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ABSTRACT. In this paper we introduce the method of finite spheres, a truly meshfree numerical 
technique, as a promising scheme for the solution of problems arising in tribology. Some of 
the attractive features of this technique, contrasted to the traditional finite element methods, 
include the use of smooth approximation spaces which can be enriched using known 
asymptotic solutions of the governing partial differential equations as well as the freedom 
from generation of a complex computational mesh and the need for remeshing for problems 
involving very large deformations or changes in topology. An elastostatic punch indentation 
problem is used to showcase the various positive attributes of this method. 
RESUME. Dans cet article nous présentons la méthode de sphères finies, une véritable 
technique numérique de « maillage libre », comme schéma prometteur pour la solution de 
problèmes tribologiques. Certains aspects attrayants de cette technique, contrairement aux 
méthodes d'élément finis traditionnelles, incluent l’utilisation d’espaces d’approximation qui 
peuvent être enrichis en utilisant des solutions asymptotiques connues d’équations aux 
dérivées partielles ainsi que l’absence de la génération de maillages complexes et le besoin 
de remaillage des problèmes impliquant des grandes déformations ou des changements 
importants de topologie. Un  problème élastostatique d’indentation de poinçon est traité pour 
présenter les divers aspects positifs de cette méthode.  
MOTS-CLES : méthode de sphères finies, indentation, tribologie, enrichissement. 
KEYWORDS. meshless methods, method of finite spheres, indentation, tribology, enrichment. 
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1. Introduction  
 

Tribology (the study of interacting surfaces in relative motion) is, by its nature, 
an interdisciplinary field, if the reader will pardon the cliché. However, in using the 
term “tribology”, if we restrict ourselves to mechanical aspects, we can loosely 
divide the field into domains governed by the mechanics of solids (the bodies that 
form the surfaces) and the mechanics of fluids (the lubricants confined between the 
surfaces). In many cases there is a coupling between fluid and solid behavior 
(elastohydrodynamics). 

Although the definition is not always strictly obeyed, the term contact mechanics 
is applied to the case when the region of contact is much smaller than the 
dimensions of the body as a whole, such that stresses in the contact region are 
independent of the size and shape of the body. This situation generally occurs in 
non-conformal contacts when bodies would first touch at a point or along a line.  

Finite element techniques (Bathe, 1996) are certainly commonplace in the field 
of tribology. In these techniques the continuum is discretized using “elements” 
which are connected together at special points called “nodes” (figure 1a). The 
technique of discretizing a continuum by elements is known as “mesh generation”.  
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Figure 1. Discretization of a domain, , by the finite element method (a) and 
the method of finite spheres (b). In (a), the domain is discretized by quadrilateral 
elements with a node at each vertex point. The finite element shape function hI is 
shown at node I. In (b), the domain is discretized using a set of nodes only. 
Corresponding to each node I, there is a sphere (i.e. a disk in R2), centered at the 
node, which is the support of a set of shape functions corresponding to that node. 
One such shape function, hI0, is shown in the figure 
 
 
     From an unscientific survey of a year of issues of the ASME Journal of 
Tribology, it appears that about one quarter to one third of the non-experimental 
papers use finite element techniques in one form or another. In the case of fluid flow 
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analysis, finite elements are used to model the complex grooves of seal geometry 
(Ruan, 2000; Baheti et al., 1995) and the moving or unknown boundaries of 
cavitation problems (Optasanu et al., 2000). In the analysis of solids, non-conformal 
problems are typically considered in the case of rolling contacts (Xu et al., 2002), 
indentations (Stephens et al., 2000), and rough surface contact simulations (Jacq et 
al., 2002; Komvopoulos et al., 2002) (often as layered media). Conformal contacts 
are studied in such applications as brakes (Geijselaers et al., 2000) and chemical 
mechanical polishing (Kim et al., 2003). This is by no means meant to be a 
comprehensive survey, but rather to give the reader some idea as to the nature of the 
existing literature.  

In many ways, finite element analysis is not particularly well-suited to tribology 
problems. The strength of the finite element method is in accommodating complex 
geometry, but in many regards tribology geometries are relatively simple (journal 
bearing eccentric cylinder shapes, sphere-on-flat, triangular indenter, etc.). The 
complexities are due to unknown boundary shapes (e.g., in the case of non-
conformal contacts), and due to the existence of singularity-like behavior at the 
shape edges of indentation contacts, as in (Stephens et al., 2000; Geijselaers et al., 
2000; Kim et al., 2003). In this paper we focus on the latter issue – sharp edges and 
singularities.  

The solution in the vicinity of a singularity is poorly approximated by 
polynomials, which are used in traditional finite element methods unless a very 
refined mesh is utilized. In such cases it is expedient to exploit the structure of the 
underlying differential equations to generate enriched approximation spaces to 
achieve accelerated convergence rates. In the context of the finite element method, 
for instance, special elements such as quarter-point elements (Banks-Sills et al., 
1984; Barsoum, 1984) and enriched elements (Akin, 1976) have been developed to 
generate non-polynomial approximation spaces. However, the schemes lack 
generality, as it is possible to generate only a limited number of such non-
polynomial approximations. 

Another major problem of the traditional finite element schemes is associated 
with the generation of a “good quality” mesh. The finite elements need to satisfy 
certain stringent conditions on the aspect ratios of sides and included angles, which 
make the automatic generation of a good quality mesh a nontrivial task, especially in 
three-dimensions. Furthermore, expensive remeshing is required for problems that 
involve topology changes, such as dynamic crack propagation.  

In the finite element techniques, the mesh is generated to define the shape 
functions, which are piece-wise Lagrange polynomials. Hence the displacement 
approximation is usually C0. For problems with singularities, the lack of continuity 
of the stress field across the elements results in poor convergence rates (Bathe, 
1996). 

To alleviate these problems associated with the traditional finite element 
schemes, we introduced the method of finite spheres (De et al., 2001). In this 
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method the discretization is performed using functions that are compactly supported 
on n-dimensional spheres centered at nodal points, see figure 1b. The compact 
support of the functions results in banded stiffness matrices just as in the finite 
element methods. However, since the supports of the shape functions are regular, the 
element Jacobians are well behaved. The only important criterion that needs to be 
satisfied is that the union of the spheres must cover the entire domain. Therefore, 
generating an acceptable nodal arrangement in the method of finite spheres is not as 
difficult as generating a good quality mesh for a traditional finite element analysis. 
This is a definite advantage for many problems in the linear and nonlinear analysis 
of solids and structures and fluid-structure systems.  

The method of finite spheres may be viewed as a generalized finite element 
technique in which the spheres behave conceptually as finite elements. However, 
unlike the traditional finite elements, the spheres are not constrained to abut each 
other. 

One of the major advantages of this technique is that it is rather straightforward 
to generate approximation spaces having higher order continuity. Hence stresses are 
continuous over the entire domain and no special smoothening algorithms are 
required as in the finite element methods. Enhanced stress continuity reflects in 
higher convergence rates in problems having singularities as has been shown in (De 
et al., 2001). Additionally, as we demonstrate in this paper, approximation spaces 
may be easily enriched with known asymptotic solutions of the governing partial 
differential equations in the vicinity of singularities such that the computed solution 
converges rapidly to the analytical solution of the mathematical model. 

Over the past decade quite a few meshfree techniques have been proposed 
including the smoothed particle hydrodynamics (SPH) method (Monaghan, 1988), 
the diffuse element method (DEM) (Nayroles et al., 1992), the element free Galerkin 
(EFG) method (Belytschko et al., 1994), the reproducing kernel particle method 
(RKPM) (Liu et al., 1993), the moving least-squares reproducing kernel method 
(MLSRK) (Li et al., 1996), the partition of unity finite element method (PUFEM) 
((Melenk et al., 1996; Babuska et al., 1997)), the hp-clouds method (Duarte et al., 
1996), the reproducing kernel hierarchical partition of unity method ((Li et al., 
1999)), the finite point method (Onate et al., 1996), the local boundary integral 
equation (LBIE) method (Zhu et al., 1998) and the meshless local Petrov-Galerkin 
(MLPG) method (Atluri et al., 1998). 

However, the majority of these techniques, such as the element free Galerkin and 
hp-clouds methods, are “pseudo meshfree” since only the approximation functions 
are generated in a meshfree manner, but a background mesh is required for the 
purpose of numerical integration of the terms arising in the Galerkin weak form. 
Moreover, little attention has been paid to develop a computationally efficient 
meshfree numerical method. While meshfree methods are attractive, if they are not 
efficient compared to traditional finite element methods, there is little hope of 
developing them as practical computational tools for general use.  
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The method of finite spheres, on the other hand, is a “truly meshfree” method 
since both interpolation and numerical integration are carried out without any 
background mesh. Moreover, in this method, the computational sub-domains, the 
interpolation functions, techniques of applying boundary conditions and performing 
numerical integration have been chosen with the issue of computational efficiency in 
mind. In (Macri et al., 2004) we have reported that, for problems in 2D elastostatics, 
the method is now comparable in speed with traditional finite element methods, a 
feat which is not shared by any existing Galerkin-based meshfree method. 

In this paper we discuss the advantages of using the method of finite spheres for 
problems in tribology with special reference to a problem of punch indentation and 
demonstrate that the use of smooth approximation spaces with enrichment does 
indeed result in superior solutions compared to finite elements with much coarser 
discretization.  

In section 2 we briefly introduce the method of finite spheres with special 
emphasis on certain properties that govern the behavior of the method when 
enrichments are applied to the displacement fields. In section 3 we investigate the 
traditional problem of a square-sided rigid flat punch indenting a linear-elastic half-
space and develop enriched approximation spaces. Finally, in section 4 we apply the 
method of finite spheres with enrichment to the solution of a problem involving the 
indentation of a two-dimensional linear elastic block, in plane strain, by a square-
sided rigid flat punch and compare the solution with that obtained using the 
traditional finite element methods. Both frictionless and no slip conditions are 
considered. 

2. Introduction to the Method of Finite Spheres 

In the method of finite spheres the computational domain, Ω, is covered by 
overlapping and intersecting spheres centered at nodal points (figure 2a). Let 

be a set of open spheres, where x( ){ , ;  I=1,2,...,NI IB rx } I and rI refer to the centroid 

and radius of sphere ‘I ’, respectively, such that
1

( , )
N

I I
I

B r
=

Ω ⊂ x∪ . The boundary of 

the sphere at node ‘I ’is denoted by ( ),I IS rx . First we discuss the generation of the 
approximation functions and their salient properties in section 2.1, followed by their 
application, in a Galerkin framework, to problems in linear elastostatics.  
  
 
2.1. The approximation scheme and general enrichment techniques 
 

In the method of finite spheres we generate shape functions using the partition of 
unity paradigm (Li et al., 1999) based on the Shepard partition of unity functions 
(Shepard, 1968). The first step of this process is to define, at each node ‘I ’, a 
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weighting function WI that is compactly supported on the sphere at node ‘I’ and has 
the following properties:  
 

1) ( )( )0( ) , ,     s 0s
I I IB rW C∈ ≥x x  
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Figure 2. (a) A schematic of the method of finite spheres and (b) some shape 
functions in two-dimensions 

 
 
The symbol ((0 ,s

I Irx ))C B stands for the space of functions that are compactly 

supported on ( ) ( ) ( ), , ,I I I I IB r B r S r= ∪x x x I  which have continuous derivates of 
order ‘s’. With an abuse of notation we will choose W(x) = W(sI) where 

0
/I I Is r= −x x , where 0

•  denotes the usual Euclidian norm. In our work we have 
chosen radial quartic spline weighting functions of the form: 

2 3 41- 6  8 - 3 ,    1
( )

0,                             1
I I I I

I
I

s s s s
W s

s
 + ≤= 

>
 [2.1] 
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Using these weighting functions, we define the Shepard partition of unity 
function (Shepard, 1968) at each node ‘I ’, by a simple normalization procedure as: 

0

1

    I=1,2,...,NI
I N

JJ

W
W

φ
=

=
∑

 [2.2] 

The interesting properties of these functions are: 

1. Partition of unity property: 0
1

( ) 1      N
II

φ
=

= ∀ ∈ Ω∑ x x  

2. Continuity:  0
0( ) ( ),     s 0; {1, 2,3}s d

I C R dφ ∈ ≥ ∈x
 

From the partition of unity property it follows that the functions { }0 ( )Iφ x  satisfy 
zeroth order consistency, i.e. they ensure that rigid body modes are exactly satisfied. 
However, to be able to solve the elasticity equations, we need at least a first order 
consistent scheme that ensures constant strain states. The partition of unity paradigm 
provides a very general route to generating approximation spaces with higher order 
reproducing conditions, of which higher order consistency is a special case. We will 
first describe the general technique followed by special examples. 

We define, at each node ‘I ’, a local approximation space 
 

{ } ( )( ), 1( ) ,h p
I m m I IV span p H B rζ∈= ⊂x x ∩Ω  [2.3] 

 
where ‘h’ is a measure of the size of the spheres, ‘p’ is the polynomial order, ζ is an 
index set, pm(x) is a polynomial or other function and H1 is the first order Hilbert 
space. 

The global approximation space, Vh,p, is generated by pasting together the local 
approximation spaces using the Shepard functions as shown below: 

( ), 0 , 1
1

Nh p h p
I II

V V Hφ
=

= ⊂ Ω∑  [2.4] 

Hence, any function, can be written as ,h p h pv V∈ ,

,
Im Im

1

( ) ( )
N

h p

I m

v h
ζ

α
= ∈

= ∑ ∑x x

p x

 [2.5] 

where 

0
Im ( ) ( ) ( )I mh φ=x x  [2.6] 
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is the shape function at node ‘I ’ corresponding to the mth degree of freedom. In the 
method of finite spheres there are, therefore, multiple shape functions per node in 
contrast to the finite element method where there is just one shape function per finite 
element node. Figure 2b shows several shape functions generated at a node on a 
two-dimensional domain. 

We see that if any function pn(x) is included in the local basis of each and every 
node then, choosing Im mn Iα δ= ∀  (where mnδ  is the Kronecker delta) in 
equation [2.5] and using [2.6] and the partition of unity property 
 

0
Im Im

1 1
( ) ( ) ( ) ( )

N N

n I n
I m I

h p p
ζ

α φ
= ∈ =

 =  
 

∑ ∑ ∑x x x = x

y
2}

 [2.7] 

 
Hence it is possible to exactly reproduce the function over the entire domain. 

This is the reproducing condition of the shape functions.  

Choosing the functions in the local basis as polynomials, for example, it is 
possible to generate approximation schemes which have higher order consistency. 
For instance, if V s  then a linearly accurate scheme, much like linear 
finite elements, is achieved in 2D. Choosing V s , on the 
other hand, results in quadratic completeness. To prevent ill conditioning, we scale 
the basis polynomials, e.g., we choose 

, {1, , }h p
I pan x=

, 2{1, , , , ,h p
I pan x y x xy y=

, {1, ( ) / , (h p ) / }I I Ipan x x r y= − I Iy r−V s  
instead of V s . ,h p

I {1, , }pan x y=
However, one is not limited in the choice of the enrichment functions pn(x) to 

just polynomials. The reproducing property of the approximation functions allows us 
great flexibility to generate approximation spaces that can embed known asymptotic 
solutions of the governing partial differential equations. We state (without proof) the 
following theorem, which demonstrates the effectiveness of the enrichment process:  

Theorem (A priori approximation error estimate): Let u be the function to be 
approximated, such that ( ) ,k k∈ Ω ≥ 2u H  and let { }0 ( )φ x satisfy the conditions: 

 

1. 
0

( )nI L R
Cφ ∞ ≤  

2. 
0

( )nI L R
I

C
r

φ ∞∇ ≤  

 
Assume that the local approximation V has the following properties: on 

each , u can be approximated by the function , such that  

,h p
I

( )( ,I IB r Ωx ∩ ) ,,h p h p
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then there is a function  satisfying: ,h p h pv V∈ ,
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where the symbol C denotes a positive generic constant which may take different 
values at successive occurrences.  

Unlike moving least squares techniques, the partition of unity paradigm allows 
the enrichment to be varied from node to node. In section 3 we show the 
construction of specialized enrichment functions to solve a specific problem.  

Another remarkable property of the shape functions (2.6) in the method of finite 
spheres is that they satisfy ( ) ( ) ( )min ,

Im 0
s l

Ih x C∈ Ω Ω∩  where 

(0,  1, 2,...,   s )I IW I N C= ∈ Ω  and ( ) ( )lCmp ∈ Ω , 0s l ≥x  for . Hence, by 
essentially choosing smooth weighting functions, it is possible to develop global 
approximation spaces on complex domains which inherit the smoothness of the 
weighting functions. This property of global smoothness is unique to this technique 
and is in sharp contrast to piece-wise continuous approximation spaces used in the 
finite element methods. 

2.2. The discretization of linear elastic problems in R2 using the method of finite 
spheres 

In this section we present an example of how the approximation schemes 
developed in the previous section may be used to solve linear elastostatic problems 
in R2. The system of governing equations can be written as: 

Equilibrium equations:  

   in T B
ε∂ + = Ωf 0σ  [2.10] 

Strain-displacement relationship: 
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  in ε= Ωε u∂  [2.11] 

Linear elastic constitutive equations 

  in Ω= Cεσ  [2.12] 

Boundary Conditions 

f  on ΓsN = fσ  [2.13] 

s
u=   on Γu u  [2.14] 

In the equation [2.10] to [2.14], u, ε and σ  are, respectively, the displacement, 
stress and strain vectors, C is the elasticity matrix, fs is the prescribed traction vector 
on the Neumann boundary Гf, us is the vector of prescribed displacements on the 
Dirichlet boundary Гu (note that the domain boundary f uΓ = Γ Γ∪ ), fB is the body 

force vector (including inertia terms), ε∂  is a linear gradient operator and N is the 
matrix of direction cosine components of a unit normal to the domain boundary 
(positive outwards). In R2 these vectors and matrices are written as: 
 

[ ]( , ) ( , ) Tu x y v x y=u  [2.15] 

T

xx yy xyε ε γ =  ε  [2.16] 

T

xx yy xyσ σ σ= σ   [2.17] 

( , ) ( , )
Ts s s

x yf x y f x y =  f  [2.18] 

( , ) ( , )
Ts s su x y v x y =  u  [2.19] 

0
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 = ∂ ∂ 
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∂  [2.20] 

0
0

x y

y x

n n
n n

 
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 
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where for plain strain conditions 
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and E and υ are the Young’s modulus and Poison’s ratio, respectively. 
 

For the displacement field we have the following approximation: 

1

( , ) ( , ) ( , )
N

Jn Jn
J n

x y x y
ζ= =

=∑∑u H α H U� x y

]

)

 [2.23] 

where  is the vector of nodal unknowns and 

is the vector of nodal unknowns at node ‘J’ corresponding to the 
n

[ 10 11 12 ... ... T
Jnα α α α=U

TJn Jnu v  Jn =α
th degree of freedom. It should be noted that unlike finite element methods, the 

vector of nodal unknowns is not the vector of degrees of freedom at the nodes.  

Corresponding to node ‘J’ and nth degree of freedom, the nodal shape function 
matrix is 

( , ) 0
( , )

0 ( ,
Jn

Jn
Jn

h x y
x y

h x y
 
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 

H  [2.24] 

and the strain-displacement matrix is  

0
( , ) 0

Jn

Jn Jn

Jn Jn

h x
x y h

h y h x

∂ ∂ 
 = ∂ 
 ∂ ∂ ∂ ∂ 

B y∂  [2.25] 

Hence, the discretized versions of equation [2.16] and [2.17] are 

1
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N
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x y x y
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=∑∑ε Β α B U� x y  [2.26] 

1
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The potential energy functional of the system (Bathe, 1996) is defined as 

1
2 f

B Sd d dπ
Ω Ω Γ

= Ω − Ω − Γ∫ ∫ ∫T T Tε u f u fσ − ℑ  [2.28] 

where  represents the potential energy contribution from the Dirichlet boundary. ℑ
 

Unlike the finite element methods, the shape functions [2.6] used in the method 
of finite spheres do not satisfy the Kronecker of delta property at the nodes. Three 
techniques are predominately used to enforce the Dirichlet boundary condition: 
Lagrange multipliers, penalty formulation, and replacement of Lagrange multipliers 
with their physical significance. The third technique is described in detail in (De et 
al., 2001). The use of Lagrange multipliers requires attention to be paid to the 
stability of the numerical solution. In this work we use the penalty formulation to 
enforce the Dirichlet boundary conditions. Hence 

( ) ( )
2 u

T
dγ

Γ
ℑ = Γ∫ s su - u u - u  [2.29] 

where γ  is the penalty parameter. 

Minimizing the potential energy functional in [2.28] with respect to the nodal 
variables results in the following set of discrete equations: 
 
KU = F  [2.30] 

where 

u

d γ
Ω Γ

= Ω −∫ ∫TK B CB H HdΓT

sdΓ

 [2.31] 

and 

f u

B sd d γ
Ω Γ Γ

= Ω + Γ −∫ ∫ ∫T T TF H f H f H u .  [2.32] 

The discretized equilibrium equations for each node ‘I ’may be written as: 

Im Jn Jn Im
1

N

J n ζ= ∈

=∑∑K α f  [2.33] 

where  

ImJn Im Jn Im Jnu
I I

T Td dγ
Ω Γ

= Ω − Γ∫ ∫K B CB H H  [2.34] 
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Im Im Im Imf u
I II

T B T s T sd d γ
Ω Γ Γ

= Ω + Γ −∫ ∫ ∫f H f H f H u dΓ   [2.35] 

The above integrals are evaluated using numerical integration techniques. In the 
finite element methods the integrands are polynomial or mapped polynomial 
functions defined on n-dimensional cubes or tetrahedra. Hence, efficient Gauss-
Legendre product rules are used (Bathe, 1996). In the method of finite spheres, 
however, the integrands are non-polynomial rational functions and the integration 
domains are much more complex. Hence specialized integration techniques, based 
on piece-wise midpoint quadrature, have been developed (De et al., 2001; Macri et 
al., 2004). 
 
 
2.3. Generation of finite spheres for arbitrary domains in R2 

 
The discussion on the method of finite spheres will not be complete without a 

brief mention of the techniques of generating the nodal points and the spheres on 
domains of arbitrary geometry. This preprocessing stage is important since 
inefficient node generation techniques result in higher overall solution times. We 
have developed an efficient technique in (Macri et al., 2003) based on hierarchical 
partitioning of space using a data structure known as an ‘octree’ in 3D and 
‘quadtree’ in 2D (Samet, 1990).  
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Figure 3. In the quadtree method of generating an open cover the computational 
domain is first enclosed in a square box (a) which is recursively subdivided. (b) The 
corresponding data representation 

 
An example of a quadtree and its data structure is given in (figure 3a) and 

(figure 3b), respectively. In this technique the domain is enclosed in a square box, 
called a root quadrant, which is recursively subdivided into four quadrants by 
bisection in both Cartesian directions. The use of one-level adjusted quadtrees and 
face neighbor points allows neighbor search in constant time.  
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The placement of nodes at the centroids of the leaf quadrants with properly 
defined spheres centered at them automatically ensures that (1) the entire 
computational domain is covered by the union of the spheres; (2) all the nodal points 
are within the domain and (3) at any given point of the domain the number of 
overlapping spheres is bounded and is usually small resulting in smaller bandwidth 
of the resulting system matrix. 

 

x

y

?

?
dy

a

x

y

ρ

θ
δy

a

Figure 4. An elastic half-space indented by a flat rigid punch of width ‘2a’ 
 
 
3. Indentation of an elastic half space by a square sided rigid flat punch 
 

In this section we consider the problem of a square sided rigid flat punch of half 
width ‘a’ indented into an elastic half-space by yδ  (see figure 4). As in (Johnson, 
1985) we restrict our problem to a punch that does not tilt, and since the punch is 
rigid, the following Dirichlet boundary condition is assumed 
 

( ,0)   -a x as
yv x δ= ≤ ≤  [3.1] 

The boundary condition for the x-component of the displacement field is 
dependent on the frictional conditions under the punch. In this paper we confine 
ourselves to the following two cases:  

1. Frictionless: the tangential component of the traction ( ,0) 0 -a x atf x = ≤ ≤ .  

2. No slip: u x . ( ,0) 0 -a x as = ≤ ≤

Abrupt change of boundary conditions at the edges of the punch leads to stress 
singularities which are difficult to capture using traditional finite element methods 
without excessive refinement. We will show how to generate enriched 
approximation schemes in the context of the method of finite spheres, by closely 
observing the asymptotic stress solutions, which overcome this difficulty.  
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3.1. Frictionless punch 

In the frictionless case the tangential traction under the punch is zero. This 
solution corresponds to the case in which the interface is well lubricated. The 
contact pressure distribution is given as (Johnson, 1985). 

( )1 22 2
( )   -Pp x a x a

a xπ
= ≤ ≤

−
 [3.2] 

where is the normal force applied to the punch.  ( )
a

a

P p x d
−

= ∫ x

Defining ( )2 2x a yρ = − +  to be the distance of the right corner of the punch 
(a, 0) to any point (x, y) in the domain (Figure 4) and expanding by the binomial 
theorem it is straightforward to show that 

1( ) ~   p x
ρ

 [3.3] 

The corresponding Muskhelishvili potential is given by 

*
- / 2( )  ,

2
iKz e θ

ρ
Φ =   [3.4] 

where 1tan y
x a

θ − =  − 
 ( - )x a iy+


 , K* is a stress intensity factor and 

with iz e θρ= = 1i = − .  

The asymptotic stress field can be derived from this potential (Sackfield et al., 
2003) as 

*

*

*

5~ 3sin sin
2 28

5~ 5sin sin
2 28

5~ cos cos
2 28

xx

yy

xy

θ θσ
ρ

θ θσ
ρ

θ θσ
ρ

Κ     +        

Κ     −        

Κ     − −        

  [3.5] 

At the surface of the elastic solid (3.5) reduces to  
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*

     x a
2
0           x>a

xx yy

K
σ σ ρ


≤= = 




 [3.6] 

 
0xyσ =  [3.7] 

In figure 5 we plot the asymptotic solution for yyσ  for several values of y. An 

important observation is that, on the surface, 1 asyy x aσ ρ −→∼  but 

0 foryy x aσ = > . Hence, even though the stress field exhibits a 1 ρ  
singularity, reminiscent of crack tip fields, quarter point elements cannot be used to 
solve this problem efficiently. Due to the same reason, we cannot simply enrich the 
method of finite spheres basis by including the function ρ . Hence specialized 
enrichment functions are necessary.  

The specific questions that we ask at this point are [1] what is the simplest 
enrichment function that must be used and [2] does this enrichment apply to both the 
x- and y-components of the displacement field? Use of complex enrichment 
functions is computationally inefficient since it not only leads to a larger stiffness 
matrix, but also results in numerical integration problems. The answer to the second 
question is crucial since, as we will see shortly, blindly enriching both the 
displacement components will result in computed stress fields that have incorrect 
asymptotic behavior close to the punch corner. 

Based on the asymptotic solution in [3.5] we propose to use the following 
enrichment function 

sin
2
θρ  

 
 

 [3.8] 

Hence, the enriched component of the shape function at node ‘I’ is  

0 sin
2

en
I Ih θφ ρ  =  

 
 [3.9] 

whose x- and y-derivatives are, respectively, 
 

( )0 0
, ,

1 sin 2
22

en
I x Ih θ

x Iφ ρ φ
ρ

 = − 
 

 [3.10] 
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0 0
, ,

1 cos 2 sin
2 22

en
I y I I yh θ θφ φ ρ

ρ
    = +    

    
 [3.11] 

where the ‘,’ notation is used to indicate derivatives. 

If we enrich both the x- and y-components of the displacement field, then the 
enriched part of all three components of the stress field are 

{ }
0 0 0 0

, ,

, ,

1        sin , sin , cos , sin
2 2 2

en en en
xx yy xy

I x I I I yspan

σ σ σ

2
θ θ θφ ρ φ φ φ ρ

ρ

∈

        
        

        

θ  [3.12] 

which implies the following incorrect behavior  

{ } 0 01, , sin , cos as
2 2

en en en
xx yy xy I Ispan θ θσ σ σ φ φ ρ

ρ
    ∈ →    

    
0  [3.13] 

The presence of both ( )sin / 2θ  and ( )cos / 2θ  in the asymptotic solution 

implies that 1 ayy s x aσ ρ −→∼  as well as  x a+→ , for instance.  

From this analysis it is clear that both x- and y-components of the displacement 
fields should not be enriched and that one needs to enrich only the x-component of 
the displacement field to obtain the following enriched stress fields:  

( )

( )

0 0
,

0 0
,

1 sin 2
2

1 sin 2
2

xx

yy

en
I x I

en
I x I

θσ φ ρ φ
ρ

θσ φ ρ φ
ρ

 ∝ − 
 

 ∝ − 
 

 [3.14] 

which exhibit the correct asymptotic behavior as in equation [3.5].  

In the numerical solution scheme, one needs to enrich only nodes in the 
immediate vicinity of the punch tip where the asymptotic solution holds (figure 5). 
Actually, we will enrich only the node at the punch tip (figure 6) and show how this 
improves the overall solution.  
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Figure 5. The asymptotic and analytical normal stresses at (a) y = 0, (b) y = 0.01, 
(c) y = 0.1 and (d) y = 0.2, for a frictionless rigid punch indenting a half-space 

II

 
Figure 6. MFS nodes placed around the corner of the punch. Node I, located right 
at the punch tip, is enriched  
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3.1. No slip case 

In this case the friction is significant to prevent any motion in the tangential 
direction, i.e. . The pressure distribution on the surface is 
given as (Johnson, 1985) 

( ,0) 0 -a x asu x = ≤ ≤

( )
( ) ( )1 2 1 22 2

2 1
( ) cos ln

3 4
P ap x

a xa x

υ
η

υ π

− x +  =   − −  −
 [3.15] 

where 

( ) (1 2 ln 3 4 )η π υ= −  [3.16] 

The stress singularity at the edges of the punch is oscillatory and it has been 
hypothesized in (Johnson, 1985) that this behavior is spurious and is due to the 
inadequacy of the linear elastic theory to handle high strain gradients in these 
regions. Another point to notice is that, unlike in the previous case, the tangential 
traction is nonzero and has a singularity at the punch edges. 

127mm

63.5mm

12.7mm

dy

127mm

63.5mm

12.7mm

δy

 
Figure 7. A square 127mm × 127mm elastic block is indenting by δy with an 
indenter of width 25.4mm. The Young’s modulus and Poisson’s ratio of the block 
are chosen as 6.895×107 kPa and 0.33, respectively. Half of the problem domain is 
shown 
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4. Numerical results 
 

We now examine a specific problem shown in figure 7 of a square 127 mm × 
127mm elastic block in plane strain, constrained along its two sides and bottom 
surface as shown in the figure and indented by a square-sided rigid flat punch of 
width 25.4mm by an amount δy = 2.54mm. The Young’s modulus and Poisson’s 
ratio of the block are chosen as 6.895×107 kPa and 0.33, respectively. This problem 
is solved, for both the frictionless and no slip cases, using the following three 
techniques: (1) traditional finite elements (a uniform mesh of nine noded quadratic 
elements are used and the solution is performed using the ABAQUS version 6.4 
computer program), (2) the method of finite spheres (MFS) with quadratic basis and 
no enrichment and (3) the MFS with quadratic basis and only the node at the corner 
of the punch enriched with the function discussed in the previous section.  

We discuss the solutions for the frictionless case in section 4.1 and the no slip 
case in section 4.2. In the absence of an analytical solution of the problem, we will 
compare the results with a solution using a very fine finite element mesh 
(~200,000 nodes) of nine noded elements, which we will refer to as the ‘fine mesh 
solution’. Mesh gradation is not employed in any of the analyses.  

In the next two sections we will show that, even for considerably coarse 
discretizations using 5 and 9 nodes under the punch, the MFS without enrichment 
provides a much better solution than traditional FEM due to the considerably smooth 
approximation spaces used. The MFS with enrichment is capable of capturing the 
singularity at the corner of the punch exactly, irrespective of the discretization 
resolution. None of the other two schemes share this outstanding property. 

10
1

10
-2

10
-1 FEM

MFS
MFS enriched

lo
g(

|E
-E

h|\
E h

) 

log(number of nodes under 

Figure 8. The relative error in strain energy plotted as a function of number of  
nodes under the punch for the frictionless case. The strain energy of the 
mathematical model is E = 422.0155 J 
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Figure 9. For the frictionless punch example, the normal stress ( ),0yy xσ  is plotted 

from mm for (a) 5 nodes and (b) 9 nodes under the punch. The “fine 
mesh solution” is the FEM solution obtained using ~150 nodes under the punch. At 
the enriched MFS node, at x = 12.7mm, 

0 12.7x≤ ≤

yyσ → −∞  and therefore it has not been 
shown in the figure 

4.1. Frictionless punch 

In figure 8, we compare the relative error in the strain energy as a function of the 
number of nodes under the punch for all three cases mentioned above. The 
computed strain energy is defined as 

1
2

T
h d

Ω
= Ω∫ σ εE  

where  and  are the computed stress and strain fields, respectively. The 
‘theoretical’ strain energy of the mathematical model, E , is obtained from the fine 
mesh solution as 422.0155 J.  

σ ε
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The slope of the convergence curve is 1.2305 for finite elements, 1.3469 for the 
method of finite spheres without enrichment and 1.4590 with enrichment. We see 
the enriched MFS performs marginally better than FEM in the energy norm. 
However, since the error in the strain energy computed in the manner described 
above is a global measure, we do not expect to see outstanding improvements. The 
real advantage of using MFS is realized by looking at the computed stress fields on 
the surface of the elastic block in the vicinity of the punch tip. 

In figures 9a and 9b we compare σyy on the surface using 5 and 9 nodes under 
half the punch, respectively. We see from these plots that pure MFS predicts the 
stresses with higher accuracy than FEM. The solution using the enriched 
displacement field reproduces the singularity at the tip exactly. 

In figure 10 we compare the contours of σyy in the right half of the problem 
domain using 5 and 9 nodes under the punch, respectively. For the solution using 
enriched MFS, the stress computed at the punch corners is actually infinite, and is 
therefore removed from this plot. 
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Figure 10. Contour plots of the normal stresses yyσ  (kPa) in the right half of the 
problem for the frictionless case. (a) and (b) correspond to solution obtained using 
enriched MFS with 9 and 5 nodes respectively, excluding the singularity at the 
corner. (c) and (d) correspond to solutions obtained using FEM with 9 and 5 nodes 
respectively 
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Figure 11. The relative error in strain energy plotted as a function of number of 
nodes under the punch for the no slip case. The strain energy of the mathematical 
model is E = 428.2564 J 

4.2. No slip case 
 

For the no slip case, we examine the error in strain energy verses the number of 
nodes under the punch in figure 11. The slopes of the convergence curves 
are 1.1960 for FEM, 1.3567 for MFS and 1.3574 for enriched MFS. As in the 
previous case, the use of MFS and enriched MFS does improve overall convergence 
rate but not substantially.  

Finally, in figure 12 (a) and (b) we plot the normal stress σyy. In both cases we 
observe that infinite stress are computed at the punch corner using enriched MFS 
which also provides much better stress solutions than FEM. In figure 13, we 
examine the contours of the stress σyy in the right half of the problem for 5 and 9 
nodes under the punch. For the enriched MFS case we exclude the infinite value at 
the corner of the punch. From the figure we see that enriched MFS produces 
smoother results than FEM.  
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Figure 12. For the no slip case, the normal stress, ( ),0yy xσ  is plotted from 
mm for (a) 5 nodes and (b) 9 nodes under the punch. The “fine mesh 

solution” is the FEM solution obtained using ~150 nodes under the punch. At the 
enriched MFS node, at x = 12.7mm, 

0 12.7x≤ ≤

yy  and therefore it has not been shown 
in the figure 

σ → −∞
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Figure 13. Contour plots of the normal stresses (kPa) in region of punch corner for 
the no slip case. (a) and (b) are examples of enriched MFS with 9 and 5 nodes 
respectively, excluding the singularity at the corner. (c) and (d) are examples of 
FEM with 9 and 5 nodes respectively 

5. Conclusions 
 

In this paper we have presented the method of finite sphere as a promising 
numerical technique for the solution of problems arising in tribology. Not only is it a 
truly meshfree method where interpolation and numerical integration may be 
performed without a mesh, but it also provides a very powerful and general route to 
generating approximations which can be tailored to exploit the structure of the 
solution of the governing differential equation. An example of a square-edged flat 
punch indenting an elastic block has been used to showcase these features.  

While the current paper presents a purely displacement-based formulation, for 
problems involving incompressible or nearly incompressible deformations 
displacement-pressure mixed formulations have been developed for the method of 
finite spheres which are stable and reliable (De et al., 2001).  
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For the flat punch problem only two situations have been discussed: one 
corresponding to a frictionless interface and the other dealing with a no slip 
interface. For a more general situation of partial slip one needs to develop and 
employ a contact algorithm to capture the complex stick-slip patterns. However, the 
same principle of enrichment presented in this paper is still applicable.  
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