
Slope Stability Analysis Based
on the Coupling of SA and Limit

Equilibrium Mechanics

Guo Yunhong∗ and Zhao Liang

Railway Engineering College, Zhengzhou Railway Vocational & Technical College,
Zhengzhou 450052, China
E-mail: xscgyh@163.com
∗Corresponding Author

Received 29 April 2023; Accepted 28 May 2023;
Publication 11 July 2023

Abstract

The limit equilibrium strip method of slope has become mature, but because
of the complexity of slope instability with many degrees of freedom and high
nonlinear, a more three-dimensional and mature method is needed for slope
problems. Based on the overall force balance and moment balance of slope,
a unified model of three dimensional limit balance methods is established in
this paper. Given different assumptions, the analytical expressions of each
traditional model are obtained to avoid the problem of difficult boundary
treatment when the original method is divided into bars and columns. The
influence of the trailing edge point B and shear outlet A on the central axis
of the sliding body, and the control arc radius variable t on the calculated
value of the three-dimensional slope stability coefficient is discussed in
detail. Then, based on the simulated annealing algorithm, the state generating
function, state accepting function and temperature updating function are
constructed, and the calculation method of optimizing the sliding surface
search of the slope by using the simulated annealing algorithm is proposed,
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and the stability analysis of the slope of a hydropower reservoir dam area
in Guangxi is carried out. The results show that the position of the sliding
surface obtained by searching around the design value K = 1.10 is basically
consistent with the actual one, which proves that the mechanical analysis
method of coupling SA and limit equilibrium is convenient and efficient in
the slope stability analysis.

Keywords: Mechanical calculation, SA, optimization problem, limit equi-
librium, slope stability calculation.

1 Introduction

Slope stability analysis is one of the important research topics in geotechnical
engineering, its research methods include: limit equilibrium method, limit
analysis method, numerical analysis method, etc. Among them, the limit
equilibrium method is the most widely used, but it must rely on the experience
of researchers to try to calculate a series of sliding surfaces to find the
minimum safety factor and the corresponding critical sliding surface position
[1, 2]. As shown in Figure 1, the following figure shows the general treatment
of roadbed slope and the arrangement of monitoring instruments.

Firstly, as an important part of rock mass mechanics, the research progress
of slope stability is closely related to the urgent need of human engineering
activities and the rapid development of related disciplines. The early research
is based on the simple homogeneous elastic and elastoplastic theory of
semi-empirical and semi-theoretical slope analysis method, the calculation
results are very different from the actual engineering situation. By the early
1960s, the expansion of the scale of engineering construction led to the
slope problems became increasingly prominent. Especially after a series of
engineering accidents such as the Vaiont reservoir landslide in Italy in 1963,
people began to deeply study the stability of rock slope. The realization
that geological analysis and mechanical mechanism analysis must be closely
combined led to the rigid body limit equilibrium method. In latest years,
many students have dedicated themselves to the lookup of the vital slip floor
computerized search technology, proposing a range of relevant to the arc slip
floor or non-arc slip floors search methods, such as the Monte Carlo approach
and finite factor combination, criticality method, genetic evolutionary algo-
rithm, sample search method, stumble upon ant colony algorithm, neural
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community, and more than one regression, etc. Compared with the exhaustive
technique and dichotomous approach used in the early days, the accuracy and
convergence of the above strategies have extended a lot, which has performed
a fine function in slope balance lookup and realistic engineering applications,
however from time to time it additionally takes place that the calculation
outcomes are no longer the excessive fee of the universal security aspect.
Common secondary side slopes are shown in Figure 2.

The simulated annealing algorithm (SA) originates from statistical
physics, which simulates the bodily manner from gradual cooling to the ulti-
mate crystallization of an object in the molten state. The simulated annealing
algorithm takes benefit of the similarity between the answering system of the
trouble and the annealing method of the melting object and makes use of a
random simulation of the annealing system of the object to entire the answer
of the problem, that is, the price of the parameter is adjusted underneath the
motion of to managedage parameter (temperature) till the chosen parameter
cost sooner or later makes the strength feature attain the world minimal
cost [3].

Figure 1 Construction and monitoring methods of roadbed slope.
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Figure 2 Schematic diagram of the secondary slope.

The simulated annealing algorithm has the following traits in contrast
with different algorithms:

(1) Accepting the optimized solution with a certain probability

The simulated annealing algorithm (SA) differs from the traditional random
search method in its search strategy, which introduces no longer solely excel-
lent random factors, but additionally the herbal mechanism of the annealing
procedure of the bodily system [4]. The introduction of this natural mech-
anism makes the simulated annealing algorithm in the iterative process not
only accept the target function to become “good” trial points but also with a
certain probability to accept the target function value to become “bad” trial
points.

(2) Introduction of algorithm control parameters

The annealing temperature-like algorithm manipulates parameters, which
divides the optimization process into degrees and establishes the trade-off
standards of the random states below each stage, and is introduced. The
Metropolis algorithm then provides a straightforward mathematical model
for the acceptance feature. The simulated annealing algorithm has two key
steps: first, at each control parameter, a neighboring random state is generated
from the previous iteration point, and second, the acceptance criterion lined
by the control parameter determines the trade-off of this new state, forming a
specific length of random Markov chain. Second, until the control parameter
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goes to zero and the state chain stabilizes at the optimal state of the optimiza-
tion problem, the acceptance criterion is gradually reduced, and the control
parameter is gradually increased. Thus improving the reliability of the global
optimal solution of the simulated annealing algorithm.

(3) Use of object function values for search

Traditional search algorithms no longer solely want to use the cost of the goal
function, however additionally frequently want the cost of the by-product of
the goal feature and some different auxiliary statistics to decide the search
direction, when these statistics no longer exist, the algorithm will fail [5, 6].
The simulated annealing algorithm makes use of solely the fee of the health
feature converted through the goal function, it can decide the similar search
path and search range, barring different auxiliary information.

2 Unified Model of Three-Dimensional Limit Mechanical
Equilibrium Method for Slopes

2.1 Establishment of a Unified Model

As shown in Figure 3, the x-coords are taken as the main sliding direction, the
coords are taken as the slope direction in the vertical sliding direction, and the
z-coords are taken as the vertical ascent direction. x, y, and z conform to the
right-hand rule, and the microcolumn with x direction as dx and y direction
as dy is taken for analysis (shown in Figure 4). The microbar column has
six faces, except for the top face, each face is subject to three forces, two

Figure 3 Three-dimensional stability analysis model of slope.
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Figure 4 3D microbar column force diagram.

shear forces, and one vertical force. N represents the vertical force, and the
subscripts indicate the action face, Ny represents the vertical force on the face
normal to y [7]. T represents the clipping force, the 1st scale of T represents
the surface of action, and the 2nd scale represents the flow direction of the
force. Tyx represents the shear force in the x direction on the face normal to
y and dW represents the volume of the microbar column force.

2.1.1 Basic mechanical assumptions
The mechanical model is based on the following assumptions:

(1) The stability factor is the material’s strength discount factor, or the pro-
portion of the shear strength throughout the entire slip fracture surface
compared to the actual shear strain produced.

F =
τf
τ

(1)

(2) The oil is rigid, and the bottom slip surface obeys the Moore-Coulomb
strength damage criterion:

dTz = (dNz − udAz)fφ + dAzfc (2)
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Where, fφ = tanφ/F, fc = c/F , u is the pore water pressure and dAz

is the area of the slip surface at the bottom of the microbar column.
(3) The point of action of the normal force dNz at the bottom of the

microbar is at the midpoint of the bottom of the bar.

2.1.2 Mechanics modeling
(1) Unified model of force equilibrium stability coefficient

Establish the equilibrium equation of the sliding body as a whole along any
linear direction in space (as shown in Figure 5), and introduce Equation (2),
then the calculation formula of the force balance stability coefficient can be
derived, the specific steps are as follows:

Let the direction cosine of a certain line in space be (mx,my,mz), the
direction cosine of dNz be (nx, ny, nz), and the direction cosine of dTz

be (lx, ly, lz), then the equilibrium equation of the overall force along the
direction of the line is:∫ xmax

xmin

∫ ymax

ymin

[(dNznx + dTzlx)mx + (dNzny + dTzly)my

+ (−dW + dNznz + dTzlz)mz] = 0 (3)

Figure 5 A diagram of the force projection along any plane in space.
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Substituting Equation (2) into (3), the collation gives:

Ff =

∫ xmx

xmin

∫ ymix

ymin
{[(dNz − udAz)tanφ+ cdAz]G1}∫ xmax

xmin

∫ ymax

ymin
(dWmz − dNzG2)

(4)

Where,

G1 = lxmx + lymy + lzmz (5)

G2 = nxmx + nymy + nzmz (6)

Equation (4) is the unified calculation model of the stability coefficient
derived by static equilibrium [8].

(2) Unified model of moment balance stability coefficient

Establish the second stability equation of the sliding physique as a total with
any straight line in house as the axis of rotation, and introduce Equation (1),
then the calculation formulation of the second stability steadiness coefficient
can be derived. The precise steps are as follows.

Let a certain line through a point in space (xm, ym, zm), the direction
cosine is (Rx, Ry, Rz), the direction sine is (Sx, Sy, Sz), that is, the line O’D’
in Figure 6. Taking the line as the rotation axis, the forces in the model are
first projected along the x, y, and z axes, and the combined forces projected in
each direction are then projected in the vertical direction of the rotating line,
and their distances (force arms) from the line are dx, dy, and dz (as shown in
Figure 6).

As shown in Figure 6, OD is the line passing through the origin and
parallel to O’D’, the angles between O’D’ and the x, y, and s axes are θx,
θy, θz , respectively, and so is OD; ABC is the plane perpendicular to the line
OD; AD, BD and CD are the projections of the combined forces in the model
along the x, y and s axes in the perpendicular direction of the line; BC is the
angle between BC and the x, y and The angles of BC and x, y and = axes
are π/2, π − θ1, π − θ2, the angles of CA and x, y and z axes are π − θ3,
π/2, π − θ4, the angles of AB and x, y and = axes are π − θ5, π − θ6, π/2
respectively.

From Figure 6, it can be seen that BC is the normal to the face AOD, AC
is normal to the face BOD, and AB is normal to the face COD [10]. Thus, the
vertical distance between the projection of the combined forces in the model
along the x, y; axes in the vertical direction of the projection of the spatial
line and the rotation axis OD, i.e., the force arms dx, dy, dz , is transformed
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Figure 6 Geometric relationship of the moment force arm.

to the point (x, y, z) to the normal to BC, CA The problem of finding the
perpendicular distances from the point (x, y, z) to the faces AOD, BOD, and
COD normal to BC, CA, AB, and all through the point (xm, ym, zm).

The directional cosine of BC, CA, and AB is first found, based on the
geometric relationship shown in Figure 6:

The directional cosine of CB is: [cosπ/2, cosθ1, cos(π − θ2)]
The directional cosine of AC is: [cos(π − θ3), cosπ/2, cosθ4]
The directional cosine of AB is: [cos(π − θ5), cosθ6, cosπ/2]

Then,

tanθ1 =
OC

OB
=

OC
OD
OB
OD

=
1

cosθs
1

cosθy

=
1
Rs

1
Ry

=
Ry

Rz
(7)

Because

cos2θ1 =
1

1 + tan2θ1
=

1

1 +
R2

y

R2
s

=
R2

s

R2
s +R2

y

=
R2

s

1−R2
x

=
R2

s

S2
x

(8)

So

cosθ1 = ±Rz

Sx
(9)
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Take the positive, i.e.

cosθ1 =
Rz

Sx
, sinθ1 = cosθ1tanθ1 =

Ry

Sx
(10)

Similarly,

cosθ3 =
Rz

Sy
, sinθ3 =

Rx

Sy

cosθ5 =
Ry

Sz
, sinθ5 =

Rx

Sz

(11)

Then the equations of surface AOD, BOD and COD are

Rz

Sx
(δ − ym)− Ry

Sx
(ε− zm) = 0

−Rz

Sy
(λ− xm) +

Rx

Sy
(ε− zm) = 0

−Ry

Sz
(λ− xm) +

Rx

Sz
(δ − ym) = 0

(12)

Then the equation of the overall moment balance is∫ xmix

xmin

∫ ymix

ymin

[(dNznx + dTzlx)Sxdx + (dNzny + dTzly)Sydy

− (−dW + dNsnz + dTzlz)Szddz] = 0 (13)

Substituting Equation (2) into Equation (13) and organizing gives

FM =

∫ xmix

xmin

∫ ymax

ymin
{[(dNs − udAs)tanφ+ cdAs]G3}∫ xmax

xmin

∫ ymin

ymin
(dWSsdds − dNsG4)

(14)

Equation (14) is the unified calculation model of the stability coefficient
derived from moment balance [11].

In the three-dimensional limit equilibrium stability analysis of the slope,
generally only the overall moment balance of the line around the point
(xm, ym, zm) and parallel to the y-axis is considered, which can be known
in this case.

G3 = −lx(z − zm) + lz(x− xm) (15)

G4 = −nx(z − zm) + nz(x− xm) (16)



Slope Stability Analysis Based on the Coupling of SA 113

(3) Solution of dNz

From the above-unified model, it can be seen that the equation contains only
two unknown quantities, F and dNz. As long as the expression of dNz is
determined, the calculation of the stability coefficient F can be obtained by
iteration.

Because the expressions of dN, in the limit equilibrium method are
obtained from the force balance in a certain direction of a single column,
the general expressions for solving dNz can be deduced by satisfying the
force balance in any linear direction along the space by all the forces in the
microbar column [11, 12].

Let the direction cosine of a certain line in space be (vx, vy, vz), then
the equilibrium equation of the force along the direction of that line for each
microbar column is

(dNznx + dTzlx − dTyx − dNx)vx + (dNzny + dTzly − dNy − dTxy)vy

+ (dNznz + dTzlz + dTxs − dTyz − dW )vz = 0 (17)

Substituting Equation (2) into Equation (17), the collation yields

dNs =
dWvs + dAs(ufφ − fc)G5 +H

G5fφ +G6
(18)

Where,

G5 = lxvx + lyvy + lzvz (19)

G6 = nxvx + nyvy + nzvz (20)

H = (dTyx + dNx)vx + (dNy + dTxy)vy + (−dTxz + dTyz)vz (21)

Equation (17) is the general expression to solve for dNz.

3 SA-based Optimization Method for Mechanical
Calculations

Since Kirkpatrick, Gelatt, Jr., and Vecchi posted their seminal papers based
totally on the preceding lookups on statistical mechanics, the simulated
annealing algorithm has been praised as a “savior” for fixing many hard com-
binatorial optimization problems [13, 14]. “It has been used in applications
such as a computer-aided sketch of very giant scale built-in circuits (VISI),
picture processing and pc vision, telecommunications, economics, and many
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different engineering and scientific fields [15]. It is a general and effective
approximation algorithm suitable for solving large-scale combinatorial opti-
mization problems [6]. Combinatorial optimization problem is to solve the
optimal value (maximum or minimum value) of the objective function under
given constraints. The optimization trouble consists of three fundamental
factors.

(1) Variables – the basic parameters selected in the solution process.
(2) constraints – the constraints on the value of the variables.
(3) The objective function is a function that gauges the viability of the

proposed solution.

A combinatorial optimization problem illustration can be shown as a dyad
(S, f), where the solution pool S is the collection of feasible solutions [17].

The objective function f is a mapping defined as:

f : S → R (22)

The minimization issue, also known as the issue of locating the minimum
of the desired function, is symbolized as:

min(i), i ∈ S (23)

The minimization problem and the maximization problem can be equiva-
lently transformed by changing the sign of the objective function [18].

3.1 Overall Optimal Solution, Neighborhood Structure and Local
Optimal Solution for Mechanics Problems

3.1.1 Optimal solution for overall mechanics
Let (s, f), be an instance of the combinatorial optimization problem, iopt ∈ S,
if f(iopt) < f(i), holds for all i ∈ S call iopt the overall optimal solution of
the minimization problem minf(i), i ∈ S.

3.1.2 Domain structure
An example of a combinatorial optimization problem would be (s, f), in
which case a nearby structure is a translation. N : S → 2n.

Where 2n denotes the set of all subsets of S. The implication is that for
every solution i ∈ S, there is a neighborhood of the set Si ⊆ S of solutions
that are in some sense “adjacent” to i, a neighborhood of the set Si. Each j ∈ S
is called a neighboring solution of i.
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3.1.3 Optimal solution for local mechanics
Let N be a domain structure and (s, f), be an example of a combinatorial
optimization issue, î ∈ Si then î is said to be a locally optimal solution to the
minimization problem minf(i), i ∈ S. That is:

f (̄i) ≤ f(j) (24)

3.2 Local Mechanics Problem Search Algorithm

Local search algorithm is a general approximation algorithm, whose basic
rule is to iterate through the neighboring solutions until they are no longer
better. Local search method is flexible and can give a good approximate
solution [19, 20].

The algorithm of local search algorithm is described as follows: the
regional search process begins with a first answer. i ∈ S, and then uses a
generator to continuously search for a better solution than I in the neighbor-
hood S, of the solution I (called the current solution), and if a better solution
than i is found, it replaces I with this solution to become the current solution
and then continues to until the termination condition is satisfied, look for
solutions nearby the current one, which is the algorithm’s last answer [21].

3.3 SA-based Mechanical Calculation Method

3.3.1 Mechanical structure and mathematical model of SA
(i) SA mechanical structure

The execution strategy of the simulated annealing algorithm consists of the
following steps: probe the entire mechanics solution space starting from an
arbitrarily selected initial solution, and generate a new mechanics solution by
perturbation, use the Mertopolis criterion to determine whether to accept the
new solution, and drop the control temperature accordingly. The flowchart of
the simulated annealing algorithm is shown in Figure 7.

(ii) Mechanical model for simulated annealing algorithm

The result j is what the algorithm for simulating annealing (SA) visits in
the kth iteration, and the probability of the solution j is what the SA vis-
its in the (k+1st) iteration [24]. It consists of two independent probability
distributions, the probability of generating solution j from solution i in the
kth iteration gij(T ), where gij(T ) is required to satisfy the normalization
condition:

∑
j∈Ω gij(T ) = 1, the probability that the solution is accepted
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Figure 7 SA flow chart.

λij(T ), where the kth cycle, the temperature is T, and the expression of the
transfer probability for the case i ̸= j is as follows.

Pij(T ) = {xk+1 = j|xk = i} =

{
gij(T )λij(T ), ∀ j ∈ Ω

0, ∀ j /∈ Ω
(25)

Since λij(T ) is not always equal to 1, there is a possibility that the
new solution will not be accepted and the algorithm stays at solution i with
probability:

Pi = 1−
∑
i,j∈Ω

Pij(T ) (26)
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Since Ω is a kernel set, the random process represented by the random
variable generated by the simulated annealing algorithm is a Markov chain
whose one-step transfer probability is defined by Equations (25) and (26),
and the one-step transfer probability is noted as:

P (T ) =

∣∣∣∣∣∣∣∣∣∣∣∣

P11(T ) P12(T ) . . . P1|α|(T )

P21(T ) P22(T ) . . . P2|α|(T )

... . . .
. . .

...

P|α|1(T ) P|α|2(T ) . . . P|α||α|(T )

∣∣∣∣∣∣∣∣∣∣∣∣
(27)

Then the transfer probability for step k is:

p(m,m+ k) =


m+k−1∏
t=m

p(Tt), k ≥ 1

I, k = 0

(28)

Where I is the unit matrix and Tt denotes the temperature value at the tth
iteration. The meaning of the matrix is:

Pij(m,m+ k) = Pr{Xm+k = j|Xm = i} (29)

That is, the probability of being in state i by m iterations and in state j by
the mth + kth iteration [25].

(iii) Finite time implementation of SA

Solving the international greatest answer is vital trouble in optimization
algorithms. When the characteristic is nonconvex or provides segmental
continuity, it is tough to clear up the international superior answer the usage
of the usual nonlinear programming method, which is a neighborhood search
algorithm [26]. For nonsmooth and distinctly pathological optimization
problems, gradient-based typical nonlinear programming strategies are addi-
tionally frequently powerless. For combinatorial optimization problem, the
traditional nonlinear programming method is not effective. In recent years,
some direct search methods have been proposed, such as simulated annealing
algorithm (SA), mean field annealing algorithm, genetic algorithm and so on.
Simulated annealing algorithm is a kind of computation method which has
attracted much attention in recent years. It can solve some problems which are
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difficult to be solved by traditional nonlinear programming methods. It has
been widely studied in many fields such as generation scheduling, control
engineering, machine learning, neural network, function optimization and
so on [27].

The simulated annealing algorithm (SA) is a stochastic search method,
which is based totally on statistical thermodynamics and introduces the herbal
mechanism of the annealing system of bodily systems. The introduction of
this herbal mechanism no longer solely makes the simulated annealing algo-
rithm (SA) receive some higher generation factors in the iterative process,
however additionally be given deteriorating options with a sure probability.
It takes the principle of finite-state singular Markov chains in stochastic
procedures as its mathematical basis, and the acceptance chance decreases
regularly as the manage temperature decreases, and this search method can
efficaciously make it keep away from falling into nearby minima. And the
simulated annealing algorithm (SA) does now not want any auxiliary data
(such as gradient information), has no requirement for the goal feature and
constraint function, and has robust robustness, international convergence,
implied parallelism, and broad applicability. The simulated annealing algo-
rithm (SA) is a vital department of computation in accordance with the
legal guidelines of nature, which simulates the optimization hassle with the
warmness stability trouble in statistical mechanics and opens up a new way
to clear up the international optimization problem. The optimization hassle
is comparable to the metallic annealing manner in nature: the goal feature
of the optimization trouble is equal to the inner electricity of the metal, the
house of the blended states of the variables of the optimization hassle is equal
to the interior kingdom house of the metal, and the answer method of the
optimization hassle is a search for the blended states to decrease the price of
the goal feature.

When the simulated annealing algorithm (SA) solves a global optimiza-
tion problem, in theory, it is necessary to reach an equilibrium through
many iterations for each temperature. When the temperature drops from
high enough to low enough, the lowest point of the objective function can
be found. For the ideal model, the classical simulated annealing algorithm
converges to the global optimal solution under the following conditions: the
initial temperature is high enough, the cooling rate is slow enough, and
the termination temperature is low enough [28]. However, the number of
iterations needed to reach the equilibrium of the objective function value
at each temperature is very large, and the ideal annealing process requires
the temperature to drop continuously and very slowly, which is difficult to
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do. They are the main reason for the low efficiency of simulated annealing
algorithm (SA).

The determination of the initial temperature, the selection of the cooling
function, the determination of the search method, the mechanism of solution
generation, and the determination of the ending criterion are all important
issues in constructing the simulated annealing algorithm [29]. The finite-time
implementation of the simulated annealing algorithm is of great importance
both theoretically and in terms of applications.

A series of factors known as the “cooling agenda” is used to modify
the algorithm’s system to mimic the asymptotic convergence regime of the
simulated annealing process and get the program to approach the ideal
solution after a short running method. The cooling agenda includes the initial
values of the manipulation parameters, their decay functions, the length of
the associated Markov chain, and the halting threshold. It is a significant
factor that affects the final result of the fake annealing process, and its careful
selection is part of the application’s software’s hidden weapon [30, 31].

(1) Starting point for the control parameter t0

According to practical evaluation, the algorithmic process should seek the
broadest feasible range of solutions in an acceptable amount of time. Since
only a large initial value can meet this condition, the initial acceptance rate
should be close to 1. By the Metropolis criterion, exp(−∆f

t0
) ≈ 1, it follows

that the controlling factor t0’s starting point should be high.

(2) Size of the Markov chain

The result of one attempt in a Markov chain depends only on the result of the
previous attempt and thus has the memory forgetting function. The length of
the Markov chain represents the number of transformations produced by the
KTH iteration of the Metropolis algorithm. The selection principle of Markov
chain length is: on the premise that the attenuation function of the control
parameter t has been selected, the probability distribution of the solution on
each value of the control parameter should be stable distribution.

By counting the number of changes (some fixed value) that a uniform
distribution should tolerate at least, it is possible to determine the number
of changes necessary to smooth the distribution at each value of the control
parameter. The amount of changes needed to accept a fixed number of
changes, however, grows since the acceptance probability of the changes
reduces with lowering values of the control factors, and eventually Lk → ∞
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as tk → 0. For this reason, certain constants can be used to limit the value of
lk so as not to produce excessively long Markov chains at small values of tk.

The finite sequence “lk” identifies the range of solution spaces that the
algorithmic process examined and the value “lk” indicates how many changes
were carried out by the algorithmic process in the kth Markov chain. The
following is a discussion of the commonly used methods for determining lk.

(1) Fixed length

Since the size of the solution space of most combinatorial optimization
problems |S| increases exponentially with the problem size n, some rela-
tionship between lk and n can be established to certify the accuracy of the
fake annealing algorithm’s eventual result. The exponential model of the
relationship is obviously impractical, and L therefore typically considered
to be a polynomial function of the issue size n. Rirkpatick et al. used a direct
specification of L = n. Using a fixed-length L is a simple approach where
lk is independent of the value of the control parameter tk and is a constant
that does not vary with the algorithmic process for a given instance of the
combinatorial optimization problem.

(2) Control of the number of iteration steps by the percentage of approval to
rejection

When the cost of the control factor is high, nearly every state is acceptable,
and each kingdom occurs with roughly equal frequency. In this instance, the
wide variety of technical procedures can be minimized at that modified factor
value. As the fee of the manipulated parameter receives regularly smaller,
greater, and larger states are rejected. If the variety of iterations at this manip-
ulated parameter price is too small, it might also additionally cease resulting
in upfront falling into a close-by final reply. A more intuitive and effective
approach is to increase lk as the value of the control parameter decreases. One
approach that can be implemented is to give an acceptance count indicator
i. The Markov chain at that control value for the parameter ends when the
acceptance count reaches i, and the control factor value declines.

(3) Decay function of the control parameters

The algorithm procedure may undergo more iterations as a result of the slight
decay of the control parameters. This is expected to result in more changes,
better neighborhood visits, a wider search area for answers, and a better final
solution. Of course, this will also require more CPU time. According to the
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tests, the size of the existing response may be significantly increased without
significantly impacting the reasonableness of CPU time, provided that the
decay feature is selected correctly.

(4) Stopping criterion

The asymptotic convergence property of controlled simulated annealing
offers additional light on the fact that the method’s asymptotic approach to
the minimal set of possibilities occurs when the cost of the manipulation
factor t steadily reduces. It is only allowed to obtain exceptional, highest-
quality options when t is “sufficiently small.” Consequently, “sufficiently
small” can, to an extent, be employed as a stopping condition in place of
“final solution excellence”. One is to let the value of the control parameter
t be smaller than some sufficiently small positive number ε, which directly
constitutes the judgment formula t < ε for the stopping criterion, and the
other is to determine a termination parameter ξ by the decreasing acceptance
probability of the algorithmic process with the value of the control param-
eter, and to terminate the algorithm if the current acceptance rate of the
algorithmic process pk < ξ. This is the standard for stopping that Johnson
et al. adopted. This approach strikes a balance between the requirements of
the best final response and the CPU time required for the ending standard,
and it can be projected that the CPU time will be reduced while the final
solution quality is still guaranteed as long as the value of ξ is chosen
appropriately.

4 Mechanical Application of Simulated Annealing
Algorithm in Slope Stability Analysis

The simulated annealing algorithm described in Section three is a classical
simulated annealing algorithm, whose fundamental thought is to examine the
answer procedure of a sure kind of optimization trouble with the thermal
equilibrium hassle in statistical thermodynamics, attempting to simulate the
annealing system of high-temperature objects to discover the world most
advantageous or almost world most advantageous answer of the optimization
problem, even though it can be given inferior options to a restrained extent
and soar out of the nearby most appropriate solution, however it nevertheless
of course has the following two deficiency factors.

If the cooling process is slow enough, the performance of the obtained
solution will be better, but the corresponding convergence rate is too slow.
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If the cooling procedure is too fast, it is probable that the international
most fulfilling answer will now not be obtained. From the standpoint of
the algorithm process, the simulated annealing algorithm consists of three
functions (i.e., nation technology function, country acceptance feature, and
temperature replace function) and two standards (i.e., internal loop criterion
and outer loop criterion), and the format of these hyperlinks will decide
the optimization overall performance of the simulated annealing algorithm.
In addition, the choice of the initial temperature also has a significant impact
on the algorithm. In the following chapter, we will introduce how the param-
eters of the simulated annealing algorithm and the parameters of the slope
stability analysis are related, and how to adjust the size of each parameter so
that the calculation can be done accurately and quickly.

4.1 Design of Mechanical State Generation Function in Slope
Stability Analysis

The beginning factor of designing the nation era feature (neighborhood
function) must be to make certain that the candidate options are spread over
the entire answer house as a lot as possible. Generally, the nation technology
feature consists of two parts, namely, the way to generate candidate options
and the likelihood distribution of the candidate solutions [32]. The former
determines the way in which candidate solutions are generated from the
current solution, while the latter determines the probability of choosing dif-
ferent states among the candidate solutions generated by the current solution.
The generation mode of the candidate solution is determined by the nature
of the problem, which is usually generated in a certain probabilistic way in
the neighborhood structure of the current state. The neighborhood function
and probabilistic mode can be diversified design, in which the probability
distribution can be uniform distribution, normal distribution, exponential
distribution, Cauchy distribution, etc.

For the analysis of the soil slope problem studied in this paper is shown
in Figure 8.

4.1.1 Selection of sliding surface mechanics calculation
variables

Assuming that the coordinates of the sliding-in and sliding-out points of
the sliding surface are (X1, Y1), (Xn, Yn), now take the points along the X
direction from the point X1 with equal spacing (Xn − X1)/n, so that we
can get X1, X2, X3, . . . , Xn, and since Y1, Yn are assumed to be known, the
unknown variables are Y2, Y3, Y4, . . . , Yn−1. Since the slip-in and slip-out
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Figure 8 Slope slitting calculation model.

points must be on the soil slope surface, X(X1, Xn, Y2, Y3, . . . , Yn−1)
is the design variable. Other quantities are known as long as the
X(X1, Xn, Y2, Y3, . . . , Yn−1) to determine the location of the sliding surface,
such a selection of design variables can control the number of sub-strip to
determine the number of unknown purposes, to get a smooth sliding curve
needs to be divided into how many strips of soil, according to the specific
engineering situation to determine, but It is not better to divide the sliding
surface into more strips, but the calculation time also increases, and it is
difficult to reach the specified length of the martensite chain, resulting in slow
convergence. The present simulation example is to determine the relationship
between the slope length of 28 meters at the bottom elevation angle of 25◦

and the convergence of the calculation time [33].
From Figures 8 and 9, it can be concluded that in the case of the slope

bottom elevation angle of 25◦, the calculation speed is relatively fastest when
divided into 9 strips, but the sliding surface obtained is the least smooth,
which is caused by too few strips and insufficient data calculation, and the
calculation speed drops a lot when divided into 30 strips, which is about 4.5
times of 16 strips, and the time of each run is different, which is very different.
In the fourth run of the program, the phenomenon that the calculation time
was too long and the program could not be jumped out occurred, and it
can be concluded from Figure 8 that there are obvious slip resistance points
on the sliding surface curve obtained by dividing into 30 strips, which is
also an unreasonable factor. calculation method. In other cases where the
elevation angle of the slope bottom and other parameters are determined, the
above method can also be adapted to determine the number of sliding bars,
to achieve the condition that both the calculation speed and smoothness are
satisfied.
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Figure 9 Coordinate diagram of sliding surface with different slits.

N
um

be
r o

f i
te

ra
tio

ns
 (m

ill
io

n)

Martens chain length

9 Articles
16 Articles
30 Articles

Figure 10 Graph of the number of iterations for calculating the safety factor.
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4.1.2 Selection of mechanical objective function
To obtain the minimum stability safety coefficient K of the slope and the
corresponding real most dangerous slip crack surface as the target of this
paper, thus K can be taken as the objective function, which is required for
optimal numerical analysis.

K = min(Ki) (30)

Where K is the safety factor for the Janbu bar splitting method:

K =
sec2αi

∑
[ci∆xi + fi(Wi − Ucosαi)]

(1 + fi
Ktanαi

)(
∑

Qi +
∑

Witanαi)
(31)

Where:

Qi – horizontal thrust between soil strips.
W – Self-weight of the soil strip.
U – permeable water pressure at the bottom of the soil strip
f – Friction coefficient at the bottom of the soil strip.
c – The cohesive force of the soil.

Since both sides of the equation contain the objective function K, it needs
to be calculated by falling generation. Janbu strip method can be applied to
sliding surface of arbitrary shape, and the actual engineering cases match
well, so the objective function is selected based on the safety factor K of
Janbu strip method.

4.1.3 Generation of new sliding surface
Firstly, the possible position intervals of the slip-in and slip-out points are
estimated, and their corresponding X-coordinates are (a1, a2), (b1, b2). Based
on the fact that the slip-in and slip-out points must be on the surface of the
soil slope, the corresponding Y-coordinates can also be determined, which
are noted as (c1, c2), (d1, d2), and then the new solution generation equation
can be expressed as:

X1 = λ(a2 − a1) + a1 (32)

Xn = λ(b2 − b1) + b1 (33)

Yi = T (xi)− λ[T (xi)−B(xi)] (34)

Where λ is a random number between 0 and 1 generated randomly by the
computer.
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4.1.4 Determination of slope constraints
The slip crack surface formed by the design variables must be within the
basic possible range of the slip crack surface determined by the shape and
geological conditions of the slope. Specifically, it means that X1 and Xn

must not go beyond the outermost left and right sides of the slope surface,
while Y1 must not go beyond the slope top curve T (x) upward and the hard
soil surface curve T (x) downward, i.e.

X1 ≻ Xmin (35)

Xn ≺ Xmax (36)

B(x) ≺ Yi ≺ T (x) (37)

4.2 Design of Mechanics State Acceptance Function

The state acceptance function is generally given in the form of probability,
and the difference between different acceptance functions mainly lies in the
different forms of acceptance probability. To design the state acceptance
probability, the following principles should be followed.

(1) At a fixed temperature t, the probability of accepting a candidate solution
that makes the value of the objective function decrease is greater than the
probability of accepting a candidate solution that makes the value of the
objective function increase.

(2) As the temperature decreases, the probability of accepting a solution that
increases the value of the objective function decreases.

(3) When the temperature tends to zero, only solutions with decreasing
values of the objective function can be accepted.

The introduction of the state acceptance function is the most critical
factor for the simulated annealing algorithm to achieve global search, but
experiments show that the specific form of the state acceptance function does
not have a significant impact on the performance of the algorithm. Therefore,
the Metropolis criterion is usually used as the state acceptance function in the
simulated annealing algorithm.

4.3 Acceptance Criteria for New Solutions

To decide whether to embrace the new solution in this chapter, the enlarged
Metropolis admission rule is used. The new approach is accepted if it is
workable and superior to the current one; otherwise, the new solution is
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accepted with the probability of exp(∆K/t). That is:

P(i→j) = 1(∆K ≤ 0) (38)

P(i→j) = exp(∆K/t)(∆K ≥ 0) (39)

5 Conclusion

In this paper, based on the unified model of the three-dimensional limit
equilibrium method of the slope, the three-dimensional slope parameter
backcalculation and excess sliding force calculation formulas are proposed.
The modern intelligent optimization method is also applied to the search of
the 3D critical sliding surface of the slope to solve this complex problem with
multiple degrees of freedom and high nonlinearity. Through the work of this
paper, the following conclusions are obtained:

1. Based on the overall force balance and torque balance of sliding body, a
unified model of three dimensional limit balance methods is established.
Through this model, the expression of unknown quantity dNz in the
bottom of sliding surface is determined under different assumptions.
The analytical expressions of each traditional model can be obtained,
which avoids the problems of boundary processing and column number
determination in column division of existing methods. This makes the
concrete implementation of various methods, programming becomes
more convenient, more simple calculation, improve the efficiency of
computing. The three-dimensional Sarma method established in this
paper is also improved to make the shear force direction of the bottom
sliding surface related to the bottom sliding surface inclination, and the
model is fully analyzed.

2. By setting up the country-producing function, country accepting fea-
ture, and temperature updating characteristic of the simulated annealing
algorithm. This chapter proposes a calculation technique to optimize
the search of the sliding floor through the use of simulated annealing
algorithm, and via the steadiness evaluation of the slope of a hydropower
reservoir in Guangxi, the calculation results are equal to the thrust
value calculated by the unbalanced thrust method. And the design value
K = 1.10 is searched to get. The position of the sliding surface is
consistent with the shape of the sliding surface and its position obtained
from the actual geological exploration, which indicates that the simu-
lated annealing algorithm is feasible and efficient in the slope stability
analysis.
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