the product method and the Streamline Upwind Petrov Galerkin
(SUPG) method.

2.2.1. The product method

This method initiated by (Heinrich et al., 1977) and (Hughes, 1978) is based on
the following property: shape functions of a quadrilateral bilinear element or a
hexahedral trilinear element are obtained by a product of the shape function of the
bar linear element. The same procedure is applied to the weighting functions. Thus,
this method is limited to quadrilateral and hexahedral elements.
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Figure 1. Description of the product method
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On the basis of Figure 1, it is possible to define the shape function of the node 2
of the quadrilateral element:

)(L).(L),(N 122 ηξ=ηξ [18]

In the same way, a weight function can be defined:
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This method requires that the optimal value of the factor α and the fluid velocity
are determined for each direction of the element. These factors α are based on the
lengths defined on Figure 1.

2.2.2. The SUPG method

In this method the weighting functions are orientated by the fluid flow because
the convection is only active in the direction of the resultant fluid velocity.
Therefore, the weighting function is:
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The factor α and the Peclet number Pe are defined in the following way:
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Figure 2. Definition of the element length



220     REEF – 14/2005. Finite elements in tribology

The element length Le is calculated in the flow direction as shown in Figure 2.
Contrary to the product method, this scheme works for both quadrilaterals and
triangles. This method has been proposed by Brooks and Hughes (Brooks, 1980) and
(Kelly et al., 1980), using an anisotropic balancing diffusion.

3. Application to fluid film lubrication

Fluid film lubrication concerns fluid flow between two solid surfaces in relative
motion, as shown in Figure 3. The fluid film thickness h is within 3 or 4 orders of
magnitude less than the contact length L. Accordingly, using a dimensional analysis,
it is possible to simplify the energy equation:
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Figure 3. A lubricated contact

The z axis is normal to the surface of the solids. As shown by equation [22], the
heat conduction in the x and y directions is negligible. Thus, if Vz is null, the
problem is that of a pure convective flow in the x and y direction. Bou-Saïd and
Colin (Bou-Said, 2000) showed that the temperature is independent of the
downstream flow. Consequently, the factor α is always equal to 1 whatever the value
of the mesh Peclet number. Moreover, no boundary condition is necessary for the
exit area of the flow.
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3.1. Plane problems

Let us consider various simple problems with analytical solutions to validate the
schemes. In this section, the problem is two-dimensional. The film thickness h, the
velocity V of the fluid and the source function are supposed to be constant. The
energy equation [22] can be written in this way:
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This equation is similar to the one-dimensional transient heat conduction
equation where x is analogous to time t. There are several analytical solutions to this
problem, depending on the boundary conditions (Myers, 1971).
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Figure 4. Description of the problem and the mesh

The problem and the mesh used are presented in Figure 4. It is composed of two
elements in cross-film direction. The Peclet number of the mesh is defined by the
following expression:
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By using the weighting functions defined in equations [13] and [14], the terms of
the linear system can be written in the following way:
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If the source term φ is null, the numerical value of the temperature at node 2
given by equation [25] is:
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This equation clearly shows that the temperature T2 can become negative if the
Peclet number [24] is lower than 1. This is physically impossible and our solution is
to modify the diffusion term to preserve the symetry between i and j. Thus Nj is
replaced by Wj and equation [25] becomes:
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With this new finite element scheme, the nodal equation [27] is:

21

2

+
=

Pe

Pe

T

T
[28]

-1.5

-1

-0.5

0

0.5

1

1.5

0.001 0.01 0.1 1 10 100 1000
Pe

T
2/

T
1

Exact

PG1
PG2

Figure 5. Comparison of the exact solution with numerical methods (φ=0, T1≠0)
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If the inlet temperature is assumed to vary linearly from the wall to node 1 in the
problem described in Figure 4, it is possible to obtain an analytical solution. This is
presented in Figure 5 as a function of Pe. The numerical solution given by scheme 1
(equation [25], labelled PG1) and scheme 2 (equation [27], labelled PG2) are also
shown in Figure 5. Figure 6 presents the same type of comparison for a second
problem with T1 = 0 and φ��φ∆	

�

�≠�

These two examples illustrate that a direct application of the Petrov Galerkin
method (PG1) is not accurate. However, good results can be obtained using a
modified version of this method (PG2). Note that a better correlation between PG2
and the analytical solution is observed with a higher number of elements in the cross-
film direction z.

3.2. Three-dimensional problems

To compare the SUPG with the product methods, a three-dimensional problem is
analyzed. The data from the studied case, along with the boundary conditions used,
are presented in Figure 7. It shows the flow within very close two disks, one of
which is rotating. A pressure gradient in the radial direction leads to a leakage flow.
This fluid flow is similar to that occurring in mechanical face seals. An important
parameter in the numerical solution is the ratio of the maximal leakage velocity VL

(velocity in the radial direction) and the maximal rotor velocity (velocity in the
circumferential direction) Vω. In mechanical seals this ratio can vary from 0 to 1. To
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be consistent with the previous paragraphs, two mesh Peclet numbers, based on VL

and Vω, are introduced:
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∆R and ∆θ are respectively the length in the radial direction and the angular
extent of an element of the mesh.

Fluid film z
�

0.045 m
0. 04 m

ω

1µ
m

Leakage
flow

Isothermal
condition

Fluid film z
�

0.045 m
0. 04 m

ω

1µ
m

Leakage
flow

Isothermal
condition

Figure 7. Description of the three-dimensional problem

The energy equation [22] was solved using both the SUPG and the product
methods, while the new scheme for the conduction term was employed as in
expression [27]. The mesh was the same for all cases (4x72x4 elements in the R, θ, z
directions). The number of nodes is arbitrary but does not affect the following
results. 8-node hexahedral elements are used. In terms of the configuration, the
solution is independent of the angular position. Thus, only the temperature in the
mid-plane of the film is presented as a function of the radius. Results obtained with
both methods are presented in Figure 8 for values of PeL/Peω equal to 0.01 and
1. Temperatures are given in relation to a local reference value Tref defined in the
following way:

k

R
Tref

22ωµ= [31]

In both cases, the SUPG method gives a solution containing oscillations.
Moreover, by refining the mesh it is not possible to remove oscillations. This is not
acceptable. By contrast, solutions obtained with the product method are very
satisfactory.
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In fact the SUPG method distributes the upwinding action according to the fluid
velocity direction. However, in order to obtain an oscillation-free solution, it is
necessary to apply a complete upwinding in the radial direction. This is not possible
with the SUPG method and this example clearly demonstrates that the use of the
SUPG method is not a good way for solving the energy equation for a lubricated
contact. The product method, on the other hand, works very well.
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Figure 8. Comparison of SUPG and product methods on a three-dimensional
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3.3. Problems with reversed flow

In an extremely loaded bearing, a reversed flow can occur at the entrance of the
pad. In such situations, numerical oscillations may appear. To study this
phenomenon, the resolution of the energy equation in an infinitely wide pad bearing
is analysed. The configuration is presented in Figure 9. The ratio between h1 and h2

and the reference pressure are:
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Figure 9. Description of the three-dimensional problem

In this case, a reversed flow occurs at the entrance of the pad, as shown in
Figure 9. The energy equation [22] has been solved for a 20x20 elements mesh, with
the boundary conditions likewise presented in Figure 9. In accordance with the
previous studies, an upwinding factor is calculated for each element of the mesh:
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Oscillations are observed at the boundary of the reversed flow zone. In fact, a 2-
Gauss point integration method is used here to avoid singularity in the linear system.
Thus there are Gauss points where the upwinding factor [34], calculated for the
element, and the local velocity are acting in opposite directions, leading to numerical
oscillations. The solution in this case is to calculate the upwinding factor for each
Gauss point. Figure 11 shows the dimensionless temperature calculated with this
method. No oscillations are observed.
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Figure 10. Temperature field obtained using an upwinding factor computed at the
element
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Figure 11. Temperature field obtained using an upwinding factor computed at each
Gauss point

3.4. Summary

In this section, the finite element solution of the energy equation [22] for thin
fluid film flows has been presented using upwind schemes. Details of the method are
presented in the appendix. The question of upwinding in the cross-film direction has
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not been addressed here. In fact, it has no significant effect on the calculated
temperature and can be ignored. However, if the Peclet number in the z direction is
close to or larger than 1, it could be necessary to use an upwind procedure in this
direction. In this case the problem is not a pure convective one. Thus, the upwinding
factor should be calculated in terms of the optimal expression, defined by
equation [21].

4. Study of a mechanical face seal

Many authors have shown that the performance of non-contacting mechanical
face seals is greatly influenced by thermal effects and, in particular, by thermal
distortions that can be of the same order of magnitude as the film thickness (Lebeck,
1991). Within this framework a mechanical face seal test rig was built. The
experimental device is presented in Figure 12 and in other work of the present
authors (Brunetière, 2003). It consists of a carbon rotor and a stator, made of a
calcium fluoride (CaF2) disk fixed on an annular floating piston. This ensures a
perfect alignment of the surfaces.

Pressurized oil at constant temperature is supplied by hydraulic equipment.
Pressurized air, acting on the back of the piston, balances the opening force resulting
from the pressurized oil in the seal chamber. An infrared camera is placed below the
seal and the rotor face temperature is determined from radiation transmitted through
the semi-transparent stator. A mirror reflects radiation from the outer surface of the
rotor, thereby providing axial temperature distribution.

Caméra
Infrarouge

Infrared
cameraHuileOil AirAir

StatorStator RotorRotor

Thermocouple

Rayonnement
Infrarouge
Infrared
radiation

Caméra
Infrarouge

Infrared
cameraHuileOil AirAir

StatorStator RotorRotor

Thermocouple

Rayonnement
Infrarouge
Infrared
radiation

Figure 12. Experimental mechanical face seal and measurement technique
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Brunetière et al. (2003) have developed a numerical model of non-contacting
mechanical face seals. The geometric configuration of the fluid film separating the
seal faces is presented in figure 7. Governing equations have been established as
follows. Fluid velocities are obtained from simplified Navier-Stokes equations
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where I and J integrate the variations of the terms of viscosity µ through the film
thickness:
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Replacing relations [36] within the mass conservation equation and integrating
through the film thickness, one can obtain a generalized form of the Reynolds
equation
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where :
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The energy equation may be written as equation [22].

The pressure field is determined by solving the Reynolds equation [38] with the
Bubnov-Galerkin method:
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S is the annular plane domain limited by the inner and outer radius of the seal.
Four-node quadrilateral elements are used. The mesh has 11 nodes in the radial
direction and 72 in the circumferential direction. The finite element solution of the
energy equation is obtained using the upwinding scheme presented here:
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Ω is the fluid domain presented in figure 9. 8-node hexahedral elements are used.
The mesh has 11 nodes in the radial direction, 72 in the circumferential direction and
9 in the z direction. Both linear systems [40] and [41] are solved using multi frontal
algorithms developed by Davis and Duff (Davis, 1994 and Davis, 1997). All the data
and boundary conditions used in this calculation are presented in (Brunetière, 2003).

The steps in deriving a solution are as follows. From an initial fluid film
temperature field, dynamic viscosity is calculated. The Newton-Raphson method is
used to determine the geometric parameters of the stator position, assuring that the
pressure field balances external forces. After calculating the velocity and
temperature of the fluid particles, the temperatures of the faces are determined by
means of influence coefficient matrices. Thus heat flux conservation is ensured at the
fluid / solid interface. The distortions of the faces are calculated from the heat fluxes
at the seal faces and the influence coefficient matrices of displacement. The entire
procedure is repeated until the fluid film temperature remains unchanged from one
iteration to another. The calculation presented in figure 13 needs about 300
iterations, that is to say 30 minutes of CPU time on a PC.
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Figure 13 shows the temperature of the fluid film for a rotation speed of 600 rpm.
There are no numerical oscillations. The temperature is at a maximum near the exit
of the sealing dam, where the viscous dissipation is maximal. On the right hand side
of Figure 13, the temperature of the solids is represented. As expected, the highest
values are observed near the contact. Since no significant temperature gradients are
observed, no mesh refinement was carried out in this case.
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Figure 13. Temperature of a) the fluid film separating the stator and the rotor and
b) of the stator and the rotor of the experimental seal
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The experimental and numerical curves presented in Figure 14 are very similar.
These are the temperature profiles on the seal rotor. The average deviation between
experimental results and computational predictions in the contact area is about 9%.
Considering the uncertainty of temperature measurements (about 5%) and the
uncertainty surrounding the operating conditions (pressure of the sealed fluid: 2%,
load supported by the contact: 10%), this result is satisfying. The finite element
scheme for solving the energy equation works very well.

5. Conclusions

The energy equation [22] for thin fluid film flows cannot be solved with a
classical finite element scheme (such as the Bubnov-Galerkin method). Indeed,
convective terms lead to numerical oscillations, even for low mesh Peclet
numbers [24]. A way of resolving this problem is to use upwind schemes and the
simplest and most useful of such schemes developed for fluid mechanics have been
presented here. The energy equation in lubrication is purely a convective problem
for the directions parallel to the surfaces of the solids. Accordingly, initial schemes
have been modified to take into account these circumstances.

Finally, an efficient method to solve the energy equation for a fluid film
lubricated contact has been obtained. It is based on the Petrov Galerkin method.
Weighting functions depend on the fluid flow direction and are obtained by a
product method. ( Full details are presented in the appendix).

Some of the problems encountered in lubrication, such as reversed flow and the
ratio between the leakage flow and the Couette flow, have been investigated and
resolved with the scheme presented here. Moreover, a particular application for
mechanical face seals has been proposed. The good correlation of the numerical
results with experimental data confirms the accuracy of the upwind scheme.
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7. Appendix

The energy equation is defined by equation [22]. The weighting functions will be
defined for an 8-node trilinear hexahedral element as showed on Figure 15. It is
assumed that the cross film direction z and the ζ direction of the element are
perfectly aligned.

In this method, it is necessary to determine the components of the fluid velocity
(Vξ, Vη, Vζ) at each Gauss points in the element natural coordinates (ξ, η, ζ). In the
case of upwinding in the cross-film direction, the thickness ∆ζ of the element in the
ζ direction should be determined at each Gauss Point. Then an optimal α factor can
be calculated for the ζ direction by using equation [12]
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As shown previously, the α factor in the ξ and η directions is equal to 1, owing to
the pure convective transport conditions.
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Figure 15. An 8-node trilinear hexahedral element
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The 8 weighting functions are then defined in the following way:













−−












++












−−=













−−












++












++=













−−












−−












++=













−−












−−












−−=

ζ

ζ
ζ

η

η

ξ

ξ

ζ

ζ
ζ

η

η

ξ

ξ

ζ

ζ
ζ

η

η

ξ

ξ

ζ

ζ
ζ

η

η

ξ

ξ

αζηξ

αζηξ

αζηξ

αζηξ

V

V

V

V

V

V
W

V

V

V

V

V

V
W

V

V

V

V

V

V
W

V

V

V

V

V

V
W

111

111

111

111

4

3

2

1













++












++












−−=













++












++












++=













++












−−












++=













++












−−












−−=

ζ

ζ
ζ

η

η

ξ

ξ

ζ

ζ
ζ

η

η

ξ

ξ

ζ

ζ
ζ

η

η

ξ

ξ

ζ

ζ
ζ

η

η

ξ

ξ

αζηξ

αζηξ

αζηξ

αζηξ

V

V

V

V

V

V
W

V

V

V

V

V

V
W

V

V

V

V

V

V
W

V

V

V

V

V

V
W

111

111

111

111

8

7

6

5

[43]

Finally, the terms of the linear system are written:
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