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ABSTRACT.By introducing unknown Level-Sets fields on contact interface, the Signorini-Moreau
dynamic contact conditions are written as equations. From this, a new continuous hybrid weak-
strong formulation for dynamic contact between deformable solids is derived. In the global
problem, the Level-Sets like fields are the intrinsic contact unknown ones. This problem is
discretized by means of time, space and collocation schemes. Some numerical experimentations
are carried out, showing the effectiveness of our approach. The paper is ended by showing a
promising application of the multiscale Arlequin method to the multiscale impact problems.

RÉSUMÉ.En introduisant des champs de signe intrinsèques aux zones de contact, le modèle de
Signorini-Moreau est écrit sous forme d’équations. De ce modèle, une nouvelle formulation
hybride et continue (faible-forte) est dérivée pour le problème de contact dynamique entre des
solides déformables. La formulation obtenue est dicrétisée par unθ-schéma, la méthode des EF
et une méthode de collocation. Des exemples numériques montrent la pertinence de l’approche.
Le papier se termine par une application prometteuse de la méthode Arlequin au traitement des
aspects multi-échelles des problèmes dynamiques de contact.
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1. Introduction

Impact problems are nonlinear in essence but also irregular and multiscale in time
and space. Their numerical approximation needs special numerical tools.

On the one hand, it is experienced that when considering dynamic contact prob-
lems based on classical Signorini contact models, classical time discretizations of
such problems lead to spurious oscillations of the discrete mechanical fields (see e.g.
[CAR91, BEN03]). Since the seventies Hughes et al. [HUG76] have designed a spe-
cial a posteriorinumerical treatment for this pathology. Later, by following Simo et
al. [SIM 92] who advocate energy and momentum conservation arguments, the so-
called persistent contact condition has been forced by several authors in the Signorini
contact displacement-based conditions (cf. e.g. [ARM98, LAU02] among others). In
this paper we use the formalism introduced by J.J. Moreau [MOR88] to write dynamic
unilateral contact conditions. The so-calledSignorini-Moreaudynamic contact model
which is based on a control of both the placement of the contact surfaces and their re-
spective normal velocities is set here as a system of equations by using twoLevel-Sets
fields [SET96] to characterize dynamically the contact zone.

On the other hand, the sudden occurence of impact loads and their possible high
frequency generate complex dynamic responses of the impacted structures. In such
regimes, one needs numerical schemes in which very refined discretizations in space
and time are coupled to significantly coarser ones without generating unphysical phe-
nomena such as reflexions of waves on fictive numerical boundaries. TheArlequin
framework [BEN98] is here tested and shown to be promising to handle such a com-
plexity.

An outline of the paper is the following. Section 2 is devoted to the formulation
of the Virtual Work Principle for two bodies coming dynamically into contact in a
large transformation framework. To define contact loads, dynamic contact laws are
developed in section 3. In section 4, the proposedLevel-Setsand velocity based weak-
strong Lagrangian formulation of the dynamic contact problem is given. Its global
solution strategy is detailed in section 5. The time discretization Finite Difference
scheme is precised in subsection 5.1 and an overview of the used spatial disretization
methods is presented in subsection 5.2. The section is ended with a brief description
of the numerical algorithm used to solve the discrete nonlinear and irregular systems.
Simple but significant impact tests are carried out in section 6. In the final section, the
promising character of theArlequin method to treat the multiscale aspect of impact
problems is shown by a numerical study of 1-D example.

2. The virtual work principle

We consider the problem of dynamic frictionless contact between two elastic bod-
iesS1 andS2 contained inRd (refer to figure 1 for notations).
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Figure 1.Mechanical problem and notations

For clarity and without restriction, we consider here the case where the solids are
clamped onΓi

u. Moreover, we assume that the applied surface loads are equal to zero
onγi

g and neglect the body forces. With these assumptions, the Virtual Work Principle
(VWP) reads for each timet ∈ I =]0, T ]: (where the reference to time and to Lebesgue
measuresdΩi

0 anddΓc are omitted)

Findui ∈ CAi
u ; ∀wi ∈ CAi

u

2∑
i=1

∫
Ωi

0

ρi
0ü

i.wi +
2∑

i=1

∫
Ωi

0

Tr[Πi(ui)(∇p(wi))T ]−
∫

Γc

R.[[w]] = 0 [1]

In system [1],CAi
u (i = 1, 2) are the admissible kinematical spaces,ui andüi are

the displacements and accelerations fields.Γc(= Γ1
c) is the potential contact “slave”

surface,ρi
0 denotes the mass density of solidSi in the reference state andΠi is the

first Piola-Kirchhoff stress tensor defined inΩi
0. The nominal density of contact force

is denoted byR(= R1). This density of forces is experienced by solidS1 from solid
S2. Moreover, the Action and Reaction Principle was used. It reads:

R1(p, t) = −R2(p(t), t) for (p, t) in Γc × I [2]

In [2], R2 is the nominal density of contact force experienced by solidS2 from solid
S1, p(t) is (for eacht > 0) one of the classical definitions of the point belonging to
Γ2

c , associates to the pointp of Γc (= Γ1
c) by coupling-like applications of proximity

type [KLA 95] or, more generally, by using given physical directions along which
the nearest point ofΓ2

c to p is found (see [BEN95]). With the help of these pairing
applications, a jump-like field is defined onΓc as follows.

For eachw = (w1,w2) ∈ CA1
u ×CA2

u,

[[w]](p) = w1(p)−w2(p) for p in Γc [3]

This field is used in [1].
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Using classical decomposition of the contact densityR, we set:

R(p, t) = λ(p, t)n(p, t) + Rτ (p, t) for (p, t) in Γc × I [4]

whereRτ refers to the tangential contact loads (supposed here to be equal to zero)
andλ to the (scalar-field) normal contact pressure, with:

n(p, t) = −n2(ϕ2(p, t), t) for (p, t) in Γc × I [5]

being the unit inward normal vector toΓ2
c andϕi (i = 1, 2) the deformation mapping

of solidSi.

System [1] has to be completed by material behaviour laws, initial conditions and
contact laws. We focus here only on the last aspect.

3. Dynamic contact laws

In this section, we state the Signorini dynamic contact conditions by using the
formalism of Moreau. The obtainedSignorini-Moreaumodel is then written in terms
of multi-valued equalitiesvia the introduction of twoLevel-Setslike fields.

3.1. The Signorini-Moreau model

Let us assume that at a given timet = t0 ∈ I, the Signorini displacement-based
contact conditions are satisfied. That is,

dn(p, t0) ≤ 0 , λ(p, t0) ≤ 0 and dn(p, t0)λ(p, t0) = 0 for p in Γc [6]

wheredn is the normal gap defined by:

dn(p, t) = (ϕ1(p, t)− ϕ2(p, t)).n(p, t) for (p, t) in Γc × I [7]

The “viability lemma” of J.J. Moreau ([MOR88, MOR00]) asserts that with [6],
the Signorini contact conditions are satisfied at all futur times as far as the following
conditions are fulfilled:

if dn < 0 then λ = 0 on Γc × I [8]

otherwise[[vn]] ≤ 0 , λ ≤ 0 and [[vn]]λ = 0 on Γc × I [9]

where[[vn]] stands for the normal velocity jump field in the sense of the definition [3].
The last equation of [9] is known in the literature under the name of persistent contact
condition (e.g. [ARM98, LAU02]).

The localSignorini-Moreaucontact model, defined by [8]-[9] controls both the
relative placements and velocities of the contact surfaces. However, the local inequal-
ities involved by [8]-[9] lead to variational inequalities. This model is transformed
here to a set of “equalities”.
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3.2. Level-Sets based Signorini-Moreau model

By using twoSign-like functions (as introduced in [BEN88] for a penalized unilat-
eral contact model) one standing for a location of the positions of contact surfaces with
respect to each other and the other for the sign of the normal velocity jump field on the
contact interface, theSignorini-Moreaucontact model is converted to “multi-valued”
equalities as follows.

λ = SuSvλ on Γc × I [10]

Su = 1R−(−dn) on Γc × I [11]

Sv = 1R−
(
λ) on Γc × I [12]

whereλ = λ− ρn[[vn]], ρn is a non zero positive parameter and1R− is the indicator
function of the set of the negative reals

(
1R−(x) = 1 if x ∈ R− and0 otherwise).

The iso-1values of theLevel-Setfield SuSv characterize the effective (dynamic) con-
tact zone.

A lagrangian formulation of the dynamic contact problem is easily derived from
this new setting of theSignorini-Moreaucontact conditions in the following section.

4. A velocity andLevel-Setsbased weak-strong formulation

By using the VWP [1] and writing [10] in a weak sense whilst keeping equations
[11] and [12] as local strong ones, the following new weak-strong Lagrange formu-
lation of the dynamic frictionless contact problem is obtained: assuming that the dis-
placement and velocity fieldsui andvi are known and the conditions [6] satisfied at
a given instantt0 ∈ I , then for all t > t0, t ∈ I, the problem to be solved is the
following:

Find (v, λ;u, Su, Sv) ∈ CAv×H×CAu×(L∞(Γc; [0, 1]))2;∀(w, λ∗) ∈ CAv×H

2∑
i=1

∫
Ωi

0

ρi
0v̇

i.wi +
2∑

i=1

∫
Ωi

0

Tr
[
Π

i
(vi)(∇p(wi))T

]
−

∫
Γc

SuSvλ[[wn]] = 0 [13]

− 1
ρn

∫
Γc

(λ− SuSvλ)λ∗ = 0 [14]

ui(t) = ui(t0) +
∫ t

t0

vi(s)ds in Ωi
0 [15]

Su − 1R−(−dn) = 0 on Γc × I [16]

Sv − 1R−(λ) = 0 on Γc × I [17]
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whereCAv is the space of kinematically admissible velocity fields,H is the space of

contact Lagrange multiplier andΠ
i
(vi) = Πi(ui).

REMARK. — Friction phenomena can be treated similarly.

REMARK. — One can observe that a stabilization penalty term can be added to [13]
leading to a stabilized-lagrangian formulation generalizing the lagrangian and the aug-
mented ones. The practical relevance of this generalization will be detailed elsewhere.

5. Solution strategy

In this section, the dynamic frictionless contact problem, defined by [13]-[17] is
discretized by aθ-time scheme and a mixed Galerkin and collocation methods.

5.1. Time discretization

We approximate the first order derivative with respect to time (inertial virtual work
in [13]) by a first order Finite Differenceθ-scheme. We consider the interval I= [0, T ]
to be a collection of subintervalsvia I =

⋃N
k=0[tk, tk+1] and we denote by∆tk =

tk+1 − tk the time step and by(.)k the time discrete approximation of the field(.) at
time t = tk. This way, the problem [13]-[17] is semi-discretized.

5.2. Spatial discretization

The spatial discretization of the semi-discretized problem, derived from [13]-[17],
is described here. The velocity, displacement and Lagrange multiplierλ (at each time
steptk) are approximated by means of the Finite Element Method, while the (irregu-
lar) Level-SetsfieldsSu andSv are discretized by a collocation method which consists
in evaluating these fields in a finite collection of points ofΓc; the most “appropriate”
choice being a collection of numerical integration points used to approximate numer-
ically the irregular integrals involving contact actions.

5.2.1. FE Approximation

Let for i = 1, 2, T i
h denote a classical mesh ofΩi

0, and letMh denote a mesh of
Γc. Let thenCAi

vh andHh be related classical finite element subspaces ofCAi
v and

H, and(wi
Ll

)1≤L≤Ni
l

l=1,...,d

, (ψm)1≤m≤Nc
, their finite element basis, with:

wi
Ll

= wi
Lel [18]

whereel (l = 1, . . . , d) is an orthonormal basis of the spaceRd and whereN i
d and

Nc are the dimensions of the spacesCAi
vh andHh, respectively.
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Nonlinear finite element semi-discretized systems are obtained by replacing (in the
semi-discretized problem derived above) the infinite dimensional functional spaces
CAi

v (i = 1, 2) andH by CAi
vh andHh, respectively. These systems still have

a continuous character which is related to the unknown continuousLevel-Sets. The
latter being irregular fields in general, they are approximated by a collocation method.

5.2.2. Collocation method

Now by defining(pj)1≤j≤Npc
as a finite collection of points inMh and by denot-

ing (Sj
u)k+1

j=1,Npc
, (Sj

v)k+1
j=1,Npc

the values ofSu andSv at the points(pj)j=1,Npc
and

at timetk+1, the following discrete systems are obtained.

Find (vk+1
h , λk+1

h ;uk+1
h , (Sj

u)k+1, (Sj
v)k+1) ∈ CAvh ×Hh ×CAuh × {0, 1}2Npc ;

∀(wLl
, ψm)

(Gdyn)k+1
h + (Gint)k+1

h −
Npc∑
j=1

ωj(Sj
u)k+1(Sj

v)k+1λk+1
h (pj)[[wLl

.n]](pj) = 0 [19]

− 1
ρn

Npc∑
j=1

ωj

[
λk+1

h (pj)− (Sj
u)k+1(Sj

v)k+1λ
k+1

h (pj)
]
ψm(pj) = 0 [20]

(ui)k+1
h = (ui)k

h + ∆tk
[
(1− θ)(vi)k

h + θ(vi)k+1
h

]
for i = 1, 2 [21]

(Sj
u)k+1 − 1R−

[
− (dn)k+1

h (pj)
]

= 0 ∀j = 1, . . . , Npc [22]

(Sj
v)k+1 − 1R−

[
λ

k+1

h (pj)
]

= 0 ∀j = 1, . . . , Npc [23]

where:

(Gdyn)k+1
h =

2∑
i=1

∫
Ωi

0

ρi
0

(vi)k+1
h − (vi)k

h

∆tk
.wi

Ll

(Gint)k+1
h =

2∑
i=1

∫
Ωi

0

Tr
[(

Π
i)k+1

h

(
∇p(wi

Ll
)
)T

]

(vi)k+1
h =

d∑
l=1

Ni
l∑

L=1

(vi
Ll

)k+1wi
Ll

and λk+1
h =

Nc∑
m=1

λk+1
m ψm

− ψm is an element of the basis ofHh andwLl
is an element of the basis ofCAvh

constructed from the ones ofCAi
vh, defined by [18].

− ωj is a weight associated to the collocation pointpj , for j = 1, . . . , Npc.

− θ is a real parameter in [0,1]. In this work we have choosen for simplicity a
constant time step (∆tk = ∆t) andθ = 1. The influence ofθ on temporal
integration is studied for example in [VOL98].
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REMARK. — In practice, one has to take care about compatible choices of the finite el-
ement spacesCAi

h andHh and also about the choices of the set of collocation points.
These two points have been discussed in a quasistatic framework in [BEN02]. The
reader is referred to this reference since the choices done there are those done in the
dynamic framework considered herein.

5.3. Solution algorithm

A numerical algorithm is needed to solve the nonlinear discrete contact problem
[19]-[23]. The strategy we use here is based on fixed point and Newton methods.
More precisely, at each time step, nested loops are considered in which:

– the pairing discrete mapping and the local frames at collocation points are fixed.

– the values of theLevel-Setsat the collocation points are fixed.

This leads to a problem where only regular nonlinearities are to be solved. For this
purpose the Newton-Raphson method is used.

6. Numerical examples

To show the performance of the proposed formulation, we consider two frictionless
contact-impact examples.

6.1. Impact of two elastic and similar rods

We consider the classical test of impact of two elastic prismatic rods moving with
equal speed (V0 = 10 m.s−1) in opposite directions (figure 2). The mechanical prop-
erties of the two rods are: densityρ = 7800 kg.m−3, area of cross section4. 10−4 m2,
length1. m, Young’s modulus2. 1011Pa and poisson’s ratioν = 0.3. We mesh the
two rods similarly with Hexa 3D-elements. The contact loads are approximated by a
bilinear finite element space, defined at the contact interface. Two 3D-finite element
solutions are plotted in figure 2 (namely the displacementsd, the velocitiesv and the
contact pressureλ at the impacting ends of the bars). The first solution is obtained
with a classical displacement-based formulation discretized by a dissipative Newmark
scheme (β= 0.3025, γ = 0.6 and∆t = 10−5 s). The second one is obtained with
the proposed approach.

6.2. Impact of a cylinder on a wall

The second example concerns the impact of an elastic cylinder on a quasi-rigid
wall under plane strain condition. The geometric and the material properties are:



Dynamic contact problems 411

Newmark(β=0.3025,γ=0.6) Proposed method

V0

V0

Figure 2. Impact of two 3D elastic and similar rods; time histories of tip displacement,
velocity and contact multiplier- 3D mesh of the rods

– Cylinder:E = 2. 1011 Pa, ρ = 7800 kg.m−3, ν = 0,R = 3. 10−2 m.

– Wall: E = 2. 1015 Pa, ρ = 7800 kg.m−3, ν = 0.

– Initial gap:2. 10−2 m and the initial velocity of cylinder:500 m.s−1.

The velocity and contact fields are approximated by bilinear finite 2D and 1D el-
ements, respectively and the nodes of the potential slave surface (belonging to the
cylinder) have been taken as the collocation points for theLevel-Setsfields.

In figure 3, we show the time histories of the displacement, velocity and contact
pression of the bottom contacting point of the cylinder obtained by both the dissipative
Newmark scheme (β= 0.4, γ = 0.7 and∆t = 10−6s) used for a displacement-based
formulation and the proposed method. The computed deformed geometries and the
principal major stress field spread in the cylinder are also depicted in figure 3.

The results plotted in figures 2 and 3 show the effectiveness of the proposed for-
mulation in killing the undesirable oscillations of velocities and impacting forces.

As may be guessed through the previous results and as it is known from the simple
case of the dynamic response of an oscillator under impact, the dynamic response of
impacted structures is very complex (multiscale in essence). We end this paper by
showing first results obtained by using the multiscaleArlequinframework [BEN98].
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Newmark(β=0.4,γ=0.7) Proposed method

σ princ. maj.

t = 0 µs t = 40 µs t = 52 µs t = 73 µs

Figure 3. Impact of a cylinder on a wall; time histories of the cylinder bottom point
displacement, velocity and contact multiplier - Stress spread in the cylinder

7. Impact simulation in the Arlequin framework

We briefly describe theArlequinframework. Then, by considering a representative
impact loading on a bar, it is shown that this framework is promising for the treatment
of the multiscale character of impact problems.

TheArlequinmethod consists in superimposing a local refined model to a global
coarse one. The coexistence of the two different models allows to use:

– different formulations,

– different time integration schemes,

– different refinements in space and time.

To test the relevance of the method to treat impact problems, we consider a bar
subjected to an initial signal assumed to be representative of impact excitations. The
signal contains both low and high frequencies and is located in a portion of the bar (cf.
figure (4-a)). In this portion of the bar, we use a refined mesh. A coarse mesh is used
elsewhere. The two models are coupled in a classical way (surface coupling) and in
theArlequinframework (volumic coupling), the resulting models are plotted in (figure
(4-b)). By computing the propagation of the initial signal in the bar, we notice that the
Node to Node coupling model trap the high frequencies in the refined model. Whilst,
by using a dissipative scheme in the superposition region allowed by theArlequin
framework, high frequencies contained in the refined dynamic response are no more
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(c) Node to Node coupling model

(d) Coupling with Arlequin

Node to Node 
coupling model

Arlequin
 method

refinded
 model coarse model

(a) Initial displacement 

coarse model
refinded
 model

(b) Coupling models

Figure 4.A model impact problem in the Arlequin framework

reflected back in the refined zone, without affecting significantly the coarse (averaged)
response of the coarse model (cf. figures (4-c) and (4-d)).

8. Conclusion

A new velocity andLevel-Setsbased continuous Lagrange weak-strong formula-
tion of dynamic frictionless contact has been developed in this paper. The continu-
ous formulation is derived from an equivalent setting of theSignorini-Moreaucon-
ditions by using unknownLevel-Setsfields. The problem is discretized by means of
time, space and collocation methods and solved by fixed-point strategies mixed with
the Newton-Raphson method. Numerical examples show the effectiveness of our ap-
proach particularly for the treatment of spurious numerical oscillations. First promis-
ing results using the multiscale Arlequin framework are given. A mixing of time inte-
gration schemes (explicit/implicit and/or dissipative/conservative) in this framework
is now in progress.
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