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Abstract

Theoretical and numerical investigation of an applied magnetic field on
mixed convection flow of a biofluid through a vertical plate using contained
heating or cooling is observed in this study. The mathematical formulation
is that of the full Biomagnetic Fluid Dynamics (BFD) model which deals
with on the ferrohydrodynamics (FHD) and magnetohydrodynamics (MHD)
principle. In this work, the study is performed on a specific biofluid, viz.
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human blood. Assume that the magnetization very linearly with magnetic
field strength, temperature dependency of dynamic viscosity and thermal
conductivity is noticed. A system of non-linear equations with appropriate
boundary condition is obtained by familiarizing suitable non-dimensional
variables in the physical problem. For the numerical solution, we used finite
difference method which is based on an efficient technique is applied in the
problem. Computations for flow profiles, local skin friction coefficient and
local heat transfer coefficient are performed with the magnetic parameter
Mn, the viscosity/temperature parameter θr and the thermal/conductivity
parameter S∗. The effect of the localized heating or cooling is examined.
The computational results presented graphically and have been validated in
an appropriate manner. The study reveals that the impact of a magnetic field
for blood flow in arteries is found significantly. The results presented bear the
promise of valuable applications in physiology, medicine and bioengineering.

Keywords: Magnetization, dipole, convective flow, variability, numerical
model.

1 Introduction

Biomagnetic fluid dynamics (BFD) is the investigation of biological fluid
under the effect of an applied magnetic field. Numerous research work about
the behavior of biomagnetic fluid have been done in health science and
bioengineering. Using electromagnetic hyperthermia various investigational
medical technique such as heart surgeries, malignancy or tumor treatment,
cell separation by developing magnetic field [1–3] and different studies for
flow of biomagnetic fluids are of significant interest. Biofluid dynamics may
be considered as the discipline of biomedical engineering in which the basic
principles of fluid dynamics are used to explain the mechanisms of flows of
physiological fluids. The physiological processes take place in human bodies
in normal and pathological states.

According to BFD, a strong applied magnetic field affects all biological
fluids. A fluid which is found in living organisms that is impacted by the
existence of a magnetic field is called a biomagnetic fluid. Blood is the most
common biomagnetic fluid found in living humans and subhuman primates,
and its flow is influenced by the magnetization of the fluid. Blood is a mag-
netic fluid due to the presence of iron, proteins, glucose, and cell membrane
which is found at a very high concentration in mature red blood cells [4].
Erythrocytes align their disk planes parallel to the magnetic field, according
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to experiments [5, 6]. When blood is oxygenated, it behaves as a diamagnetic
material, but when it is deoxygenated, it behaves as a paramagnetic substance.
Blood has been observed to have magnetic susceptibilities of 3.5 × 10−6

and −6.6 × 10−7 for venous and arterial blood, respectively [7, 8]. Alam
et al. [9] observed that magnetic particles are more important in biomedical
applications than non-magnetic ones because magnetic particles are readily
controlled by magnetic force. The magnetic force makes magnetic particles
possible for target molecules attached to reaction mixture particles to be
easily and quickly detached from them compared to non-magnetic particles.

The magnetic field’s effect on biofluid flow has been extensively studied
for bioengineering and medical applications [10, 11], such as controlling
blood flow during surgery, cancer treatment, drug targeting, and so on. The
study of the hemodynamical flow, considering blood as a homogeneous,
Newtonian, electrically non-conducting fluid, was carried out [3, 12]. Haik
et al. established the first analytical model for the flow of biomagnetic flu-
ids [13]. Blood was viewed as an electrically non-conducting magnetic fluid
in their concept, with flow influenced by fluid magnetization. The model was
based on ferrohydrodynamic (FHD) principles, with magnetization assumed
to be the dominant force. Magnetohydrodynamics (MHD) principles were
used to generate electrically conducting fluids, which, unlike FHD, ignores
the polarization and magnetization effect [14]. To account for the magnetic
properties of blood, an extended mathematical model for BFD was developed
by integrating electrical conductivity and polarization effects. This model can
incorporate the energy equation [15, 16] into the study and consider the MHD
and FHD properties. Ferdows et al. [17] noticed that, in contrast to MHD and
FHD, where ferromagnetic quantities are important over the flow boundary
layer, blood temperature was maximum in the case of BFD.

Improved approximation techniques [18] have been proposed for numer-
ical solutions to problems such as the effect of magnetic dipole on the heated
ferro-fluid past a stretching sheet [19], the action of localized magnetic field
on biomagnetic fluid flow in a rectangular channel [20], and so on. Blood
has been reported to exhibit viscoelastic behavior under specific conditions
[21–23]. This could be owing to the viscoelastic characteristics of individual
erythrocytes and the internal structures produced by cellular connections.

The impact of localized magnetization on bio-magnetic fluid with
free/forced convective boundary layer was investigated in [24, 25]. The mag-
netic field was supposed to be strong enough to consider the bio-magnetic
phenomena in this study assuming the magnetization M vary a linearly
with magnetic field strength H⃗ . G. M. Murtaza et al. [26] were reported
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3-D biomagnetic flow along a stretched sheet in a variable magnetic region
and considered M is proportional to temperature T and H⃗ . Merkin and
Mahmood [27] analyzed the similarity solution with convection flow over
a vertical plate with continuous heat flux. A mathematical model [28] was
proposed the impact of magnetic field with mixed convection flow over a
vertical plate taking suction/injection into account. Tzirtzilakis et al. [29]
observed variable thermal conductivity and viscosity of water-based fluid.
Alam et al. [30] investigated the effects of temperature-dependent fluid vis-
cosity and thermal conductivity on blood-Fe3O4 flow and heat transfer in the
presence of magnetic dipole and found that the blood flow could be regulated
by introducing a high magnetic field. The issue of laminar boundary laminar
flow and heat transmission in MHD fluids caused by unstable stretched films
with prolonged heat flow was examined by Gnaneswara et al. [31]. It is
believed that viscosity and thermal conductivity change with temperature.
Ashraf et al. [32] examined the physical characteristics of the combined
effects of heat generation and absorption from the mobility of nanoparticle
material and the influence of different parameters specified by the flow model.

Further investigations of varied problems were carried out by several
researchers. The effect of radiation on unstable MHD free convective Flow
of Nanofluids across an infinite vertical flat plate was investigated in [33].
The arterial blood flow during physical exercise was studied in [34], blood
flow via a small catheterized artery in [35], artery blood flow during elec-
tromagnetic hyperthermia [2], effects of MHD on blood flow through a
stenosis artery, continuously separates red blood cells from entire blood with
a magnetic device [3], medication delivery strategies that target specific parts
of the human body, magnetic drug targeting outperforms because of its non-
invasive nature and high targeting efficiency [36] are some other similar
studies related to flows of biomagnetic fluids.

Andersion and Valnes [37] examined a heated ferrofluid above a stretched
sheet in the existence of a magnetic dipole in one of the most classic studies.
A BFD flow with non-Newtonian viscoelastic fluid through a stretching sheet
in the existence of a magnetic dipole was analyzed by Misra and Shit [38].
Finally, under the influence of an external magnetic field, Misra and Adhikary
explored a Bingham plastic fluid with porous media. The application on
the pathological view the physical variables were computed in that study
in the field of magneto-hemorheology when the system is influence by the
exterior magnetic field. Due to the formation of blood clots, in the view of
the pathological statement concluded that blood velocity is highest in the plug
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(core) area and decreases as blood particles flow near the wall, according to
the study [39].

Although as described above, some various researched studies have been
carried out in the past, considering various aspects of biomagnetic fluid flow,
owing to the prospect of multiple applications of biomagnetic fluid dynamics
(BFD), there exist many open problems of this important area of study, which
less concern of previous investigators. In view of this, in the present paper
we study the viscous flow of a biomagnetic fluid on a vertical plate under
the influence of an applied magnetic field with localized heating/cooling.
Keeping in view the fact that human body is subject to an applied magnetic
field in a variety of situations, e.g. in the case of MRI (Magnetic resonance
imaging) and that human blood possesses biomagnetic properties, particular
emphasis has been paid to illustrate the applicability of the model developed
here by considering blood as the working fluid. Here it may be mentioned that
MRI scanners use sufficiently strong magnetic fields and magnetic field gradi-
ents [40]. Since the problem is quite complicated, the computational study has
been performed by developing a numerical scheme with efficient technique
of finite difference method. Results have been presented for the flow and heat
transfer profiles, viz. distributions of velocity, temperature, Nusselt number
and skin friction. Results corresponding to localized heating/cooling over the
vertical plate have been presented.

2 Modeling and Analysis

A mixed convective boundary layer flow in half space y > 0 over a heated
vertical plate of a steady, viscous incompressible and electrically conducting
fluid (biomagnetic) is studied here. We choose the coordinate system (x− y)
where x-axis along the plate and y-axis normal to the plate. Consider u∞ is
the free stream fluid velocity and T∞ is the free stream temperature. Except
for a small portion of the plate, the temperature T0(> T∞) is a constant. The
gravitational acceleration g acts in the negative x-direction. The magnetic
field is produced by a high-intensity electric current I past a thin electric wire
considered along the z-axis and at a distance b below the plate and a far away
from the origin. So, the position of the wire is given by

(x0, y0, z) = (a, b, z) a > 0, b < 0, z ∈ ℜ

The flow domain is shows in Figure 1.
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Figure 1 Schematic representation of the model.

The strength of the magnetic field is defined by

∥H⃗∥ = H(x, y) =
I

2π

1

[(x− a)2 + (y − b)2]
.

Under the above assumptions, following analogous considerations with
[22, 25, 28] the problem equations can be respectively expressed as:

∇⃗ · q⃗ = 0 (1)

q⃗ · ∇⃗u =
1

ρ∞

∂

∂y

(
µ
∂u

∂y

)
+ gβ(T − T∞)± µ0

ρ∞
M
∂H

∂x
(2)

and

q⃗ · ∇⃗T − µ0
ρ∞cp

T
∂M

∂T
(q⃗ · ∇⃗H) =

1

ρ∞cp

∂

∂y

(
κ
∂T

∂y

)
(3)

The physical problem’s boundary conditions can be expressed mathemat-
ically in the form

u(x, 0) = 0, v(x, 0) = 0, T (x, 0) = Tw(x) for xi ≤ x ≤ xj ,

T (x, 0) = T0 for 0 ≤ x < xi, x > xj ,

u(x,∞) = u∞, T (x,∞) = T∞,

u(0, y) = u∞, T (0, y) = T∞, y > 0


(4)



Non-Similar Analysis of Mixed Convection Biomagnetic Boundary Layer Flow 97

Where

Tw(x) = T∞ + (T0 − T∞)

[
1 +

ε(x− xi)(xj − x)

(xj − xi)2

]
(5)

As in [12, 15], consider
M = χH (6)

where χ is the magnetic susceptibility. The fluid exhibits paramagnetic or
diamagnetic behavior by taking positive or negative values of χ respectively.

The term in Equation (3), µ0

ρ∞cp
T ∂M

∂T (q⃗ · ∇⃗H) generated by magneto-

caloric effect. The last term in Equation (2), viz. ± µ0

ρ∞
M ∂H

∂x = ± µ0

ρ∞
χH ∂H

∂x
representing the component of the magnetic force, per unit volume.

Set,

η(x, y) = Re1/2x

y

x
, y ≥ 0, x > 0

ψ(x, y) = (υ∞Re1/2x )t(ζ, η) = (υ∞xu∞)1/2t(ζ, η)

ζ(x) =
Grx

Re2x
= cx, c =

gβ(T0 − T∞)

u2∞

T (x, y)− T∞ = (T0 − T∞)θ(ζ, η)


(7)

where ζ(x, y), η(x, y) are dimensionless functions of x and y, ψ(x, y) is
stream function and T (x, y) is temperature. In the above expressions, the
local Grashof number, local Reynolds number and the kinematic viscosity
are defined by the expressions

Grx =
gβ(T0 − T∞)x3

υ2∞
,Rex =

xu∞
υ∞

, υ∞ =
µ∞
ρ∞

For a viscous fluid, the viscosity depends on the temperature T inversely
which is denoted as follows

µ =
µ∞

1 + γ(T − T∞)

This equation can be written as follows

1

µ
= α(T − Tr) (8)

We can write

θ =
T − Tr
T0 − T∞

+ θr (9)
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where

θr =
Tr − T∞
T0 − T∞

= − 1

γ(T0 − T∞)
= constant (10)

κ is the thermal conductivity which is assumed to be linearly proportional to
the temperature. So it can be denoted by

κ = κ∞[1 + s(T − T∞)]

where κ∞ is the thermal conductivity of the surrounding fluid medium, s is
constant. This form can be rewritten in the following way:

κ = κ∞(1 + S∗θ) (11)

where S∗ = s(T0 − T∞)
The momentum and energy equations are reduced to,

t′′′ − 1

2
t
θ − θr
θr

t′′ − θ′

θ − θr

[
1 +

ε(ζ − ζi)(ζj − ζ)

(ζj − ζi)2

]−1

t′′

− ζθ

[
1 +

ε(ζ − ζi)(ζj − ζ)

(ζj − ζi)2

]−1 θ − θr
θr

= ζ
θ − θr
θr

(
t′′
∂t

∂ζ
− t′

∂t′

∂ζ

)
∓RMn

(ζ − ac)ζ

[(d
√
ζη − cb)2 + (ζ − ac)2]

θ − θr
θr

(12)

1

Pr
(1 + S∗θ)θ′′ +

(
1

Pr
S∗θ′ +

1

2
t

)
θ′ + ζ

∂t

∂ζ
θ′ = ζt′

∂θ

∂ζ
(13)

By using the dimensionless variables (7), the boundary conditions (4)
together with (5) are transformed to

t(ζ, 0) = 0, t′(ζ, 0) = 0, θ(ζ, 0) = 1 +
ε(ζ−ζi)(ζj−ζ)

(ζj−ζi)2
for ζi ≤ ζ ≤ ζj

θ(ζ, 0) = 1 for ζ < ζi, ζ > ζj

t′(ζ,∞) = 1, θ(ζ,∞) = 0


(14)

where, Prandtl number, Pr =
µ∞cp
κ∞

, partially differentiated variable η are

denoted by primes., d =
√

cυ∞
u∞

and RMn = Mn(cb)2. The constant or



Non-Similar Analysis of Mixed Convection Biomagnetic Boundary Layer Flow 99

ε < 0 represents that the wall is being heated or cooled respectively [28].
In the Equation (12),

Mn =
M0B0

ρ∞u2∞
(15)

with M0 = χH0, B0 = µ0H0.
The physical properties Cf (skin friction) and Nu (Nusselt number) are

of primary interest whose are defined by the form

Cf =
τw

1
2ρ∞u

2
∞

and Nu =
xqw

κ(T0 − T∞)

Where,

τw =

(
µ
∂u

∂y

)
y=0

and qw = −κ
(
∂T

∂y

)
y=0

.

Hence,

Cfx = Cf Re1/2x =
2θr

(θr − 1)
t′′(ζ, 0) and

Nux = Nu Re−1/2
x =

[
1 +

ε(ζ − ζi)(ζj − ζ)

(ζj − ζi)2

]−1

θ′(ζ, 0)

In Equation (14), θ(ζ, 0) is the dimensionless wall temperature which is a
continuous function with dimensionless stream wise distance ζ where ζ vary
a small change with ζ1 and ζ2 over the constant value of 1. The introduction
of a finite discontinuity at the leading and trailing edges of the slot when
the wall temperature in the interval is increased or decreased by a constant
value produces numerical challenges in the solution of the equations. To avoid
this problem, we used a non-uniform distribution of wall temperature in the
interval [ζi, ζj ] that varies slowly with ζ.

Where Pr Prandtl number, Mn magnetic number, θr viscosity parameter
and S∗ thermal conductivity parameter.

3 Numerical Scheme and Parameter Estimation

3.1 Numerical Method

In the current study, the governing problem is defined by a system of non-
linear parabolic Equations (12)–(13) with boundary conditions (14) and is
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numerically solved using a suitable technique. The velocity and the tem-
perature profiles are the unknown functions. The numerical method used
in this study with the principle of the common finite difference method
with the use of central differences, tridiagonal matrix manipulation, and an
iterative procedure. This methodology was developed by Kafoussias and
Williams [18] and used in the studies of Tzirtzilakis and Kafoussias [19],
and Murtaza et al. [26]. We first consider the first momentum equation and
reduce its order, we get final ordinary differential equation in F (x) defined by

F (x) = t′(ζ, η), so that F ′(x) = t′′(ζ, η) and F ′′(x) = t′′′(ζ, η) (16)

Then we rewrite the Equation (12) assumes the form,

F ′′(x)− 1

2
t
θ − θr
θr

F ′(x)− θ′

θ − θr

[
1 +

ε(ζ − ζi)(ζj − ζ)

(ζj − ζi)2

]−1

F ′(x)

− ζθ

[
1 +

ε(ζ − ζi)(ζj − ζ)

(ζj − ζi)2

]−1 θ − θr
θr

= ζ
θ − θr
θr

(
∂t

∂ζ
F ′(x)− F (x)

∂t′

∂ζ

)
∓RMn

(ζ − ac)ζ

[(ζ − ac)2 + (d
√
ζη − cb)2]2

θ − θr
θr

which can be rewritten as

F ′′(x) +

[
− 1

2
t
θ − θr
θr

− θ′

θ − θr

{
1 +

ε(ζ − ζi)(ζj − ζ)

(ζj − ζi)2

}−1

− ζ
θ − θr
θr

∂t

∂ζ

]
F ′(x) + ζ

θ − θr
θr

∂t′

∂ζ
F (x)

= ζθ

[
1 +

ε(ζ − ζi)(ζj − ζ)

(ζj − ζi)2

]−1 θ − θr
θr

∓RMn
(ζ − ac)ζ

[(ζ − ac)2 + (d
√
ζη − cb)2]2

θ − θr
θr

(17)

This equation can be put as

p(x)F ′′(x) + q(x)F ′(x) + r(x)F (x) = s(x) (18)
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in which

p(x) = 1, q(x) = −1

2
t
θ − θr
θr

− θ′

θ − θr

{
1 +

ε(ζ − ζi)(ζj − ζ)

(ζj − ζi)2

}−1

− ζ
θ − θr
θr

∂t

∂ζ
, r(x) = ζ

θ − θr
θr

∂t′

∂ζ
,

s(x) = ζθ

[
1 +

ε(ζ − ζi)(ζj − ζ)

(ζj − ζi)2

]−1 θ − θr
θr

∓RMn
(ζ − ac)ζ

[(ζ − ac)2 + (d
√
ζη − cb)2]2

θ − θr
θr

In a similar manner, Equation (13) which is already linear can be put in
the form of (18) as

1

Pr
(1 + S∗θ)θ′′ +

(
1

Pr
S∗θ′ +

1

2
t

)
θ′ + ζ

∂t

∂ζ
θ′ = ζt′

∂θ

∂ζ

This equation can be further written as

1

Pr
(1 + S∗θ)θ′′ +

(
1

Pr
S∗θ′ +

1

2
t+ ζ

∂t

∂ζ

)
θ′ = ζt′

∂θ

∂ζ
(19)

Set F (x) = θ(ζ, η), we get

p(x)F ′′(x) + q(x)F ′(x) + r(x)F (x) = s(x) (20)

Where

p(x) =
1

Pr
(1 + S∗θ), q(x) =

1

2
t+

1

Pr
S∗θ′ + ζ

∂t

∂ζ
, r(x) = 0 and

s(x) = ζt′
∂θ

∂ζ
.

To solve the system under consideration, the numerical scheme consists
of proceeding in the ζ-direction. The previous iterations at ζi are known in
order to calculate unknown profiles at ζi+1. The process starts at ζ = 0, where
the Equations (12) and (19) reduce to

t′′′ − 1

2
t
θ − θr
θr

t′′ − θ′

θ − θr

[
1− εζiζj

(ζj − ζi)2

]
t′′ = 0 (21)



102 R. Prodhan et al.

and
1

Pr
(1 + S∗θ)θ′′ +

(
1

Pr
S∗θ′ +

1

2
t

)
θ′ = 0 (22)

The boundary conditions of (21)–(22) are provided in (14) and the numer-
ical solutions of (21) and (22) with (14) is determined by using an effective
numerical technique based on the conversion of the equations in the form of
(18) and (20).

To find from ζi to ζi+1, the equations are discretized at ζi+ 1
2
, ηj with

central differences for backward differences for first order ζ-derivative sand
for first and second order derivatives. The numerical technique of Crank-
Nicolson is implemented on a uniform (ζ, η) grid. Equation (13) gives θi+1,j

utilizing a fast-tridiagonal technique after an estimate of unknown t′i+1,j is
provided. This profile is used to solve (12), iteratively based on tridiagonal
technique and obtained t′i+1,j . The procedure is revisited till the desired result
at ζi+1 is obtained. In this problem we use the discretization steps ∆ζ =
0.001, ∆η = 0.6 and consider the value of η∞ = 10.0 according to the final
ζ-station. The current and prior iterations are compared using a convergence
condition based on the comparative variance. When this dissimilarity reaches
at 10−6, the solution is said to have converged, and the iterative procedure is
completed.

3.2 Parameter Estimation

Numerical computations for the dimensionless parameters involved in this
problem have been performed. Here dimensionless ratio ζ(x) = Grx

Re2x
repre-

sents the types of flow. We found different type of convection such as ζ ≪ 1
means forced convection, (ζ ∼ 1) then it is mixed convection and (ζ ≫ 1) for
free convection. The maximum value of ζ determined to 0.5(x-final = 0.76)
for this study.

Blood is the biomagnetic fluid in this case the density is ρ∞ = 1050
kgm−3, viscosity is µ∞ = 3.2 × 10−3 kgm−1 s−1, the free stream velocity
is u∞ = 0.28 ms−1 (cf. [22]). The temperature of the vertical plate is T0 =
45◦C = 318 K and the blood temperature in the free stream is T∞ = 15◦C =
288 K. As a result, the temperature difference is ∆T = T0 − T∞ = 30 K.
For these temperatures, specific heat under constant pressure cp = 4 × 103

JKg−1 K−1 and thermal conductivity κ∞ = 0.6 Jm−1 s−1 K−1 are used as
measures for blood (cf. [25]). Although µ, cp, κ of any fluid, and hence of the
blood, are usually independent of temperature, the Prandtl number Pr can be
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considered constant. Thus [16, 19]

Pr =
µ∞cp
κ∞

=
3.2× 10−3 Kgm−1 s−1 × 4× 103 JKg−1 K−1

0.6 Jm−1 s−1 K−1
≈ 21.0

The thermal expansion coefficient of blood is β = 0.18 × 10−3 K−1

and g = 9.81 ms−2 [22]. Under these conditions, the constant c, specified
in Equation (7), produces the value c = 0.662. Assume that the electric
wire is positioned at the point (x0, y0) = (a, b) = (0.50,−0.20). In the
converted and dimensionless coordinate system Oζη, the position of the wire
is (ζ0, η0) = (0.331,−85.73).

For liquids, the viscosity parameter θr takes negative values for positive
temperature difference ∆T = T0 − T∞. The values of θr are taken equal to
θr = −0.40,−0.50 and −0.60 [22] and thermal conductivity parameter S∗

is taken to be equal to S∗ = 0.14 for the specified temperature difference.
For B0 = 1.2 T and M0 = 40 Am−1 [27], the value of Mn is

Mn =
M0B0

ρ∞u2∞
=

40 Am−1 × 1.2 T

1050 Kgm−3 × (0.28 ms−1)2
= 0.6

The electrical conductivity of blood can be considered minimal with the
value of B0 = 1.2 T. The situation Mn = 0.0 represents blood flow in the
absence of a magnetic field.

4 Results and Discussion

For numerous parameters of this problem Mn, θr, ζ, ε,Pr and S∗ the con-
verted Equations (12) and (13) with (14) are numerically solved using the
finite-difference scheme. The range of parameter values we have used for
numerical computations are: −0.40 ≤ Mn ≤ 0.60, 0 ≤ ζ ≤ 0.5,−0.25 ≤
ε ≤ 0.25,Pr = 21.0 and S∗ = 0.0, 0.14. It may be noted that for the purpose
of computation, we take a slot located in the interval [ζi, ζj ] = [0.1, 0.3] [28].
The wall is heated or cooled in this specified interval. The temperature
T0(T∞) of the remaining part of the wall remains constant.

Figures 2 and 3 represent the accuracy of our method by comparing the
velocity profile t′(ζ, η) and temperature profile θ(ζ, η) for ε = 0,Pr =
21.0, θr = −0.50,Mn = 0.40, ζ = 0.24 setting ηmax = 10.0 and 2.5 with
those reported in [22]. The results with ε = 0 are found to be in very good
agreement (cf. Figure 2).
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Figure 2 Comparison of dimensionless velocity t′(ζ, η).
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Figure 3 Comparison of dimensionless temperature θ(ζ, η).

The space change of the velocity profile t′(ζ, η) and the temperature
profile θ(ζ, η), for θr = −0.50, ζ = 0.24, ε = 0.25 and −0.25 for
various assessments of the magnetic number Mn = 0.10, 0.20, 0.40, 0.50
are presented in Figures 4 and 5, respectively.

In Figure 4, the effect of wall heating (ε = 0.25) and wall cooling (ε =
−0.25) on the velocity field is found to be negligible. The velocity profile
starts from t′(ζ, 0) = 0 and increases to the boundary value t′(ζ, 5.0) = 1
for all ζ.
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Figure 4 Velocity profile t′(ζ, η) for different magnetic number, wall heating (ε = 0.25)
and wall cooling (ε = −0.25).
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Figure 5 Temperature profile θ(ζ, η) for different magnetic number Mn, wall heating (ε =
0.25) and wall cooling (ε = −0.25).

In Figure 5, the temperature profile starts from (0, 1.0569) for wall heat-
ing (ε = 0.25), while it starts from (0, 0.9431) for wall cooling (ε = −0.25).
In both the cases the temperature profile decreases gradually and ends at the
boundary layer.

From Figures 4 and 5 it is concluded that, for every value of ζ, veloc-
ity increases with magnetic number Mn whereas reverse trend show for
temperature profile.
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Figure 6 Skin friction coefficient Cfx for different magnetic numbers Mn for the cases of
wall heating (ε = 0.25) and wall cooling (ε = −0.25).
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Figure 7 Variations of Nusselt number Nux for various values of magnetic number Mn,
for the case of wall heating (ε = 0.25) and wall cooling (ε = −0.25).

Figures 6 and 7 show the space variations of the dimensionless skin
friction coefficient Cfx and the Nusselt number Nux with ζ, for θr = 0.50
and Mn = 0.10, 0.20, 0.40, 0.50, respectively.

In Figure 6, the skin friction coefficient starts from (0, 0.9347) and
decreases slightly in the slot [0, 0.1] for wall heating (ε = 0.25) and then
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increases rapidly with the dimensionless distance ζ. Again, the skin friction
coefficient starts from (0, 0.5773) and increases gradually for wall cooling
(ε = −0.25). The skin friction coefficients for both cases agree in the slot
[0.1, 0.3]. The skin frictions for both cases are influenced by the existence
of the different magnetic field and take their supreme value in the region
denoted by ζ = 0.3. Beyond ζ = 0.3, the skin friction coefficients decrease
for both cases and intersect at (0.432, 1.0607) for wall heating and intersect
at (0.42, 0.84) for wall cooling. Beyond the point of intersection, the skin
friction coefficient induced in the case of wall heating and decreases for wall
cooling.

From Figure 7 it is seen that the Nusselt number starts from (0, 0.5899),
increases in a rectilinear manner in the interval [0, 0.1] and then the graphs
are convex upwards in the interval [0.1, 0.3] for wall heating (ε = 0.25).
The Nusselt number also starts from (0, 0.2709) and increases linearly in
the slot [0, 0.1] and then concave downwards in the slot [0.1, 0.3] for wall
cooling (ε = −0.25). The impact of wall heating and cooling parameter
show the reverse behavior on the Nusselt number in the slot [0.1, 0.3], but for
the wall cooling we see it is not a mirror reflection. Beyond ζ = 0.3, a little
far upstream the Nusselt numbers of different magnetic numbers intersect
at (0.462, 0.5909) for wall heating and a little far downstream the Nusselt
numbers of different magnetic numbers intersect at (0.414, 0.4411) for wall
cooling. Beyond the point of intersection, the Nusselt number increases for
wall heating and decreases for wall cooling.

It may be noted that, the influence of heating (ε = 0.25) and cooling
(ε = −0.25) in the interval [ζi, ζj ] = [0.1, 0.3] are more noticeable on the
Nusselt number (Nux) than the coefficient of skin friction (Cfx), because the
wall heating/cooling parameter directly impact the thermal field.

Figures 8 and 9 show the space variation of the velocity and temperature
profiles, respectively, for Mn = 0.40, θr = −0.50 and at different positions
ζ through a vertical plate.

In Figure 8, it is observed that in the interval [0.0, 0.36] for ζ increases,
the fluid velocity profile t′(ζ, η), like the axis or plate inside the thin layer
and accelerates, from the initial value zero, on the wall, to the free stream
velocity. It is also find that forced convection dominates for the leading edge
near the plate (ζ = 0.0 or ζ = 0.12), but for as ζ increases (ζ = 0.24 or
ζ = 0.36) the convection transfers into the mixed area and consequently into
a free convective regime. So, buoyancy-force performance along free stream
and velocity within thin layer can approximated the outer value t′(ζ,∞) = 1
showing a possible overshoot in it (t′(ζ, η) > 1). It is observed that the effect



108 R. Prodhan et al.

Figure 8 Velocity profile t′(ζ, η) at different places ζ and for wall heating (ε = 0.25) and
wall cooling (ε = −0.25).
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Figure 9 θ(ζ, η) for various values of ζ, in the case of wall heating (ε = 0.25) and wall
cooling (ε = −0.25).

of wall heating (ε = 0.25) and wall cooling (ε = −0.25) is much less for
ζ = 0.0 and negligible for other values of ζ.

In Figure 9, as ζ increases, the dimensionless temperature θ(ζ, η)
decreases except for the value ζ = 0.36 inside the thermal boundary layer.
At the place ζ = 0.36, the temperature, for all η, is enhanced than that of
the corresponding ζ = 0.24. At ζ = 0.0, 0.36 the dimensionless temperature
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Figure 10 Change in skin friction coefficient (Cfx) for different values of viscos-
ity/temperature parameter θr .

starts from (0, 1) and ends at the boundary layer at the free stream for wall
heating (ε = 0.25) and wall cooling (ε = −0.25), respectively. At ζ = 0.12
the dimensionless temperature reaches at (0, 1.0119) for wall heating and
reaches at (0, 0.9881) for wall cooling. At ζ = 0.24 the dimensionless
temperature reaches at (0, 1.0569) for wall heating and reaches at (0, 0.9431)
for wall cooling.

Figures 10 and 11 represent the space variations of the skin friction
coefficient (Cfx) and Nusselt number (Nux) and for different values of the
viscosity/temperature parameter θr when Mn = 0.40. It is known that when
|θr| is large, the variation of viscosity parameter on the boundary layer is
negligible but for θr < 0, the viscosity variation play an important role.

Figure 10 shows that the skin friction coefficient is reduced slightly in
the interval [0, 0.1] but it increases gradually in [0.1, 0.3] as |θr| decreases
for wall heating (ε = 0.25). The change in the skin friction coefficient for
wall cooling (ε = −0.25) is rather less. The impact of the wall cooling
(ε = −0.25) on the skin friction coefficient is very similar to the wall heating
in the interval [0.1, 0.3]. The graphs for skin friction coefficients for both the
cases intersect at (0.324, 1.4248). Beyond this point, the skin friction coeffi-
cient reduces in both cases. After a downstream, the skin friction coefficient
slightly upstream for wall heating.

From Figure 11, one may observe that the Nusselt number decreases
slightly in [0, 0.1] and convex upwards in [0.1, 0.3], then slightly upstream as



110 R. Prodhan et al.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2
N
u x

r

r

r

r

r

r

Pr= 21.0
Mn= 0.40
S = 0.14

Figure 11 Variation of Nusselt number (Nux) for different values of viscosity/temperature
parameter θr .

Figure 12 Change in velocity profile t′(ζ, η) for positive, negative and zero values of Mn.

|θr| decreases for wall heating. Also, the Nusselt number increases linearly
in [0, 0.1] and concave downwards in the slot [0.1, 0.3] and then decreases
gradually in the case of wall cooling (ε = −0.25). The impact of wall
heating on the Nusselt number is of opposite type to that of the wall cooling
in [0.1, 0.3].

Figures 12 and 13 represent velocity profile t′(ζ, η) and temperature
profile θ(ζ, η), for ζ = 0.24, θr = −0.50 and for Mn = 0.0,±0.40.
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Figure 13 Change in the temperature profile θ(ζ, η) when Mn > 0, < 0 and = 0 in the
cases of wall heating/cooling.

From Figure 12, we find that when Mn = 0.0,−0.40, the change in the
velocity profile is greater than that when it changes between from 0.0 to 0.40.
The effect of the wall heating (ε = 0.25) and wall cooling (ε = −0.25)
on the velocity field is not very appreciable. The velocity profile increases
significantly in the boundary layer, increases from zero on the plate to its
limiting value 1, at the free stream.

Figure 13 revealed that when Mn changes from 0.0 to −0.40, the
change in the temperature profile is greater than that when the Mn changes
from 0.0 to 0.40. The temperature profile starts from (0, 1.0569) for wall
heating (ε = 0.25) and it starts from (0, 0.9431) in the case of wall cooling
(ε = −0.25). The temperature profile diminishes in a gradual manner in the
boundary layer for both the cases.

Spatial variations of the skin friction coefficient (Cfx) and the Nusselt
number Nux, are shown for various Mn in Figures 14 and 15, when
θr = −0.50.

Figure 14 shows that the skin friction coefficient starts from (0, 0.9437)
and it decreases slightly in [0, 0.1] for wall heating (ε = 0.25). Beyond
ζ = 0.1, as ζ increases, the skin friction coefficient for wall heating gradually
increases for Mn = 0.40 but it gradually decreases for Mn = −0.40.
The skin friction coefficient for wall cooling (ε = −0.25) also starts
from (0, 0.5773) and increases rapidly for Mn = 0.40 and decreases for
Mn = −0.40. We see that when Mn = 0.40, Cfx attains its maximum
position at ζ = 0.312 and minimum at ζ = 0.288 for Mn = −0.40.
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Figure 14 Skin friction coefficient Cfx with ζ for Mn.
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Figure 15 Variations of the dimensionless Nusselt number Nux for positive, negative and
zero magnetic number Mn.

The plots for skin friction coefficient for Mn = 0.40 and Mn = −0.40
intersect at (0.42, 1.0865) in the case of wall heating, while the plots for
skin friction coefficient for Mn = 0.40 and Mn = −0.40 also intersect at
(0.408, 0.9195), when wall cooling takes place.

In Figure 15 shows that the plot for the Nusselt number starts from
(0, 0.5899) and decreases linearly in [0, 0.1] in the case of wall heating
(ε = 0.25). In the case of wall cooling, the plot starts from (0, 0.2709) and
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Figure 16 Distribution of skin friction coefficient Cfx for various values of S∗ for the cases
of wall heating (ε = 0.25) and wall cooling (ε = −0.25).
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Figure 17 Spatial variations of Nusselt number Nux for altered values of thermal conduc-
tivity parameter S∗.

increases linearly in [0, 0.1] for wall cooling. In [0.1, 0.3] the Nusselt number
is convex upwards for wall heating and concave downwards for wall cooling.
The effect of the wall heating is of a reverse nature in the case of wall cooling
in [0.1, 0.3].

Figures 16 and 17 present the variations of the skin friction coefficient
Cfx and the Nusselt number Nux, vs ζ for θr = −0.50,Mn = 0.40 and
varying S∗ respectively.
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From Figure 16, we find that the skin friction coefficient decreases
slightly in [0, 0.1], then increases in [0.1, 0.3] and finally diminishes sig-
nificantly for wall heating (ε = 0.25). The skin friction coefficient for
wall cooling (ε = −0.25) increases from the leading edge and it attains a
maximum at ζ = 0.3. Starting from the point (0.3, 1.4289) the skin friction
coefficient diminishes gradually.

In Figure 17, we find that the Nusselt number decreases linearly in
[0, 0.1], convex upwards in [0.1, 0.3] and slightly upstream in the case of wall
heating. In the case of wall cooling, however, the Nusslt number increases
linearly in [0, 0.1], concave downwards in [0.1, 0.3] and finally decreases
linearly. The reverse behavior shown for the Nusselt number for different
value of wall parameter (heating or cooling) in [0.1, 0.3].

5 Conclusions

A numerical analysis of steady viscous two-dimensional laminar incompress-
ible boundary layer flow with mixed convective on the biomagnetic fluid
above a vertical plate under the action of an applied magnetic field and
localized heating/cooling has been performed in this work. The momentum
and energy equations were reduced to nonlinear coupled partial differential
equations using a similarity transformation. The governing problem in the
form of partial differential equations have been solved by a new technique
with the finite difference method. The impacts of the dimensionless parame-
ters Pr,Mn, θr, ζ, ε and S∗ on the fluid flow have been discussed. To validate
the study, the numerical results obtained have been compared with the results
of previous study reported earlier in scientific literatures and they are found to
be in good agreement. Significant results of the study regarding the variations
of fluid properties lead to the following conclusions:

1. Changes in velocity and temperature profiles at every location of the
vertical plate depend quit significantly on the magnetic properties.

2. The existence of a magnetic field has a significant impact on skin-
friction and Nusselt number. The effect is more pronounced when the
magnetic field intensity is high. The effects of wall parameter (heating
or cooling) are more prominent for Nusselt number than for the skin
friction.

3. For both physical parameter, enhancing the sensitivity of the viscosity
parameter to temperature via the parameter θr has a considerable effect.
The skin friction and the Nusselt number both decrease as |θr| increases.
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4. In the case of Mn < 0, the impact of Mn on the flow field is
qualitatively and quantitatively different from the situation of Mn > 0.

The findings of the study are believed to be quit useful to clinicians for
having a better insight of blood flow in arteries, when the human body is
subject to a magnetic field.
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