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ABSTRACT. An efficient method for thermoelastohydrodynamic (TEHD) journal bearings
lubrication analysis is presented. Lubrication film temperature is treated as a time-dependent
two-dimensional variable and is averaged over the film thickness. In order to compute the
film and solids temperature, a new heat flux conservation algorithm, based on both Finite
Element (FEM) – Finite Volume (FVM) methods, is proposed. A key point in this analysis is
the consideration of different heat transfer coefficients at film – solids and solids –
surroundings boundaries. The Reynolds equation in the film is solved using the FEM
discretization. A mass-conserving cavitation algorithm is applied and the effect of viscosity
variation with the temperature is taken into account.

RÉSUMÉ. Une méthode efficace pour la lubrification thermoélastohydrodynamique des paliers
est présentée. La température du film lubrifiant est considérée comme une variable
bidimensionnelle, dépendante du temps et moyennée suivant l’épaisseur du film. Un nouvel
algorithme de conservation du flux de chaleur basé sur les méthodes des éléments finis
(FEM) et des volumes finis (FVM) est proposé pour le calcul de la température dans le film et
les solides. Un point important pour cette analyse est le choix des différents coefficients de
transfert de flux au niveau des interfaces film/solides et solides/milieu ambiant. La résolution
de l’équation de Reynolds dans le film s’appuie sur une discrétisation par éléments finis. Un
algorithme de conservation de débit massique est utilisé et la variation de la viscosité avec la
température est prise en compte.

KEYWORDS: thermoelastohydrodynamic lubrication, Reynolds equation, finite element,
bearing, connecting rod.

MOTS-CLÉS : lubrification thermoélastohydrodynamique, équation de Reynolds, éléments finis,
palier, bielle.
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1. Introduction

Thermal effects play an important role in the engine bearing analysis and design.
In order to assist designers in the effort to limit the maximum temperature in
bearings, computer codes should include accurate thermal analysis. First, knowledge
of oil temperature field is required to determine the oil viscosity which is strongly
dependent of temperature. Knowledge of the temperature distributions in the
bearings (housing and shaft) is also required to calculate thermal deformations.
These deformations may significantly affect the film thickness profile and also the
film temperature contours. Moreover, the deformation of the bearing due to
hydrodynamic pressure has to be considered in conjunction with the thermal
deformation. All these deformations result in a non-uniform effect on the film
thickness and affect film thermal field as well as other bearing characteristics
(maximum pressure, maximum temperature, ...).

Several thermohydrodynamic (THD) or thermoelastohydrodynamic (TEHD)
analyses have been previously developed (Rohde et al.1975; Khonsari et al., 1991;
Fillon et al., 1990, 1992; Paranjpe et al. 1994). Most of them are steady-state
analyses. However, engine bearings cannot be considered as working under static
load conditions. Few transient THD and TEHD problems were investigated. The
first analysis were proposed by Ezzat et al., 1974, Khonsari et al. 1992, but they do
not include mass conserving cavitation. Paranjpe et al. 1995 proposed a transient
THD problem of an engine crankshaft bearing, including mass conserving cavitation
algorithm. Piffeteau and Souchet, 1999, 2001 studied the TEHD behaviour for
connecting-rod bearing in which Reynolds equation is one-dimensional (1D) and the
energy equation for the fluid and the heat equation for the solids are two-dimensional
(2D). Kim et al. 2001 presented also a 2D TEHD study for a con-rod bearing. In this
study the film temperature is averaged over the film thickness and the solid
temperature does not have a time dependency.

In the present paper an efficient method for thermoelastohydrodynamic (TEHD)
lubrication journal bearings analysis is presented. The model is based on FEM and
FVM methods. The film temperature is averaged over the film thickness and the
solid temperature is three-dimensional. The model is first checked by comparison
with a steady state analysis. Then the results are presented for a dynamically loaded,
connecting rod big end bearing.

2. Elastohydrodynamic governing equations

In this study the usual assumptions of lubrication theory are used. The flow is
supposed to be laminar and the inertial effects are neglected in the film. These
hypotheses allow the writing of standard Reynolds equation, in the incompressible
case:
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This equation can be solved only for the full film zones. For the non-active
(cavitation) film zone a second equation must be defined (Bonneau et al., 2001):
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where ρ is the density of the lubricant - gas mixture. In order to solve
simultaneously equation [1] and [2], a universal variable D and a replenishment
variable r are defined. If �0 is the oil density the latter is given by 0/hr ρρ= � �

generalised Reynolds equation can thus be written (Bonneau et al., 2001):
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The universal variable D and the cavitation index F are defined as follows:
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Without misalignment the film thickness equation is given by:

( ) ( ) ( ) )y,(hy,hhy,h te0 θθθθ ++= [5]

where:

θ = x/R is the angular coordinate for a housing of R radius,

( )θ0h is the nominal film thickness, for a rigid bearing

( ) ( ) ( ))sincos1(Ch yx0 θεθεθ −−= ,

( )y,he θ  is the elastic deformation of the bearing housing and shaft, due to the

hydrodynamic pressure,

)y,(ht θ  is the deformation due to thermal expansion of the bearing housing and

shaft.
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The lubricant viscosity is assumed to vary only with temperature:
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where aµ  is an asymptotic viscosity, 0µ  is the oil viscosity at T0  and � is the

thermoviscosity coefficient.

The balance of the applied loads with the hydrodynamic pressures leads to:
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where xF  and yF  are the applied loads acting on the bearing.

The boundary conditions used to solve the modified Reynolds equation are based
on the active/non-active film zone separation and have been already detailed by the
authors in a previous study (Bonneau et al., 2001).

3. Film thermal governing equation

In order to compute the film temperature, a heat flux conservation algorithm,
based on FVM is proposed. Lubrication film temperature is treated as a time-
dependent, two-dimensional variable, and is supposed to be constant over the film
thickness:

For a i element of the film mesh (figure 1) with a Ti mean temperature we can
write:
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with:

– ρ� µ and Cp – density, viscosity and specific heat of the lubricant, respectively,

– qji – incoming/outcoming oil flow on element boundaries,

– T* – average film temperature of the flow across the boundary, such as: T* = Tj

if qji > 0; T* = Ti if qji < 0,

– Th – housing temperature; Ts – shaft temperature,

– Hs and Hc – exchange coefficients between the film/shaft and film/housing,
respectively.
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Figure 1. Boundary conditions for one film mesh element

Equation 8 is not convenient for the supply elements. The lubricant in supply
elements is in fact a mixture between the supply oil and film oil and its temperature
depends on the supply flow (qs) and on the flow around the supply groove (qe).
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where �
�� is the temperature around the supply element and Tsupply is the oil supply

temperature.

4. FEM formulation for the EHD problem

The FEM formulation for the EHD problem has been previously described by the
authors (Bonneau et al., 2001). However, for a better understanding of the present
paper, a short review is given:

– Two different problems must be formulated:

- Problem 1: the film thickness is known and the active zone/non-active film
zone separation coordinates are sought;

- Problem 2: the active and the non-active film zone are known; the film
pressure and thickness, which satisfy the Reynolds equation, the equilibrium
equations and the elastic equations, are sought.

� Both problems must be solved at each time step. To solve problem 1, the
modified Reynolds equation [3] is considered. Problem 2 is solved using the classic
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Reynolds equation [1], the equilibrium equations and the relation between the film
thickness and the hydrodynamic pressure thanks to compliance matrix.

How the computing of the two problems is similar, only the modified Reynolds
equation development is presented here. A linear system of algebraic equations in D
is obtained:

� � ���� � � [11]

where R is the residual vector, D is the universal variable and [M] is a n rank matrix;
n is the number of nodes defined for the film domain.

One term of the [M] matrix can be written as:
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where m represents one of the ngp Gauss points on n element and nne the number of
nodes per element. Nmj is the weight function relative to j node while Nmk is the
interpolation function relative to k node. Fk represents the status of k node and takes
the value 1 if it is in the active zone and 0 in the opposite case.

The vector S is the RHS member of modified Reynolds equation. The j term of S
be written as:
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The elastic film thickness at node j under the hydrodynamic pressure field is:

( )∑
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n

1k
ke pf)k,j(C)j(h [14]

where [C] is the radial displacement at node j due to a unit load f at node k; f is
determined by the integration of the pressure field (Annexe 1 - Bonneau et al.,
2001).

The system of discrete Reynolds equation and equilibrium equations, non-linear
in �, xε  and yε , is solved through the Newton-Raphson method.
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5. Numerical formulation for the thermal problem

The bearing and shaft temperature fields are three-dimensional. Using the FEM
discretization two thermo (�CT]) and thermo-elastic 	�CeT]) compliance matrices are
precomputed. Successively, at each element of the  housing and shaft surface mesh, a
unit heat flux load is applied while the flux remains null on the others and the heat
transfer equation, without the transient term, is solved. Thermal field under this unit
load gives an elementary thermal solution. Using this thermal field the solid
deformations are computed, so an elementary thermo-elastic solution is also
obtained.

For a i element of the solid surface mesh located on the housing, being at a mean
temperature ��, we can write:

)TTT(Hk i0i −−=− φ [15]

where k is the solid thermal conductivity, φ� the mean flux passing through the
element surface, H a heat transfer coefficient, �� the reference temperature and T the
external temperature.

Equation 15 written for each solid surface element leads to a linear system of
algebraic equations in iφ and ���
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– if i is a supply/solid surface element
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– if i is a film/solid surface element
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where Hfilm Hamb, and Hsupply are the heat transfer coefficients between solid and the
film, ambient medium and the supply oil, respectively; Tamb, T(i), Tsupply are the
ambient, film and supply oil temperature, respectively.

In order to take into account the heat flux conservation in the solids, a last
equation must by written:
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where Sj is the surface of a j solid-mesh element.

Finally, the linear system is: [A] � = B [20]
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By linear combination of thermo-elastic elementary solution, we get the film
thickness term due to the thermal field at j film surface mesh node:

∑
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In order to compute the film temperature, the equation 8 is developed. For a �

film-mesh element:
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Figure 2. Validation of the solid thermal 3D model (comparison with a commercial
software)

6. Numerical algorithm

The numerical algorithm proposed by Bonneau et al., 2001, is adapted for the
TEHD problem. Choosing the time step for the transient problems must be directly
link with the functioning cycle of the studying mechanism. In this case, for a
connecting rod bearing at 6 500 rev/min, the time step is around 0.022 s.
Nevertheless, convergence problems can induce a reduction of the initial time step.
The convergence criterion is the equality between the applied load and the
hydrodynamic pressure at 0.01%.

input data
initialisation
do for each time step

do until stability of domain, film thickness and pressure
do until stability of the cavitated area: Problem 1

Compute D (modified Reynolds equation)
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Modify  the cavitated boundaries
end
do until R(���� � � ���	
�� 
 Raphson method): Problem 2

Compute R
Correct the pressure, the eccentricity
Compute the elastic deformations
Modify the film thickness

end
Compute a new thermal field

end
write pressure, film thickness, temperature, etc.

end

7. Code validation

Mitsui (1987) presented a thermal experimental study for a steady state journal
bearing. Comparisons are made with some of his experimental measures. The test
bearing has 100 mm in nominal diameter and 70 mm in length. No valid information
is given for the solid thermal properties. However, considering that the bush is made
in steel, 50 W/(m°C), 7 500 kg/m3 and 400 J/(kg°C) values have been chosen for the
housing conductivity, density and specific heat, respectively. The journal
temperature is fixed at 49°C. One housing axial groove 60mm in length and 10° in
arc angle is used.

7.1. Solid thermal 3D model validation

In order to validate the thermal 3D model for solids, a comparison is made
between results obtained with the presented model and a commercial FEM software
(SDRC – I-DEAS). The Mitsui bush geometry is chosen. The heat transfer
coefficients between the solid and the ambient, film and supply groove oil are
100 W/(m2°C). The ambient temperature is 30°C; the supply oil and film
temperature is 100°C.

Figure 2 show a very good correspondence between the two computation results
for the minimal and maximal temperature and for the thermal field.

7.2. Complete model validation

A first comparison with Mitsui bearing is made for 2 500 rev/min rotational
speed, 0.78 radial clearance, 98 kPa supply pressure and 5.68 kN applied load. The
initial supply temperature is 40.3 °C and the ambient temperature is 27.3 °C. The
lubricant characteristics are presented in Table 1.
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Table 1. Oil properties – transformer oil

Viscosity [Pa.s] 0.00736

Specific heat [J/(kg°C)] 1970

Density [kg/m3] 862

Figure 3 shows the bearing bush thermal field obtained for 10 W/(m2°C) heat
transfer coefficient between the housing and the surroundings. The maximum bush
temperature is 48.4 °C is in good corresponding with Mitsui experimental measures
(48°C – Figure 4). In the same time the isothermal lines are quasi identical,
excepting the colder point. In the present case, the colder point is located on the
supply groove surface, which seems to be natural. For the Mitsui case the colder
point is displaced in the journal rotating direction, which cannot be really explained.

 

supply groove 

Figure 3. Validation of the solid thermal 3D model (comparison with experimental
data)

supply groove 

Figure 4. Mitsui experimental data
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Figure 5. Film temperature field – Comparison with Mitsui’s

Table 2. Oil properties – turbine oil

Viscosity [Pa.s] 0.0192

Specific heat [J/(kg°C)] 1950

Density [kg/m3] 859

A second comparison is made for 2 250 rev/min rotational speed, 0.78 radial
clearance, 98 kPa supply pressure and 3.92 kN applied load. The initial supply
temperature is 40.3°C and the ambient temperature is 22.5°C. The heat transfer
coefficient between the housing and the surroundings is 10 W/(m2°C). The journal
temperature is fixed at 49°C and 5 000 W/(m2°C) heat transfer coefficient between
the film and the solids is chosen.

The lubricant characteristics are presented in Table 2.

Figure 5 shows the average film and the bush film interface temperature variation
on the middle-bearing plane. The Mitsui experimental data are also presented.
Similar results are noticed. The small difference between the theoretical study and
the experimental measures can be explained by the fact that the real solid
characteristics (conductivity, density, transfer coefficients, etc.) are not given by
Mitsui.
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Table 3. Operating conditions and bearing characteristics for a gasoline engine
con-rod bearing

Bearing Radius 24 mm

Bearing Axial Length 19 mm

Radial Clearance 0.015 mm

Crank-Shaft Arm-Length 41.75 mm

Connecting-Rod Length 144 mm

Oil Supply Pressure 0.5 MPa

Coefficient of thermal expansion 12.10-6 °C-1

Thermal conductivity 50 W.m-1°C-1

Specific heat 500 J.kg-1.°C-1

Density 7900 kg.m-1

Young’s modulus 200 GPa

Poisson’s ratio 0.3

0 90 180 270 360 450 540 630 720
Crank Angle, d egr ee

-12000

-8000

-4000

0

4000
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Figure 6. Load diagram for a connecting rod bearing at 6 500 rev/min
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 0° crank angle 
supply groove: 86.6°C

180° crank angle supply groove: 85.8°C 

360 ° crank angle 

supply groove: 87.5 °C 

540° crank angle supply groove: 85.9°C 

supply groove: 88°C 90° crank angle 

270° crank angle supply groove: 89.9°C 

450° crank angle supply groove: 88.7°C 

630° crank angle supply groove: 87.3°C 

Figure 7. Thermal fields for 0°, 90°, 180°, 270°, 360°,450°, 540° and 630° crank
angles

8. Dynamically loaded connecting – rod bearing

A TEHD study is presented for a typical big end con-rod bearing, used in spark
ignition engines. The bearing characteristics and the operating conditions are
reported in Table 3. Figure 6 represents the load diagram at 6 500 rev/min.
Properties of the sample oils used in this study are listed in Table 4. The heat
transfer coefficient between the solids and the surroundings is 100 W/(m2°C). The
heat transfer coefficient between the solids and the oil film is 10000 W/(m2°C).
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180 ° crank angle 

360° crank angle 

Connecting rod big end Shaft 

Figure 8. Solid thermal field for 180° and 360° crank angles

Thermal field for 0°, 90°, 180°, 270°, 360°, 450°, 540° and 630° crank angle are
presented in figure 7. It can be observed that the average temperature of the supply
groove is around 86°C, even if the initial supply temperature is 80°C. The maximum
film temperature, for a complete cycle, is 140°C and the average temperature is
120°C.
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Table 4. Oil properties

Oil Viscosity at 20°C 0.135 Pa.s

Asymptotic viscosity 0.0035 Pa.s

Thermoviscosity coefficient 0.03662 °C-1

Density 860 kg.m-3

Thermal conductivity 0.14 W.m-1.°C-1

Specific heat 2000 J.kg-1.°C-1

An important parameter is the bearing deformation generated by the thermal
field. If the maximum solid deformation due to the pressure field is around 0.01 mm,
the thermal field induces 0.026 mm shaft and 0.027 mm housing maximum
deformation whereas the minimum film thickness is about 0.002 mm. In fact, if the
housing deformations increase the gap, the shaft dilatation will decrease the film
thickness. The combination of both induces a reduction of the minimum film
thickness of about 0.001 mm which cannot be neglected.

Figure 8 shows the thermal fields for the housing and the shaft at 180° and 360°
crank angle.

Table 5. Comparison between EHD and TEHD model

EHD case TEHD case

Minimum film thickness 4.18 µm 2.1 µm

Maximum film pressure 31.3 MPa 41.7 MPa

Oil Flow 0.06 l/min 0.11 l/min

Table 5 shows the main parameter for both EHD and TEHD cases. Major
differences can be observed which underline the importance of the thermal effects in
the con-rod bearing behaviour.

9. Conclusion

A fast and efficient method for the dynamically loaded journal bearing has been
presented. The model has been validated through comparison with previous
experimental data. A connecting rod bearing application is presented, in order to
demonstrate the algorithm efficiency.
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The major difficulty in using this algorithm is to choose the heat transfer
coefficients between the film and the solids. These coefficients are supposed to be
constant for the whole cycle. Actually they should be a function of the local film and
solid temperature.
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