
Revue européenne des éléments finis. Volume 13 – n° 8/2004, pages 831 to 839

Mixed mode fracture of a higher order
beam model in gradient-dependent
plasticity

Marie G. Salomon* — Fékri Meftah** — Jean-Marie Reynouard*

* URGC-Structures
Institut National des Sciences Appliquées de Lyon
34, avenue des Arts, Bât. J.A.C Coulomb
F-69621 Villeurbanne cedex

** Laboratoire de Mécanique
Université Marne La Vallée
5, boulevard Descartes
F-77454 Marne La Vallée cedex 2

ABSTRACT. A higher-order shear-deformable beam model with gradient-dependent plasticity
regularisation is presented in this work. The model takes into account a realistic non-linear
variation of stresses and strains through the beam thickness. This enables mixed mode
fracture analysis. Numerical results are presented for a multilayered beam. The discrete
problem size is significantly reduced through this semi-local approach.

RÉSUMÉ. Un modèle de poutre avec gauchissement des sections, dans le cadre de la plasticité
au gradient, est présenté. Il prend en compte une variation réaliste des contraintes et
déformations de cisaillement sur la section. La confrontation avec les expériences montre
l’aptitude de ce modèle multicouche à décrire le mode mixte de ruine, tout en réduisant
considérablement la taille du problème discret.
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1. Introduction

Strain localisation of quasi-brittle materials can be considered as an instability in the
macroscopic constitutive description of inelastic deformation. In classical continuum
mechanics, the appearance of localisation is associated with a change of type of the
governing equations, which lose ellipticity in statics. This is an indicator of the initiation
of a material surface discontinuity. Since the localisation zone can be infinitely thin, a
displacement discontinuity may develop, leading to numerical difficulties when
conventional finite element methods are used. The calculated energy dissipation tends to
zero upon mesh refinement. As a consequence, in softening regime, the global response
becomes infinitely brittle; this is known as mesh dependency.

Higher-order continuum theories can be used to remedy the mesh dependency.
Aifantis (Aifantis, 1992) and Vardoulakis (Vardoulakis, 1991) demonstrated the
regularising role of higher order strain gradients in localisation phenomena. The
governing equations possess a mathematical structure, which is amenable to non-
linear stability analysis.

A 2D shear-deformable beam model with cross section warping incorporating
gradient-dependent plasticity regularisation is presented in this work. An appropriate
form of the warping function was chosen in order to provide more accurate
solutions, thus eliminates the use of shear correction coefficients, as it is the case in
Timoshenko’s and Reissner’s theory for beams. The chosen kinematics enables a
better description of localised failure under shear, tension and mixed-mode
conditions for thick to thin beams.

2. Finite element formulation

Gradient dependent plasticity models bear significant advantages of mesh
independency and preservation of ellipticity. However, the increment of the plastic
strain can not be obtained at a local level, since the consistency condition, which
governs the plastic flow, becomes a second order partial differential equation thereof.
Using a finite difference method as proposed by Belytschko and Lasry (Belytschko,
1989), the algorithm is then a sequence of separate approximate solutions of the
equilibrium problem. de Borst and Mühlhaus (de Borst et al., 1992) developed the
following approach, which uses only finite elements. It solves the problems of the
functional dependence of the yield function on the plastic strain and its Laplacian.

We consider the following set of field equations:

TL �σ = 0 [1.a]

= Lu� �ε [1.b]

( )2 0f , ,κ κ∇ =σ [1.c]
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which defines the elasto-plastic rate boundary problem during associated plastic
flow. In the equations mentioned above, L is a differential operator matrix, �σ  and
�ε  are the stress and strain rate tensors (in vector form), respectively, u�  is the
displacement rate vector, D  is the elastic stiffness matrix, λ  is the plastic
multiplier being a measure of the plastic flow intensity, f  is the gradient-dependent

yield function and κ  is the hardening parameter which corresponds to the
cumulated plastic strain.

The cumulated plastic strain Laplacian, appearing in yield function, introduces
an internal length scale in the continuum description. The localisation zones have
therefore finite widths, controlled by this internal length, and mesh dependency is
avoided (de Borst et al., 1992).

An incremental-iterative algorithm presented in (de Borst et al., 1992) has been
derived for gradient plasticity. Unlike classical plasticity, this algorithm requires a
weak satisfaction of the equilibrium equation [1.a] and the yield condition [1.c] at
the end of iteration j+1 of current loading step, leading to a variational formulation
of the gradient dependent plasticity problem. For the detailed derivation of the weak
formulation, the reader is referred to (de Borst et al., 1992), (Meftah, 1998).

The weak satisfaction of the yield condition besides the equilibrium equation
requires the discretisation of the plastic multiplier field together with the
displacement one (de Borst et al., 1992):

u = Na , λ = HTΛ and ∇2λ = PTΛ [2]

where a are the nodal displacements and Λ the nodal degrees of freedom related to
the plastic multiplier λ. Further, N and H are the respective shape functions and P
the matrix containing second derivatives of H elements.

By introducing the discretisation form of the two unknown fields into the weak
form of equations [1.a] and [1.c], we obtain the set of algebraic equations that will
allow for solving numerically the initial problem [1]:
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with the elastic stiffness matrix Kaa, the off diagonal matrix Kaλ introducing coupling
between kinematics and the plastic flow, the gradient dependent matrix Kλλ, the
external force vector fe, the internal force vector fi, and the vector fλ of the residual
forces resulting from the inexact fulfilment of the yield condition.
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3. The multilayered finite element model

Meftah (Meftah, 1997), (Meftah, 1998) has originally developed a multi-layered
finite element model in gradient plasticity. It is a model allowing for finite element
analyses of beam failure with reduced degrees of freedom. In this model, the
displacement field reduces to a=(u,v,β)T, where u and v are respectively the axial
and the transverse displacements of the beam middle plane, β is the rotation thereof.
The plastic multiplier field is, however, interpolated through the beam depth which
is divided into superposed layers, giving its variation by the mean of nodal

parameter ( )k
j

k
i

k , ΛΛ=Λ  at each layer k. C1 continuous interpolation

polynomials are considered for the plastic multiplier field. Therefore, the equation of
the equilibrium process for n layers becomes:
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The multilayered beam model was previously approximated by the Euler-
Bernoulli theory of bending which leads to serious discrepancies in the case of
beams with small aspect ratio (Meftah, 1997). Thus, this theory is not appropriate
for shear failure and mixed-mode fracture.

4. Higher-order shear theory

In order to simulate mixed mode fracture, shear stress has to be taken into account.
In the Timoshenko’s theory for beams, the transverse shear strain remains constant
through the thickness. The shear-free boundary is not satisfied. To avoid discrepancies
in the shear constitutive equations, a shear correction coefficient is then introduced.

The higher-order deformation theory incorporates a realistic non-linear variation of
the longitudinal displacements through the beam thickness thus, eliminates the use of
shear correction coefficients. This theory allows the cross-section to rotate and to warp
into a non-planar surface. The following kinematical assumption is made:
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where u and v are respectively the axial and the transverse displacements of the
middle plane (x-axis), β is the rotation thereof and h is the beam depth (Levinson,
1981), (Kant et al., 1989).

This kinematical assumption was introduced in the displacement field of the
multilayered beam previously developed with the Bernoulli theory (Salomon, 2000).
This higher-order theory satisfies the shear free boundary conditions on the lateral
surface of the beam. The gradient regularisation concerns only the axial normal
stress. Shear and normal stresses are coupled in a Drucker-Prager yield criterion,
since the model does not take into account the transverse normal stress.

5. Numerical examples

For mode I fracture, a comparison of the present beam model with the
experimental data is in good agreement (Salomon, 2000). The ability of the
proposed model to describe mixed mode fracture is now assessed.

5.1. Single edge notched beam

The four-point-shear tests (single and double edge notched beams) were initially
proposed to study the yield strength of welded joints. The geometry was adapted to
concrete materials in order to improve the behaviour of the shearing zone (������
et al., 1986). Those beams do not follow Saint-Venant’s hypothesis, since the
displacement control point is next to the loading platen.

Figure 1. Geometry of the single edge notched beam
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The geometry and the material data for the notched concrete beam are based on
the experimental values of Schlangen (Schlangen, 1993): Young’s modulus E =
35000 N/mm2, tensile strength ft = 3.0 N/mm2, compressive strength fc = 46.6
N/mm2, fracture energy Gf = 0.10 N/mm and the internal length l = 3 mm. Arc
length method is used.

Figure 2. Load versus Crack Mouth Sliding Displacement (CMSD) of the single
edge notched beam

Figure 3. Crack pattern of the shear test a) beam model, b) experiment (Schlangen,
1993)
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In the neutral axis of the beam, high shear stresses rise in the notched area, while
the bending moment vanishes. According to the beam kinematics, this means no
axial stress in the notched area (Salomon, 2000). This should give a better insight in
the global response of the beam model (cf. figure 2).

Figure 2 gives the response of the notched beam in term of load versus the crack
mouth sliding displacement (CMSD). The CMSD is defined as the relative vertical
displacement of the notch faces at the top of the beam. The present model
underestimates the peak load by 2.5%, the sliding displacement by 32%. At early
load stage, the model could not simulate the normal stress concentration at the
notched. As a consequence the response in the pre-peak regime is too stiff.
However, the failure mode and the peak load have been properly simulated. In this
test, mixed mode fracture occurs. Indeed, a crack is initiated at the right corner of
the notch and opposite to the central loading platen. Then it continues to grow,
following a curved path which ends to the right of the lower loading platen
(cf. figure 3b). A closed form of the crack pattern, given by the iso-values of the
cumulated plastic strain (cf. black curve in figure 3a), is obtained by the simulation.
Note that The cracking of the notched zone is due to the shear stress that
compensates for the zero normal stresses.

5.2. Double edge notched beam

This beam is put to the same loading condition as the single edge notched one. In
this test, however, the shearing zone is smaller, while the shear stress is greater than
the transverse normal stress (������ et al., 1986). Therefore, the proposed beam theory
based model should be able to predict properly the observed behaviour. The material
data are the same as those of the previous test. The geometry is given in figure 4.

Figure 4. Geometry of the double edge notched beam
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Figure 5 gives the response of the notched beam in term of load versus the
average value of both the crack mouth opening and sliding displacements (CMOS
and CMSD, respectively), as reported experimentally by Schlangen (Schlangen,
1993). The CMOD is defined as the relative horizontal displacement of the notch
faces at the top of the beam.

Figure 5. Load versus Displacement of the double edge notched beam

In the pre-peak regime, a good agreement between the model and the experiment
is obtained, since in the shearing zone, shear stresses are greater than the transverse
normal stresses (������ et al., 1986). Therefore the beam model does not
overestimate the stiffness as is the case in the single edge notched beam test. The
post-peak regime predicted by the proposed model shows, however, a more brittle
behaviour. Since the shear failure prevails in this case, the brittleness of the
numerical response is mainly due to the fact that shear fracture energy introduced in
the model underestimates the real dissipated energy.

6. Conclusion

In this paper, a beam element based on a higher-order shear deformation theory
with gradient plasticity regularisation is developed and studied. For thin beams, the
shear stress can often be neglected by using the Bernoulli beam theory. When high
shear gradients are present in the beam, excluding warping due to transverse shear
may not be justified. The chosen warping function provides accurate solutions and
thus, eliminates the use of shear correction coefficients.

The higher order beam element accurately predicts the peak load for the shear
test analysis. Mixed mode fracture was properly simulated, and the response of the
model is almost similar to those given by a full bidimensional analysis. The
numerical results indicate that the higher order beam theory coupled with gradient
plasticity suffices for the examination of many beam problems and provides a beam
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element, which accounts for shear deformation effects. This beam model consists in
a quasi two-dimensional method, allowing finite element analyses with reduced
degrees of freedom. This means memory workload and calculation cost decrease.
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