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ABSTRACT. An analytical model, which can simulate the biaxial description of the nonlinear
behavior of reinforced concrete structures, is introduced. The behavior of concrete is
assumed orthotropic inside the ultimate failure surface and a compressive softening law of
concrete is presented. The behavior of cracked concrete is simulated using the smeared crack
model, which the tension stiffening effect based on a cracking criterion derived from the
fracture mechanics principles is considered. A computer program is developed for analyzing
the over and under-reinforced concrete beams. Several parameters such as the non-linearity
proprieties, the cut off and tension stiffening models and shear retention factor are studied.
The correlation between analytical and experimental results shows the validity of the
proposed models and the significance of various effects. The global responses are evaluated
to verify simultaneously the reliability of the proposed model and the performance of the
numerical program.

������. Un modèle analytique qui peut simuler la description biaxiale du comportement non
linéaire des structures en béton armé est introduit. Le comportement du béton est supposé
orthotropique à l’intérieur de la surface ultime de rupture et une loi d’adoucissement en
compression du béton est présentée. Le comportement du béton fissuré est simulé en utilisant
le modèle de fissuration diffus dont l’effet de “tension stiffening” basé sur un critère de
rupture dérivé à partir des principes de mécanique de la rupture est considéré. Un
programme de calcul a été développé à l’analyse des poutres sur et sous-armées. Plusieurs
paramètres tels que les propriétés non linéaires, les modèles “cut-offv” et “tension stiffening”
et le facteur de transfert de cisaillement ont été étudiés. Une corrélation entre les résultats
analytiques et expérimentaux, montre la validité des modèles proposés et l’importance de
divers effets. Les réponses globales sont évaluées pour vérifier simultanément la fiabilité du
modèle proposé et la performance du programme numérique.
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1. Introduction

Reinforced concrete is one of the most commonly used applied materials into all
kinds of structures. For many years ago, the structural analysis of reinforced concrete
members was based on empirical approaches and elasticity equations. This analysis
doesn’t reflect the accurate response of structures which oblige to go back to the
nonlinear analysis that are often required especially for complex structures or under
extreme load conditions.

To solve the differential equations governing the behavior of structures, it is
necessary to resort to the numerical methods. Since Ngo and Scordelis (Ngo et al.,
1967) applied the first nonlinear finite element method to analyze the reinforced
concrete beams. This numerical method became a significant tool for complex
reinforced concrete structures analyses (Zienkiewicz et al., 1991). This technique
has played an important role in the composite structures field to allow the knowledge
of the formation and propagation of cracks, their mechanism and process of failure.

Concrete is complex material with cracking phenomenon, tension-stiffening
effect, shearing transfer factor, plasticity and non-linearity proprieties. These last
years, a flood of modeling of plain, reinforced concrete and their interface has been
presented. In this context, we can quote, principally, the elasto-plastic models (Rots,
1988, Bicanic et al., 1994) and damage models (Mazars, 1984, Mazars et al., 1992,
La Borderie, 2003) knew a broad use.

Modeling of concrete cracking is further complicate by the interaction effect
between cracked concrete and steel bars which tension stiffening effect is
incorporated in the stress-strain relationship of concrete (Kupta et al., 1990, Kwak et
al., 2001-2002). It is recognized that overall nonlinear response of reinforced
concrete material is significantly affected by this effect.

In the other hand, cracking of concrete gives birth to the shear stress transfer.
Shear can be transmitted across the cracked concrete faces. In this study, its effect is
treated by reducing of the shear stiffness. Due to this simplicity, this approach is
more useful for computational purpose and various values are granted to the reduced
factor (Gilbert et al., 1978, Lin et al., 1975, Leibengood et al., 1986). A deepened
analysis allows recommending an average value of shear retention factor to
reinforced concrete beams analysis.

This study presents a new analytical model of concrete, which describes the
compressive softening behavior of concrete. The stress-strain relationships of both
ascending and descending curves are presented. The ascending part is assumed to be
elasto-plastic while the descending part is represented by an exponential function,
which describes the stiffness degradation with a negative hardening. In this region,
the effect of finite element size is discussed in connection with the smeared crack
model. In this concern, a numerical procedure is established that taken into account
the above parameter influencing structural responses and the stress-strain
relationship is implemented into the finite element program.
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The developed finite element model is validated by comparison the obtained
results and experimental data (Pera, 1973). The correlation through the examples
studied shows the reliability of the proposed model and the performance of the
developed program (Khalfallah,.2003).

2. Material models

This section details the concrete and reinforcing bars models adopted in the
present work.

2.1. Reinforcing bars

The reinforcing bar is modeled as a linear elastic, linear strain hardening material
with yield stress fy as shown in figure 1.The smeared stress-strain of mild steel bars
embedded in concrete is expressed by two straight lines as:

fs = Es εs                                εs  ≤  εy [1]

where Es is the modulus of elasticity. In the plastic range when the effective stress
exceeds the yield stress fy of reinforcing steel, the stress-strain law is expressed as:

�� � ��� � �� � ε� � �� ε� ε�� ε� uε≤ [2]

where εy and εu are the yield strain and the ultimate strain respectively and Ep is
modulus of plasticity.

Figure 1. Constitutive law of steel bars
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According to the experiment results established by (Belarbi et al., 1994 and Zhu
et al., 2001), the smeared yielding stress fey of the steel bar embedded in concrete is
lower then that of the bare steel bar fy. Our present model was based on this idea by
assuming first that the smeared yield stress of the steel bars (figure 1) is the same to
the yield stress of the bare steel bars.

When a steel bar embedded in concrete starts to yield at level of the cracks, the
stresses in the steel bars between two successive cracks will be less than the yield
stress at the cracks, The use of the smeared steel stresses (équations, 1-2) in
combination with smeared concrete stresses in tension (équation, 13) allows the
tension stiffening of steel bar by concrete to be considered.

2.2. Concrete

2.2.1. Concrete in compression

To simulate the stress state of concrete under biaxial loading, the elasto-plastic
theory is adopted. The behavior of the material depends on the actual stress state
situation in the local axes. In the biaxial compression region, the model remains
linear elastic before reaching the initial yield surface (Kupta et al., 1969). The
incremental stress-strain relationship is expressed as:

∆σ�� � ����	 ∆ε �	 [3]

where Cijkl is the elastic matrix of concrete, ∆σij and ∆εkl are the increments of stress
and strain respectively.

The ultimate failure surface is described by an affinity of the initial yield surface
according to von-Mises criterion. Inside the ultimate failure envelope, the behavior
of concrete is described by a non-linearity elasto-plastic theory and the
corresponding stress-strain relationship is became as:

∆σ�� �
ep
ijklC ∆ε �	 [4]

In the positive hardening region, the behavior of concrete is governed with the
elasto-plastic matrix expressed by:
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where A is the flow rule parameter and F is the current plasticity function or (flow
function), defined as:
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�� ����	 ε��		 
� � � [6]

with �
�
�	 is the plastic strain; null inside the initial loading surface and k is the

parameter of work hardening.

In describing the uniaxial stress-strain behavior of concrete, the model of
Hognestad (Hognestad, 1951) is adopted, largely used in recent researches (Kwak et
al., 2001) or for unsoftened curve (Pang et al., 1995; Wang et al., 2001; Zhu et al.,
2001), as shown in figure 2, can be expressed as:
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where f’c is the cylinder compressive strength of concrete, �p is the concrete strain at
maximum compressive stress. The parabolic ascending branch as shown in figure 2
represents the behavior of concrete, which is assumed elasto-plastic with isotropic
strain hardening.

When the biaxial stresses exceed the von-Mises failure surface, the behavior of
concrete enters in the compressive softening range. In this region, failure occurs by
crushing of concrete when the principal compressive strain exceeds a limit value εr.
The descending branch, representing the compressive strain softening region, obeys
to an exponential law given as:

�
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�� � � α p

c

e ε
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���

where �, α and θ are constants; which can be determined by applying of the
continuity and compatibility conditions and they are expressed as:
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Substituting these expressions into Equation (8) lead to:
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Still in descending portion of the concrete stress-strain curve, the lowest stress
value was taken constant in region between the ultimate strain �u and the crushing
strain �r of concrete (figure 2), this is expressed as:
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Figure 2. Uniaxial constitutive law of concrete in compression

The constitutive relationships described in equations (7-12) must be controlled
by a failure criterion for concrete. Various proposals have been made to describe the
failure strength characteristics of concrete (Kupfer et al., 1969; Liu et al., 1972;
Walter, 1999), which provide the 2-D strength of concrete.

In this study, a von-Mises criterion in biaxial compression coupled with the
Rankine criterion, which provides the biaxial strength of concrete under tension-tension
and tension-compression are used (figure 3). This multiple failure surfaces criterion
was implemented in the developed program. At failure its surface is given by:

Fr (�
r
ij, εpr

kl, k
r) = 0 [11]

where �r
ij, εpr

kl and kr are the stress, the permanent strain and the of work hardening
parameter at failure respectively.

Figure 3. Loading surface defined in the2-D principal axes
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2.2.2. Concrete in tension

The behavior of concrete before cracking is assumed as an elastic isotropic solid.
The average stress-strain curve in tension is shown in figure 4 where the ascending and
descending branches are given for both cut-off and tension- stiffening models; as:

�� � ��  ε � � ≤ ε� ≤ ε�� Cut-off  model

�� � � ε� � ε��  [12]

�� � ��� ���
m

t

ε
ε

� ε�� ≤ ε� ≤ ε� Tension-stiffening model

�� � � ε� � ε�

where Ec is Young’s modulus of concrete, fcr and εcr are the cracking stress and strain
of concrete respectively, εm  is the strain corresponding to a null stress.

During the cracking phenomenon, the smeared crack model is used to represent
the discontinuity of the macro-cracking behavior. It is recommended (Asce, 1982) to
take into account the contribution of cracked concrete in the normal direction of the
cracks named tension-stiffening effect. In this investigation, a limiting value of εm

equal to 0.001 (Hibbit et al., 1997) has been used (figure 4).

To simulate the cracked concrete behavior, a linear softening model was adopted
in this study for its simplicity and computational efficiency. After the first crack has
occurred elastic orthotropic model is considered with reduced elastic modulus in the
direction normal to the crack plane. The stiffness matrix describing the cracked
concrete behavior is expressed as:

Figure 4. Cracked concrete model
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where E1 and E2  are the secant moduli of elasticity in the directions of the

orthotropic axes, ν and *cG are Poisson's ratio of concrete and the secant shear
modulus of cracked concrete in the principal plan.

Beyond the tensile strength, the tensile stress decreases linearity with increasing
of principal tensile strain. The ultimate failure occurs by cracking when the principal
tensile strain exceeds the value εm (figure 4), which can be determined from the
fracture mechanics concept. The experimental studies (Welch et al., 1969) show that
εm depends on the finite element mesh size. Through, previous numerical analyses
were guaranteed the insensitivity of the analytical solution to the mesh size using the
above approach defining the limited strain of softening εm.

Cracking of concrete will develop and propagate in the direction normal to the major
principal strain starting from the section where a crack first occurs. In the post cracking
stage, the cracked concrete can still transfer forces through shear friction, which is termed
shear retention. Assuming that the stiffness modulus of intact concrete is cracked Gc, then

the reduced shear modulus *cG of cracked concrete can be expressed as:

*cG = �. Gc [14]

The shear retention factor is expressed as:

� = 1-
*ε
εn

 [15]

where �n and �* are the strain normal to the cracked direction and the strain at which
the parameter � reduces to zero (figure 5).

Figure 5. Shear retention factor
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Several values of � are selected in the range of 0 to 1. A value of β equal to zero
corresponds to no shear retention and the shear modulus of cracked concrete is
assumed to be 0. For full shear retention the parameter β is selected to be 1 (figure 5),
the shear modulus of the cracked concrete is assumed to be the same as that of the
intact concrete. It is recommended from the obtained results that an average value of �
= 0.40 is to be taken into account of reinforced concrete beams analysis.

3. Nonlinear solution technique

Every nonlinear analysis algorithm of the resolution is composed of 4 steps: (1) the
formulation of the tangent stiffness matrix, (2) the resolution of the equilibrium equations,
(3) the formulation of the internal force vector and (4) the test of convergence. Since, the
stiffness matrix of structure depends on the displacement increments, the nonlinear
resolution of equilibrium equations required the utilization of an iterative method and the
internal force vector is established as the difference between the exterior and interior
forces. The selected nonlinear solution is that the Newton Raphson method. The criterion
of the convergence is based on the accuracy of satisfying the global equilibrium equations,
which is guided of the unbalanced nodal forces.

The load is divided into small increments. For each iteration, the nodal force
vector is calculated as:

{ } [ ] { } νσ
ν

dBF
T

e
intint ∫∑= [16]

where [B] is the element geometric matrix and { }intσ  is the total internal stresses
vector. The residual force vector is expressed as:

{ }=resF { }extF -{ }intF [17]

where { }extF and { }intF are the external and internal force vectors respectively. For

each iteration the convergence criterion has to be achieved and this process is
repeated for all load increments until the structural failure is attained.

Finally, the effect of finite element mesh size was studied for the shear dominant
structures on the basis of the used tension-stiffening model. When the tension
stiffening effect was not included, there was a marked dependence of the analytical
results on the finite element mesh size, while the proposed model exhibited
satisfactory behavior and led to response predictions which are essentially
independent from the finite element mesh size when the mesh size is less than seven
times the maximum aggregate size that’s about 17.8 cm (Kim, 1999).
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4. Applications

Two simply supported reinforced concrete beams are investigated. They have
been tested by Pera (Pera, 1973). The Serindipity membrane plane stress elements
with 3×3 of Gauss integration points are selected to modeling the concrete while
truss linear elements with 3 nodes are used for modeling the steel bars. A perfect
bond between membranous elements and truss steel bars is assumed and the
materials proprieties of beams are summarized in table 1.

Table 1. Materials proprieties used in applications (in MPa)

Model Concrete Reinforcing bars

Ec ν F'’c fcr fy fr Es ρs(%) ρ’s(%)

  P1 37600 0.22 41 3.90 447.50 722.50 2.2105 6.35 0.11

  P2 37600 0.22 41 3.90 368 488 2.2105 1.79 0.11

The tested beams are subjected to a concentrated load at mid-span. The geometry
and the cross section of over and under-reinforced concrete beams are shown in
figure 6a. The finite element model in figure 6b represents only half of the structure
(symmetry in geometry and loading).

The predicted ultimate load of the over-reinforced beam (P1) is equal to 400 KN,
that is 2.50% lower than the experimental value evaluated at 410 KN. For the under-
reinforced beam (P2), the predicted value of 240 KN is 1.69% higher than the
experimental load, 236 KN.

(a)

(b)

Figure 6. Description of the beams: (a) configuration, (b) discretization
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Various computed load-deflection curves are compared with the experimental
results (figures 7-8) and it can be observed that their shapes are very similar. The
diagrams show that the nonlinear behavior accurately reproduces the experimental
behavior but the linear analysis does not reflect the structural behavior of RC beams.
The contribution of the cracked concrete has an importance in the nonlinear analysis
and is in good agreement with the experimental data for over and under-reinforced
concrete beams. The predicted responses show that the tension-stiffening branch
adopted in this study exhibits satisfactory behavior and reasonable results. It is
recorded that the under-reinforced concrete beam (P2) sustains the post-yielding
behavior but the over-reinforced beam (P1) present a sudden failure after the yield of
steel. It is clear that the global behavior is very well simulated until the beam failure.
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Figure 7. Load- deflection curve at mid-span of over-reinforced beam
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Figure 8. Load- deflection curve at mid-span of under-reinforced beam
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Figure 9. Shear retention factor effect of over-reinforced concrete beam with
tension stiffening model
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Figure 10. Shear retention factor effect of over-reinforced beam with cut off model

The over-reinforced beam

The reinforced concrete beam is not correctly simulated when the shear retention
factor is neglected which presented independency of the tension stiffening effect.
The P-δ curves obtained with values of β = 0 and β = 1.0 show the clear difference
between the test results and the numerical results of the proposed model (figures 9-
10). This difference becomes more important for the case of cracked concrete with
tension stiffening model compared with that the cut off model.
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The increase of stiffness due to the contribution of the un-cracked concrete, the
ultimate deflection is well simulated with the tension stiffening model (2%) and it is
over-estimated without the tension stiffening (31%).

For two cases of modeling, an average value of β = 0.4, the proposed model
reproduces the experimental behavior more accurately. It is thus advisable to take it as
a reference value in the nonlinear finite element analysis of reinforced concrete beams.
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Figure 11. Shear retention factor effect of under-reinforced beam with tension
stiffening model

�

��

���

���

���

���

���

� �� �� �� �� ���
Mid-span deflection (mm)

beta = �.��
beta = �.��
Experiment
beta = �.��

Figure 12. Shear retention factor effect of under-reinforced beam with cut off model

The under-reinforced beam

In this case, the shear retention factor does not have an appreciable influence
with the tension-stiffening model (figure 11). The factor β seems to have an
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influence in the total response of the reinforced concrete beams (figure 12) without
the tension stiffening effect. These obtained results are in contradiction with those
presented by Hu and Liang (Hu et al., 2000).

Finally, it is seen that by using the proposed model, the 2-D finite element
analysis can predict not only the ultimate load and the deflection satisfactory, but
also the failure process of the beams (figure 13), the ductility and the effect of the
percentage of reinforcements on the response of the reinforced concrete beams.

             Under-reinforced section                                   Over-reinforced section

Figure 13. Analytical failure modes

5. Conclusion

An analytical model for the material nonlinear analyses of reinforced concrete
structures has been proposed. The model includes a new softened stress-strain
relationship of concrete in compression. The proposed model, which takes in
account the following parameters, has been verified by comparison between
numerical and experimental results.

The studies RC beams were analyzed with the purpose of investigating the
relative effects of the physical proprieties including the proposed softening behavior,
the tension stiffening and the shear retention factor. The correlation between
analytical and experimental results led to the following conclusions: (1) the
compressive softening behavior of concrete and the smeared stress-strain relation of
steel embedded in concrete can predict more accurately the response and the ultimate
strength of RC beams, (2) the tension stiffening effect has not an appreciable effect
but its negligence has an influence especially on under-reinforced concrete beams.
The tension-stiffening model has a notable effect at the cracked stage of concrete of
the under-reinforced concrete beams because the contribution of the cracked
concrete increases as the structure is more under-reinforced. However, the predicted
responses show that the adopted tension-stiffening model exhibits reasonable results
(3) an average value of the shear retention factor (β ≈ 0.4) is recommended for this
analysis. The previous figures (7-13) show that the finite element analysis based on
the proposed model can provide accurate prediction of the nonlinear behavior,
including the ultimate strength, deflection and failure mechanism of RC structures.
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