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ABSTRACT. In this work we propose to deal with the study of static sealing. The latter is
modelled in a microscopic scale with finite elements method. The numerical simulations are
related to the contact between conical asperities of a rough surface and a smooth rigid plan.
It thus makes it possible to observe the local behaviours of the asperities during their
crushing and to draw conclusions on the influence of various parameters such as the attack
angle. If it is possible to deal with only a few asperities, the finite elements method does not
allow us to succeed a full three-dimensional study. We thus propose in this work a simplified
approach to solve this contact problem and to perform its generalisation to a random
morphology. This useful method considers the contact between the real surface, which
roughness is modelled as a distribution of indenters with various attack angles, and a smooth
rigid plan.

RÉSUMÉ. Nous nous proposons dans cet article d’étudier le problème de l’étanchéité statique.
Celui-ci est considéré à une échelle microscopique et modélisé à l’aide de la méthode des
éléments finis. Les simulations numériques réalisées consistent à observer le contact entre les
aspérités de la surface rugueuse et un plan rigide parfait. Ceci nous permet alors d’étudier le
comportement local des aspérités lors de l’écrasement, ainsi que l’influence de divers
paramètres comme leur angle d’attaque. S’il est possible de réaliser de telles études en
modélisant quelques aspérités seulement, la méthode des éléments finis ne permet pas de
simuler un contact tridimensionnel complet. Nous proposons donc dans cette étude une
approche simplifiée afin de traiter ce problème de contact et de le généraliser à des
géométries aléatoires. Cette nouvelle méthode propose la modélisation du contact entre la
surface réelle, dont la rugosité est idéalisée à l’aide d’indenteurs aux angles d’attaque
variant, et un plan rigide parfait.

KEYWORDS: rough surfaces, finite elements modelling, pressure distribution, asperities,
crushing, static sealing .

MOTS-CLÉS : surfaces rugueuses, modélisation par éléments finis, distribution des pressions,
aspérités, écrasement, étanchéité statique.
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1. Introduction

To understand the phenomena which occur during the contact of two bodies is a
key point to apprehend the static problem of sealing. This problem deals with multi
scale property of roughness which must be taken into account in the whole behaviour
of the system. Indeed, we can distinguish different observation levels. A
macroscopic scale (form defect), mesoscopic (waviness defect), and microscopic
(roughness). The modelling of the contact on a macroscopic scale is well established
with Hertz and Boussinesq theory. On the contrary the contact study on a
microscopic scale is much more difficult to apprehend.

In this paper we propose to study the local scale effect of roughness and slopes
on contact problem. By comparison with the spherical model of roughness
introduced by Greenwood and Williamson model (Greenwood et al., 1966) to study
statically the elastic contact. However, our work shows that a conical geometry of
roughness fit better the experimental phenomena observed (Jourani et al., 2003). The
contact between two surfaces is thus modelled as the contact between a conical
asperity Figure1 and an rigid plan (we thus use the geometrical and the behavioural
equivalence principles (Johnson, 1984) suitable for tribology).

Figure 1. Geometry of an asperity

2. Crushing of an asperity

In order to observe the specific dimensions relating to the three parameters
presented, we carried out measurements on three types of surfaces: milled, sand
blasted and rectified ones. These measurements enabled us to define the framework
of our study. That is the reason why the asperity modelled shows a height of 20µm,
an attack angle of 10° and a curvature radius of 10µm. As the geometry of the
asperity is defined, let us present the model realized by finite elements method with
SYSTUS software (Systus user manual, 2004).

Due to the revolution symmetry of an asperity, we performed a two dimensional
axisymetrical model. The mechanical behaviour considered is elastoplastic with non
linear isotropic hardening, see equation 1.
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The Young’s modulus is equal to 210GPa, the Poisson’s ratio and hardening

coefficient to 0.3. The elastic limit (
y

σ ) is 300MPa.

The substrate supporting the asperity shows mechanical behaviours similar to the
latter, and proportions enabling us not to be subject to the influence of the boundary
conditions. The calculations are performed in a large strains/large displacements
option using an updated Lagrangian formulation. At each step non linear finite
elements equations at equilibrium are solved using a Newton Raphson method. To
deal with the contact we used a penalties method. The friction phenomena are not
analysed in this study.
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Figure 2. Strength/depth curve for the crushing of the modelled asperity
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Figure 3. Strength/depth curve for the crushing of a milled real surface

The observation of the values and distributions relating to the stresses and the
strains can be interesting to understand the phenomena of the crushing of an asperity,
but the study of the strength/depth curve Figure 2 gives us many information (as the
remanent depth, the normal stiffness, the strains energies, the real contact surface…).



274     REEF – 14/2005. Finite elements in tribology

The aim of this study is to understand the phenomena that appear during the
crushing of a real surface. Now, let us observe the results relating to the crushing of
an actual milled surface Figure 3. This evolution presents a rigorously different
evolution from that observed with the finite elements model. Indeed the existing
relation between plastic and elastic strains energies indicates that the experimental
system reacts differently to the stresses applied. This significant difference can be
interpreted in different ways. Among these two explanations are particularly
distinguished. The first relates to the evolution of the plastic strain according to the
attack angle of the asperity. In this, we evoke in particular the ideas presented by
Tabor and Johnson (Johnson, 1984) concerning the concept of representative strains
for the framework of the conical indentation. This concept will be then developed
further in this study. Thus if the attack angle of the asperity increases the rate of
plastic strain does too. The more acute the rake angle is, the more rapidly it evolves
in an elastoplastic way.

3. Crushing of a multi asperity system

This model is based on the considerations and the assumptions exposed in the
previous section. The geometry defined for this study authorizes us to interpret the
results only in the case of the crushing of a milled surface Figure 4. The principle
consists in crushing simultaneously three asperities whose geometries are identical.

This interpretation is based on the one hand on the observation of the von Mises
equivalent stresses, and on the other hand on the interpretation of the results relating
to the strength/depth curve.

Figure 4. Modelling of multi asperities crushing
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Figure 5. Plastic areas ( vMσ <300Mpa)

3.1. Observation of the distribution of the von Mises stresses

While observing, during crushing, the areas evolving in a plastic way (von Mises
stresses higher than the elastic limit of the material) Figure5, we can observe two
singularities. The first one relates to the presence of areas that remain elastic even
after the total crushing of the asperities. Indeed, theses areas show hydrostatic
compression aspects. The second relates to the appearance of a similar phenomenon
localised between the asperities. The areas that remain in an elastic evolution during
crushing are particularly interesting to study in order to understand the phenomena
that appear during the static sealing. Indeed, they could attest presence of ways of
leak during the flattening of two surfaces.

3.2. Observation of the strength depth curve

In order to study a modelling that allows the observation of the influence of the
attack angle on the results, we propose geometry different from the preceding one. It
is a four asperities problem whose attack angles are increasing by step of 1°. Thus,
we will study three models. The first is relating to attack angles of 1° to 4° (rectified
surface), the second one of 5° to 8° (milled surface), and finally, the third one of 9°
to 12° (sanded surface). This study will thus enable us to observe the interactions
between the asperities presenting different geometrical characteristics. Although the
orders of magnitude relating to the curves presented in Figure 6 are closed to these
induces by the crushing of a real surface, the shapes are different. As waited, the
more the attack angle becomes acute, the more the plastic strain rate becomes
significant.

We can also observe that the total strain energy decrease with the increase of the
attack angles. These systems present an evolution much nearer to the framework of
the experimental crushing, because the rates of elastic strain are more significant
than the rates of plastic strain. Thus, the influence of the behaviour of the adjacent
asperities significantly modifies the behaviour relating to a single asperity.
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Figure 6. Strength/depth curve concerning the crushing of asperities presenting
different rake angles

The study of the crushing of the asperities presents many difficulties, in particular
with regard to the comprehension of the interactions phenomena between the
entities. These phenomena depend on various parameters related to the topography
of the system, but also to the behaviour of the material. We can note significant
differences of the results according to the hardening mode adopted. For these
reasons other studies showing the variations on the mechanical parameters must
imperatively be carried out before being able to conclude on such phenomena.

Studying and understanding the phenomena governing the behaviour of a multi
asperity system is a significant work, but to model the crushing of a surface in its
entirety is as much. The finite elements cannot currently satisfy this need. To mesh
and compute a simulation on a complete surface would require very significant
resources in data-processing calculation. However, modelling such a simulation is
possible by using simplifications made from numerical simulation, and by
introducing the concept of representative strain.

3.3. Representative strain

Many works currently refer to the representative strain within the framework of
the indentation of a plane by an indentor. The most famous result for a conical
indentation is the relation )tan(.2.0 βε =

T
 (Johnson, 1984). We propose now to define

such an expression in the case of the crushing of an asperity. This strain will be
given to be dependent on the minimum of parameters in order to be able to be
applied to the greatest number of cases. This whole study is based on dimensional
assumptions (Hanche-Olsen, 1998) related to the Vashy Buckingham’s PI-theorem.
In literature many studies were developed to deal with the indentation test (Bucaille
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et al., 2003; Cheng et al., 2000; 1999; Dao et al., 2001). What we propose here is to
do a similar work for the crushing of an asperity.

The expression of the evolution of the strength F function of the indentation
depth h  used to be:

���� = [2]

We can define such an expression related to the case of the crushing of an
asperity:

���� =  with 
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Where a  is the contact radius and 
n

H  the normal hardness of the material.

As we want this expression to be dependant on the minimum of parameters, let
assume that the evolution of the indentation force is the following:
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Where 
*

E  is the reduced Young’s modulus, n  the hardness coefficient of the

material, whose behaviour law is equation [1], 
r

σ  is the representative stress which

will allow us to introduce the representative strain concept. We need to find another
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With equations [3], [5] and [6] we can find the following relation:
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This may not depend on the hardness coefficient (Hanche-Olsen, 1998). This
assumption will allow us to find the representative strain. For various values of the
hardness coefficient, we can obtain by finite element modelling the curves presented

in Figure7. As 
�

�

σ
 depend on those coefficients [7], obtaining mixed curves ensures

us to be independent of n , and thus to determine the value of the representative
strain for a defined attack angle.

Figure 7. Mixed curves principle

These mixed curves are obtained by carrying out modifications on the value of

rσ  and finding the maximum of correlation. Thus we can find rε  using the

following expression:
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We performed 480 indentation tests with various material parameters (Young’s
modulus, yield stress, hardening coefficient), and various geometries with
modification of the rake angle. We verified that the results do not depend on the
other geometrical parameters. Results are presented in Figure 8 and allow us to
determine the expression of the representative strain for attack angles that varies
from 1° to 10°.

������ βε ���=
�

[9]
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Figure 8. Representative strain

As finite elements cannot allow us to study a real flattening, we propose to use
that representative strain concept in a new modelling way.

4. Conical model of the roughness

In this part of work, the roughness is considered as a distribution of conical
indentors withe various scale of attack angle (figure 9). For a conical tip geometry
(Johnson, 1984), a nominal indentation strain is indepenent of the penetration depth
of the indenter, it is only related to the attack angle β of the tip:

������ βε ���=
�

[10]

In the case of an elastic contact, the mean pressure undergone by the asperity can
be written:

������
� β�	

�
���= [11]

The definition of the average deformation is introduced by taking into account of
the average attack angle of the roughnessβ.

Figure 9. Presentation of the roughness summits by cones
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The average pressure undergone by the asperities after quantification of the
average attack angle of roughness, is written:

������
� βε �

�
���= [12]

By analogy with the Greenwood model [10], we defined a new plasticity index
(Jourani et al., 2003) by considering the conical geometry of the roughness:

β����
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�

����
���=Ψ [13]

The deformations are elastic if ΨGW < 0.6 entirely plastic if ΨGW >1 and
elastoplastic for 0.6 < ΨGW < 1.

4.1. Numerical model

The local behavior of each asperity is investigated numerically by means of the
local summits geometry analysis. In this approach, we consider the contact between
a perfectly smooth rigid plane and the local summits of the surface and neglect the
elastic interaction between the asperities.

If the local area of the contact Aj between an asperity j and the plane is supposed
elliptic, having semi-axes aj and bj given by (Ogilvy et al., 1991), Aj is given by:

���
��� π= [14]

For a numerical solution, we discretize the local area Aj into N elements cji (i =
1,2,…N). In this case, the local pressure distribution on each asperity j, is given by
the expression:
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Where pjm the mean pressure undergone by the asperity j calculated by using the
equation [2]

The normal force Fj exerted on an asperity j is given following relation:

�
�

���
	
� ∑= [16]

The total load supported by summits is:

∑=
�

�
�� [17]



Effect of local slopes of roughness     281

Figure10. The algorithm used to calculate the parameters of contact

Figure 11. Topographies of real rough surfaces: (a) Ground surface, (b) milled
surface; (c) sanded surface

Figure 10 is a flow chart for the contact calculation program. The three-
dimensional surface topography is directly sampled by the computer-generated
surface topography. For a given initial separation d, the local surface of the contact
Aj, the local displacement dj and the average attack angle βj of each asperity Can be
determined. These parameters allow to determine the distribution of the pressure and
the real contact area undergone by the roughness.

(a) (b)
(c)
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The analysis has been programmed in Matlab to study the contact between three
rough surfaces of steel XC48 (E = 210 GPa;ν = 0.3) and a smooth rigid plane. The
topographies of these surfaces are shown in Figure 11.

4.2. Numerical results

The calculated results are shown in Figure 12 and Figure 13. Figure 12 shows the
pressure distributions for the three contact problems. In the case of the milled and
sanded surface, pressure peaks reach 60-80 times the nominal contact pressure
(Pnom = 200 MPa), while in the case of ground surface the maximum pressure is only
8 times the nominal pressure. We can also observe that the mean contact pressures
Pm (Table 1) increase with the increase of the attack angles. The comparison of these
pressures with the hardness of the material (H = 1280 MPa) allows to obtain an
elastic behavior of ground surface and a plastic behavior of milled and sandblasted
surface.

Figure 12. Pressure distributions. (a) Ground surface; (b) milled surface;
(c) sandblasted surface

Figure 13. Distribution of real contact areas: (a) Ground surface; (b) milled
surface; (c) sandblasted surface
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The real contact area is much smaller than the nominal contact area (see
Figure 13) and decreases with the increase of the attack angle. It is shown that for
different contact surfaces, the distribution of real contact area is entirely different.

Table 1 presents the rate of the portance Ar, the mean contact pressure Pm, and
plasticity index ψcone, calculated from the pressure distribution and the real contact
area.

Table 1. Numerical results

To determine the parameters of contact, we can also use a model which considers
the elastoplastic behaviour of the roughness. Following the pressure supported by the
summit, we can distinguish three regimes of deformation (Figure 14):

Figure 14. Different regimes of deformation (Johnson, 1984)

In the case of an elastic contact, the mean pressure undergone by the asperity can
be written:

������
� β��

�
��= [18]

If the contact is elastic-plastic, the mean pressure is given by:

Surface Ra (µm) β(°) Pm(MPa) Ar (%) ψcone

Ground 0.23 1.57 719 13.74 0.52

Milled 2.95 4.08 3830 5.35 1.37

Sanded 5.27 11.38 75683 2.23 3.87
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When an asperity is deformed plastically, the mean pressure is given by the
hardness of the substrate H:

��
��
≈≈ σ� [20]

5. Experimental validation of the Numerical model

To discuss the validity of this model, a device of indentation of rough surfaces
(Jourani et al., 2003) was developed. This experimental device gives us the
evolution of the contact forces during the load and unload process. Figure 15 shows
the load and unload curves on the three surfaces used previously. The applied
nominal contact pressure is Pnom = 200MPa.

(a) (b) (c)

Figure 15. Indentation curves: (a) Ground surface, (b) milled surface; (c) sanded
surface

The analysis of these experimental curves allows to determine the residual plastic
displacement, plastic and elastic energy. The results are grouped in Table 2.

Table 2. Experimental results

Surface   Ground  Milled   Sanded

    Residual plastic displacement (µm) 1.63 5.7 17.91

    Rate of elastic energy (%) 7 15 31

    Rate of plastic energy (%) 93 85 69

The attack angle of the roughness influences the elastic and plastic behaviour of
the surfaces. Indeed, for the same nominal contact pressure, the elastic and plastic
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energy are completely different. Ground surface has a quasi elastic behaviour with a
residual plastic displacement equal to 1.63µm. Milled and sanded surfaces present,
on the other hand, a plastic behaviour more marked with residual plastic
displacement respectively equal to 5.7µm and 17.91µm.

These numerical results are in agreement with the model of conical roughness
and validate the numerical model developed above.

6. Conclusions

In this work we carried out numerical simulations by finite elements modelling
on a microscopic scale showing the importance of local slopes in contact between
rough surfaces. These simulations make it possible to observe the evolution of the
elastic-plastic behaviour of the surface according to various parameters such as the
attack angle of the asperities, considered as conical, and behaviour law associated
with the system.

Thus, to be able to deal with the three dimensional contact, we developed a new
method based in the modelling the local roughness as a distribution of indentors with
various attack angles, in contact with a smooth rigid plan. It enables us to obtain the
local distributions of the pressures, the real contact area as well as the surface
deformed during the flattening. The methodology can be extended to the spectral
analysis of the slopes of roughness, in order to study the incidence of the scales of
roughness and fractal properties in the creation of singular pressures.
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