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ABSTRACT. This paper presents a mixed variational framework and numerical examples to
treat a bidimensional friction contact problem in large deformation. Two different contact
algorithms with friction are developed using the 2D finite element code PLAST2. The first
contact algorithm is the classical node-on-segment, and the second one corresponds to an
extension of the mortar element method to a unilateral contact problem with friction. In this
last method, the discretized normal and tangential stresses on the contact surface are
expressed by using either continuous piecewise linear or piecewise constant Lagrange
multipliers in the saddle-point formulation. The two algorithms based on Lagrange
multipliers method are developed and compared for linear and quadratic elements.

RÉSUMÉ. Dans cet article, est effectuée une étude numérique de différentes méthodes
d’éléments finis avec multiplicateurs de Lagrange pour les problèmes de contact avec
frottement de Coulomb en grand déplacement. Le problème de point-selle correspondant est
approché par des éléments finis linéaires ou quadratiques. Les conditions de contact et de
frottement discrétisées sont exprimées au sens faible (raccord de type intégral). Ces
approches généralisent la méthode des éléments finis avec joints aux problèmes de contact
frottants. La mise en œuvre de ces techniques est réalisée dans la nouvelle version du code de
calcul par éléments finis en deux dimensions PLAST2. Des comparaisons sont effectuées avec
la méthode du raccord classique « nœuds-segments » initialement implantée dans PLAST2.
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1. Introduction

In order to solve a contact problem with friction, it is necessary to possess
numerical tools adapted to the strong non-linearity, the incompatibility of meshing
on the contact zone and the evolutionary characteristics of the surfaces.

Methods used differ by their contact algorithm, their time integration scheme and
the construction of the global contact matrices obtained from the writing of the non
interpenetration condition. The solution to a contact problem is obtained using
various methods such as the penalisation or the Lagrange multiplier methods
(Chaudhary, 1986; Kikuchi, 1988; Wriggers, 1995; Zhong, 1992; Wriggers, 1990;
Rebel, 2002). Among these last methods one finds the gradient methods (Raous,
1992; May, 1986), those of the increased Lagrangian or other mixed approaches
(Klarbring, 1986; Simo, 1992; Alart, 1991).

For the resolution of a contact problem without friction using the Lagrange
multipliers method, the construction of the global contact matrices used for the
calculation of contact stresses is not unique. Usually, the classical node-on-segment
strategy (local type approach) is used. The mortar element method initially presented
for domain decomposition has been used for the resolution of a unilateral contact
problem (Hild, 1998-2000-2002). The introduction of another Lagrange multiplier
related to the tangential friction stress following a Coulomb or Tresca law has been
presented by the researchers (McDevitt, 2000; Baillet, 2003). McDevitt and Laursen
have used the mortar element method in the case of small deformations, by using the
penalisation method and for problems of non evolutionary contact surfaces.

In this paper, the contact treatment is based on the mortar-finite elements method
(global type approach), it uses the Lagrange multiplier method and is developed for
large deformation problems where the contact surface is evolutionary. These
algorithms have been implemented and tested in the 2D finite element code
PLAST2. PLAST2 includes large deformation and non linear material behavior. It is
based on a Lagrangian-mesh Cauchy-stress formulation in conjunction with an
explicit time integration scheme. The forward Lagrange multiplier method is used to
treat the contact between deformable bodies.

The paper is organized as follows. First we introduce the equations modeling the
Signorini problem with friction, continuous mixed variational formulation and
contact algorithms are presented. Then several numerical simulations which include
contact between deformable bodies are performed. Comparisons of the two contact
algorithms, the choice of the discretized normal and tangential stresses and the
choice of the element (linear Q1 or quadratic Q2) are carried out. The numerical
examples illustrate the accuracy and robustness of the proposed mortar-finite
element formulation for a contact problem with friction in large deformation.
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2. Continuous problem and functional framework

One considers the deformation of two elastic bodies occupying, in the initial
configuration, two domains jΩ , j=1,2. For j=1,2 the boundary jΓ  of each solid is
the union of three non-overlapping parts j

c

j

g

j

u

j Γ∪Γ∪Γ=Γ . The displacement field

is known on j
uΓ  (one can suppose, for example, that the jΩ  solid is embedded in

j
uΓ ). The j

gΓ  boundary is submitted to a density of forces noted 2j2j ))(L(g Ω∈ .

Initially the two solids are in contact on the common part of their boundary
2
c

1
cc  Γ=Γ=Γ . The jΩ  body is submitted to 2j2j ))(L(f Ω∈  forces. The normal unit

outward vector on jΩ  is noted jn  as one designated by 0≥µ  the friction

coefficient (supposed constant on cΓ  by simplification).

The Coulomb problem of contact with friction consists in finding the ju

displacements and the )u( jσ  stresses which verify the following equations and

conditions

, in )u(D)u( jjjj Ωε=σ [1]

, in 0f)u(div jjj Ω=+σ [2]

, on gn)u( j

g

jjj Γ=σ [3]

, on 0u j
u

j Γ= [4]

in which )u( jε  represents the linearized strain tensor, jD  is the fourth order tensor

satisfying the usual symmetry and ellipticity conditions in elasticity. Equations [1],
[2], [3] and [4] respectively designate the behaviour relation, the equilibrium
equation and the Neumann and Dirichlet condition.

To introduce the equations onto the cΓ  contact zone, the following notations are

adopted

,)t u(n)u(n)u(       , uu un)n.u(u j
t

jj
n

jjj
t

j
n

j
t

jjjj σ+σ=σ+=+= [5]

where  u j
n  and  u j

t  respectively represent the normal and tangential displacements

and  )u( j
nσ  and  )u( j

tσ  respectively designate the normal and tangential stresses

where t is a unitary fixed tangent vector.

The equations modelling the unilateral contact on cΓ  become
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.0]u)[u(        ,0)u(        ,0]u[ nnnn =σ≤σ≤ [6]

The ]u[ n  notation represents the )n.un.u( 2211 +  jump of the normal

displacement through the cΓ  contact zone. The [6] conditions, expressing the

unilateral contact between the two bodies, describe respectively the non-penetration
condition, the sign condition on the normal stress and the complementary condition.

The conditions of Coulomb’s friction on cΓ  are written










λσ−=≥λ∃⇒σµ=σ

=⇒σµ<σ

σµ≤σ

).u(]u[   s.t.   0  )u()u(
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�

� [7]

Here ]u[ t
�  represents the jump of the tangential velocity through cΓ .

REMARK. — In this paper, we are interested in the discrete formulation with
Lagrange multipliers of the friction. Then we restrict ourself to the displacement
formulation of the friction and we replace ]u[ t

�  in [7] by ]u[ t .

Let us consider K as the closed convex cone of admissible displacements which
satisfies the conditions of non penetration

{ }
{ }ju2j1jj

cn

21

21

   on   0 v,))(H(vV where

    on   0]v[ ;VV)v,v(vK

Γ=Ω∈=
Γ≤×∈==

. [8]

The variational formulation corresponding to problem [1]-[7], obtained by
Duvaut and Lions (Duvaut, 1972) consists of finding u which verifies

Kv   , )uv(L)u,u(j)v,u(ju)-vu,(a  ,Ku ∈∀−≥−+∈ [9]

where

∫
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Ωεε=+=
j

jjjj21 , d))v(:)u(D()vu,(a   , v)u,(a)vu,(av)u,(a [10]

∫∑∫ ∫
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Γσµ=Γ+Ω=
c

tn

2

1j j j
u

jjjj , d]v[)u(v)u,(j       , dv.gdv.f)v(L [11]

are defined for all u and v in Sobolev’s standard space 21 ))(H( Ω . The functional

j(.,.) translates friction.
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3. Mixed variational formulation of the discrete problem

Let j
hℑ  be a regular family of partitions of jΩ  into triangles (or quadrangles) κ

�
j
h

j .
ℑ∈κ

κ=Ω [12]

The discretisation parameter jh  on jΩ  is given by

κ
ℑ∈κ

= hmaxh
j
h

j [13]

where κh  denotes the diameter of the triangle (quadrangle) κ . Let

)h,hmax(h 21= . For any integer 0q ≥ , the notation )(Pq κ  denotes the space of the

polynomials with the global degree q≤  on κ . The finite element space used in jΩ
is then defined by
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and the approximation space of V becames 2
h

1
hh VVV ×= .

The contact zone cΓ  inherits two independent regular families of

monodimensional meshes. The set of nodes belonging to triangulation j
hℑ  are

denoted

{ }j
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j

1)h(N

j

1

j

0

j

h xx...xx <<<<=ξ − . [15]

In order to express the constraints by using conveniently chosen Lagrange
multipliers on the contact zone, we have to introduce first the space describing the
degree of the polynomial approximation
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0

j
0 xz = , j

)h(N

j

1)h(N xz =+  and for k=1,...,N(h)-1, j
kz  denotes the middle of

segment [ ]j
K

j
1k

j
1k x ,xT −− = .
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The Lagrange multipliers associated to the normal and tangential stresses on the
Γc contact surface either belong to the space )(W c

1
h Γ  consisting of continuous

piecewise linear functions either belong to the )(W c
0
h Γ  space consisting of constant

piecewise functions (figure 1).
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kψ 1k+ψ1k−ψ
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h Γ∈

Figure 1. Graphic representation of the two Lagrange multiplier spaces

Next, we introduce the convex cones associated to the normal and tangential
stresses on the contact zone cΓ . Let 1

ht
1
hn

1
h MMM ×=  be the convex sets of

continuous piecewise linear Lagrange multipliers
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where sh is the given slip bound on cΓ . We then consider the convex sets of

piecewise constant Lagrange multipliers denoted 0
ht

0
hn

0
h MMM ×=  and defined on

cΓ  as follows
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In order to solve the Coulomb’s frictional contact problem [9] with Lagrange
multipliers method, we introduce the following intermediary problem with a given
slip limit sh (see (Baillet, 2002-2003) for detailed study)
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where 0
hn

1
hnhn Mor  MM =  and 0

ht
1
htht Mor  MM = .

The discrete mixed problem P(sh) admits a unique solution (see (Haslinger,
1982)). It becomes then possible to define a map Φh as follows

hnh

hnhnh

s           

M M:

λ→
→Φ

[20]

where ),,u( hthnh λλ  is the solution of P(sh). The introduction of this map allows the

definition of a discrete solution of Coulomb’s frictional contact problem [9].

4. Matrix formulation of the global type approach

The matrix formulation of the mixed problem of two bodies 1Ω  and 2Ω  in
contact is given by fixing h, the element lengths. One then has a discretization
including N=N1+N2 nodes where N1 is the number of nodes belonging to 1Ω . The N
basic functions of Vh are noted iϕ , i=1,…,N so that if )u,u(u 2

h
1
hh =  we have

∑∑
+==

ϕ=ϕ=
N

11Ni

i
2
h

2
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1i

i
1
h

1 )i(uu  and  )i(uu . [21]

We designate by m the number of nodes (i=1,…m) on 1
cΓ  (slave surface)

belonging to the 1Ω  mesh and by n (i= N1+1,…N1+n+1) the number of nodes on
2

cΓ  (master surface) belonging to the 2Ω  mesh. The discrete multipliers of the

normal and tangential contact stresses are defined on 1
cΓ  as follows

∑∑
==

ψλ=λψλ=λ
m

1k

khtht

m

1k

khnhn )k(   and  )k( , [22]

where kψ  are the m basic functions on 1
cΓ  at the k nodes.

P(sh)
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The first discrete formulation equation of the contact problem with friction on
the 1Ω  domain has the following matricial form

11

T

1
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11 F

0

G

G

UK =Λ















− , [23]

where 1K  designates the elastic rigidity matrix linked to 1Ω , 1U  designates the

vector whose components are the nodal values of 1
hu  and ),( TN ΛΛ=Λ  the vector

of components )k(hnλ , )k(htλ  for k=1,…,m. The vector of exterior forces is noted
1F  whereas 1

T
1
N G ,G  are the coupling symmetrical matrices (of order m) between

multipliers and displacements. The coefficients of 1
T

1
N G and G  matrices are

respectively defined by

.mj i,1 ,dt.a
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REMARK. — For a fixed choice of all the multipliers, the 1
T

1
N G nda G  matrices are

identical and will be noted 1
T

1
N

1 G GG == . In the same manner, the system of
unknown equations 2U  and Λ  on Ω2 is written
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1,2
T

1,2
N

1,2 G GG ==  is a rectangular matrix of n lines and m columns whose

coefficients are

.mj1et    1nNiN  ,dn.a 11j

2

c

i
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j,i ≤≤++≤≤Γψϕ= ∫
Γ

[26]

Finally the problem of contact with friction between the two bodies is written
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The interest now is in the matricial writing of the contact and friction conditions
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hnh MMM ×= . Let NU  and TU  be the vectors whose

components are respectively the nodal values of ]u[ hn  and ]u[ ht . It can be shown

(Baillet, 2003) that the preceding inequation is written
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Construction of the G1 and G2,1 matrices

In the case of the basic functions kψ  on 1
cΓ , continuous piecewise linear (P1) or

constant piecewise (P0) and for the Q1 finite elements, the construction of the
1G and 1,2G  matrices is described in this paragraph. The 1G  matrix coefficients for

functions kψ  of the P0 and P1 type are shown on figure 2 and 3 respectively.

The 1,2G  matrix is the matrix coupling the m slave nodes of the 1
cΓ  surface and

the n master nodes of the 2
cΓ  surface. To determine the expression of the

coefficients of this coupling matrix, in the case when the surfaces are not smooth
(figure 4a), it is necessary to proceed first of all to a projection of the interface nodes
onto a curvilinear abscissa that is noted “s” (figure 4b).

If one wishes to fill the 1,2G  matrix column corresponding to the k slave node,

one calculates the curvilinear abscissa of the nodes of 1
cΓ  and 2

cΓ  by fixing the

origin s=0 to the node k.
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Figure 2. Coefficient of 1G  for P0 shape functions kψ
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Figure 3. Coefficient of 1G  for P1 shape functions kψ
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k k-1k+1
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(a)

jj-1 j+1

k k-1k+1

j-2

s s=0

(b)

Figure 4. a. Contact surfaces 1

cΓ  and 2

cΓ  at time t; b. Projection of the contact

surfaces 1

cΓ  and 2

cΓ  on the curvilinear abscissa s

The non null coefficients of 1,2G  for the k slave node are 1,2

k,1j

1,2

k,j

1,2

k,1j

1,2

k,2j a ,a ,a ,a +−−  or
1,2

k,j

1,2

k,1j

1,2

k,2j a ,a ,a −−  if one chooses the kψ  basis functions of the P1 type (figure 5a) or of

the P0 type (figure 5b).
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a. P1 shape functions kψ
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Figure 5. Coefficient calculation of the matrix 1,2G  for the slave node k

5. Numerical Results

In this section, one studies and compares numerically the performances of the
methods shown previously in the case of contact with friction or without friction ;
the analysis of the quality of approximation of these methods having been presented
in (Coorevits, 2002; Baillet, 2002). These methods have been implemented into
PLAST2 (Bruyère, 1997; Baillet, 2002) a finite elements code in explicit dynamics
based on the method of the Lagrange multipliers. This code deals with contact and
friction conditions with either the Lagrange interpolation operator (local type
approach) or the mortar-finite element approach (global type approach). For the first
approach, contact is defined for each node of the slave surface by using the
intervention of the closest segment defined by 2 nodes of the master surface. This
gives to the condition (also called node-on-segment contact condition), a very local
characteristic observed on the different chosen tests.

5.1. First numerical test

In this numerical test, one considers the contact problem shown in figure 6. The
1Ω  domain is a part of a disc of 1 mm radius, the 1Ω  domain is a rectangle of

1.8 mm x 0.3 mm. On each domain, the behavior law is that of Hooke for the
isotropic and homogeneous materials. For k=1,2

, )u(
1

E
)u(

)1)(21(

E
)u( kk

ij

k

kkk
mmij

kk

kkkk
ij ε

ν+
+εδ

ν+ν−
ν=σ [30]

with E1=70000MPa, E2=7000MPa and ν1=ν2=0.3.

The 1Ω  domain is embedded in the 2
uΓ  boundary. The displacement imposed on

1
uΓ  is vertical and its value is -0.1581mm. The displacement of 1

uΓ  versus time is a

parabolic trajectory. Its maximum value corresponds to the time where the
derivative is zero.



298     REEF – 14/2005. Finite elements in tribology

On each solid, one uses rectangular finite elements of the Q1 type (4 node
quadrangles) or of the Q2 quadratic type (8 node quadrangles) in plane strains
(Ciarlet, 1978). Let us note that the normal and tangential stresses are represented on
each figure for a maximum indentation of -0.1581mm.
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s 
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P
a)

PLAST2 / Slave surface = body 2

ABAQUS / Slave surface = body 1

ABAQUS / Slave surface = body 2

Figure 6. Finite element model Figure 7. Normal stresses with the local
type approach

5.1.1. The local type approach: comparison of PLAST2 and ABAQUS_Standard
codes

The aim is to compare PLAST2 and ABAQUS codes on a problem of contact
without friction using the classical node-on-segment approach. This allows us firstly
to validate the PLAST2 code and to show the limits of the local type approach for
dealing with the contact conditions. Let us note that to solve problem [27] using a
dynamic code, one replaces the displacement cycle imposed on 1

uΓ  by a very weak

vertical speed (damping and inertia terms are therefore negligible) subjected to the
same surface that puts the two solids under the same deformation cycle. Since the
contact surface deforms during this cycle, it is necessary to update the 1,21 G nda G

coupling matrixes at each time step increment.

Figure 7 represents the distribution of the contact normal stresses for a maximum
indentation when 1

cΓ  or 2
cΓ  is the slave surface. One will note the similarities of the

stresses calculated by the two codes and the asymmetrical results obtained when the
slave surface is changed. It is clear that on this test the local type approach has
shown its limits.

5.1.2. The global type approach in PLAST2 with Q1 finite elements type

In this paragraph, another technique to approximate contact problems
implemented in PLAST2 is presented, called global type approach. One considers
first of all the problem of contact without friction. This involves studying the
behavior of the global type approach whether 1

cΓ  or 2
cΓ  is chosen as a slave surface.
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By considering the case of piecewise constant multipliers on the contact interface
( 0

hM ), the symmetrical behavior of the global type approach compared to the local

one is observed on the distribution of the contact stresses (figure 8) obtained for the
maximum indentation and for the choice of whatever slave surface ( 1

cΓ  or 2
cΓ ).

The comparison of figures 7 and 8 shows that the global type approach makes
the management of the contact more symmetrical when slave surfaces are
interchanged.

On figure 9, one will note the similarities of the contact normal stresses when
0
hnhn MM =  and 1

hnhn MM =  (P0 and P1 multipliers respectively).
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Figure 8. Normal contact stresses
(maximum indentation) when 1

cΓ  or 2

cΓ
is the slave surface with the global type
approach

Figure 9. Normal contact stresses
( 0

hnhn MM =  or 1

hnhn MM = ) for 1

cΓ
slave surface
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Figure 10. Normal and tangential stresses ( 0

hnhn MM =  or 1

hnhn MM = ) for different

Coulomb friction
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Let us now consider the case of a problem of contact with Coulomb’s friction.
One has to insure the correct behavior of the global type approach by using the
different convex approximations ( 0

hh MM =  or 1
hh MM = ) linked to normal and

tangential stresses. In this case, the preceding comments apply. In particular, the
shape of the normal and tangential stresses is similar (figure 10) for the two types of
approximations of hM  and for different µ friction coefficients.

5.1.3. The global type approach in PLAST2 with Q2 finite elements type

The global type approach has been implemented into PLAST2 for quadratic
finite elements Q2 to simulate the problem of contact with Coulomb’s friction
between two elastic solids (see (Moussaoui, 1992)) for a problem of unilateral
contact without friction).

The convexes of Lagrange multipliers are continuous piecewise linear functions
( 1

hM ) or constant piecewise functions ( 0
hM ) on cΓ . The use of such finite elements

gives hope for a better precision of calculation compared to rectangular or linear
elements (Moussaoui, 1992). Figures 11 and 12 validate the correct behavior of the
global type approach for problems of contact with or without friction. In the same
manner for finite elements of the Q1 type, the results are identical for the Lagrange
multipliers 0

hh MM =  or 1
hh MM = .
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Figure 11. Normal stresses
( 0

hnhn MM = ) for Q1 and Q2 element

type without friction

Figure 12. Normal and tangential
stresses ( 0

hnhn MM =  or 1

hnhn MM = )

for Q2 element type and µ=0.05

5.2. Second numerical test

In the case of contact with friction of a deformable body on a rigid surface, one
studies numerically the performance of the methods shown above for 0

hh MM =  and
1
hh MM = . The numerical tests have been carried out on the finite element code

PLAST2. In the numerical tests, the behavior law is that of Hooke for isotropic and
homogeneous materials
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with E=7.104 MPa et ν=0.3.

The Ω domain is a rectangle measuring 1.3 mm x 0.3 mm. The discretisation is
carried out with finite rectangular elements of the Q1 type in plane strains. The
origin of the curvilinear abscissa is defined from the point O in the trigonometric
direction. A total displacement of 2.10-3mm is imposed on the 1

uΓ  and 2
uΓ  (see

figure 13). The horizontal displacement is null on 1
uΓ . The vertical displacement on

2
uΓ  is free which enables a detachment of the deformable body for a curvilinear

abscissa superior to 0.7mm (see figure 15a). The Tresca threshold stress is equal to
200MPa.

Figure 13. Vertical displacement on
the reference mesh

Figure 14. Convergence rates of
the two approach 0

hh0 MM =  and
1

hh MM =

Having no analytic solution for the problem treated, the huu −  error in the

energy is numerically estimated by href uu − . The reference solution is calculated

on a reference mesh containing 9678 elements.

On figure 14 the convergence order of the different methods for different
discretisation parameter h is represented. It can be seen that the convergence is
similar for the two approaches. On figure 15, one can see that the normal stress is
not a negative function over all the interface, this is due to the use of slightly
negative Lagrange multipliers. However this method enables the singularities of the
stresses edges to be attenuated.
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Figure 16. Comparison between local and global type approach on a forging
simulation of three deformable bodies
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5.3. Third numerical test

This test enables the global type approach to be validated when compared to the
local one, in the case of a simulation of three deformable bodies in contact with one
another and with a rigid surface (figure 16). The bodies have an elasto-plastic
behaviour ( ( ) 03.0p2

eq 10 2.348 ε+=σ − ). Penetrations of the master nodes into the slave

surface appear in the simulation using the local type approach and they generate a
divergence of the calculation whereas the simulation with the global one is carried
out without problems.

6. Conclusion

For the management of a problem of friction contact with the mortar-finite
element method and for the construction of a matrix expressing the friction contact
of deformable bodies, one can choose form functions (linked to Lagrange
multipliers) which are continuous piecewise linear (P1) or constant piecewise (P0).
These two approaches have been implemented in PLAST2. Mathematically and
numerically on problems of contact with friction, the results of normal and
tangential contact stresses are similar when using both approximations (P0 or P1) of
Lagrange multipliers.

For a discretisation with quadrilateral elements of the Q1 or Q2 type, it has been
established on various numerical tests, that the mortar-finite element method makes
the management of the contact much more symmetrical when slave surfaces are
exchanged, thus closer to physics. Finally, it has been shown that the formulation of
this global type approach is also appropriate for Q1 or Q2 finite elements.
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