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Abstract

In this article, the nonlinear principal and internal resonance properties of a
soft ferromagnetic rectangular thin plate are investigated in a magnetic field
environment. The nonlinear partial differential equation of motion of a soft
ferromagnetic rectangular thin plate is derived under the effect of homo-
geneous simple harmonic excitation. The system of nonlinear differential
equations with multiple degrees of freedom is established by the assumed
one-sided fixed trilateral simply support condition using the Galerkin’s
method. The system of nonlinear differential equations is solved by the
multiscale method to obtain the response of two modes under the simple
harmonic force at the principal and internal resonance. The numerical results
of the system response show that when the frequency of the simple harmonic
force is close to one of the modes (first-order or second-order mode) causing
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it to resonate, the other mode will also resonate internally. The magnetic field
can have an inhibiting effect on the resonant response of the system and also
affect the kinematic state of the system. The internal resonance provides a
mechanism for transferring energy from a high mode to a lower mode.

Keywords: Principal and internal resonance, soft ferromagnetic rectangular
thin plate, Galerkin’s method, multiscale method.

1 Introduction

The electromagnetic effect [1] is an effect of the interaction of an elec-
tromagnetic field with a deformation field. In the linear range, there are
various models for dielectric and conducting objects [2–5]. In recent years,
such theories have been named coupled field theory [6–8]. Among them,
the theory of magnetoelasticity [9, 10] is mainly aimed at the coupling
of electromagnetic fields with other types of fields, which is basically the
coupling of linear elasticity theory [11, 12] and electrodynamic theory [13].
If the elastomer is in a strong magnetic field, the deformation field and
electromagnetic field caused by mechanical loads, etc., will interact with each
other, resulting in a coupling effect. In the system, the presence of a Lorentz
force causes the electromagnetic field to interact with the deformation field.
The deformation field affects the strength of the magnetic field, and also
affects the propagation speed and phase of magnetoelastic waves [14] and
electromagnetic waves [15], which is manifested in the addition of current
density [16–18] growth terms in Ohm’s law. Flexomagneticity (FM) is a
newly discovered magneto-elastic coupling phenomenon, a phenomenon
that exists during the magneto-mechanical coupling of magnetic fields and
strain gradients [19–22]. The physical action of FM makes it competent for
economic prospects.

For electromagnetic systems, the study of the theory of their magnetoe-
lastic non-linearity is of great significance. When the electromagnetic system
is disturbed by the electromagnetic field, the corresponding deformation
will occur due to the action of electromagnetic force, and the deformation
will promote the change of the electro-magnetic field, which is further
manifested as the change of electromagnetic force distribution. In the case
of conductors [23, 24], their main manifestation is the Lorentz force. For
electromagnetic dielectric materials that can be polarized or magnetized,
the electromagnetic force is generated by polarization [25, 26] or magne-
tization interacting with the external electromagnetic field. The coupling
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between electromagnetic fields and mechanical fields belongs to the category
of nonlinear research. Although the electromagnetic field and the simple
harmonic force field can be regarded as linear, the edge value equation
of the corresponding system after coupling is nonlinear, and the study of
magnetoelastic dynamics will become more complicated.

Soft magnetic materials (SMMs) [27], mainly manifested as magneti-
zation, their coercivity is less than 1000 A/m. For soft magnetic materials,
the use of limited external magnetic fields can maximize the magnetization
strength, because it has low coercivity and high permeability [28, 29], which
can meet the requirements of miniaturization, lightweight, energy saving, and
high frequency of materials put forward by new eco-gnomic forms. As an
object of soft magnetic materials, soft ferromagnetism has great research
value in its material properties. For the material properties of various soft
ferromagnetic materials [30], such as iron-silicon soft magnetism, iron-
nickel soft magnetic, soft ferromagnetic spinel, etc. [31, 32], scholars have
conducted in-depth research and achieved certain constructive results.

Nonlinear resonance refers to the resonance that occurs in a nonlinear
system. In nonlinear resonance, the system kinematic state depends on the
amplitude of the vibration. There are interactions between modes in nonlinear
systems due to resonance. In general, it is necessary to distinguish nonlinear
resonances from linear resonances. The occurrence of resonance can be
described by observing whether the frequency of the simple harmonic force is
close to the intrinsic frequency of the system. When the frequency of simple
harmonic force is close to the inherent frequency of the system, the main res-
onance will occur; And when the frequency of simple harmonic force is close
to an integer or fractional multiple of the inherent frequency of the system, the
super harmonic resonance or subharmonic resonance will occur. Many stud-
ies of the dynamics of plate members have been devoted to statics and dynam-
ics [33–35]. For example, Avcar et al. [36, 37] conducted an in-depth study of
static buckling of functional gradient plates and static problems of functional
gradient plate structures under different boundary conditions. And for plate
dynamics many problems focus on nonlinear dynamics, especially in the
fields of chaos, fractal bifurcation, and resonance [38–41]. However, many
nonlinear resonance analyses for continuous members, mostly consider only
the single-degree-of-freedom case [42, 43] ignoring the prevalence of the
realistic multi-degree-of-freedom case. And in the case of multiple degrees
of freedom, a resonance formed by an internal indirect excitation (internal
resonance) may arise. There will be mutual interference between different
modes, which leads to an energy exchange between the interfering modes.
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In this article, the nonlinear partial differential motion equation of soft
ferromagnetic rectangular sheet is derived by considering the magnetic field
under the action of simple harmonic excitation. The Galerkin’s method is
used to convert the partial differential equations of system motion into a
system of nonlinear ordinary differential equations. Using the multiscale
method, the control equations for the amplitude and phase of the two modes
of the system at the 1:3 resonance are obtained. The effect of the disturbance
of the magnetic field on the motion of the system is further analyzed by
numerical methods. The stability control region of magnetic field is deter-
mined to avoid system motion entering a chaotic state and excessive energy
load caused by resonance to the system.

2 Nonlinear Equations of Motion for Soft Ferromagnetic
Rectangular Sheets

In a magnetic field environment, a rectangular plate with simple support on
one side is fixed, as shown in Figure 1. The length, width and thickness of the
plate, respectively, a, b and h, meet the minimum values of thickness much
less than length and width; Taking the middle surface of the plate as the XY
surface, establish the coordinate system shown in Figure 1, and the simple
harmonic force P = F0cosΩ0t. Parameter F0 is the amplitude of the external
excitation and parameter Ω0 is the frequency of the external excitation.

This section makes the following four basic assumptions:

(1) Considering only displacement inertia forces and not rotational
moments of inertia.

(2) The material of the sheet is considered to be linear elastic and isotropic
in terms of its mechanical properties.

Figure 1 Model of a magnetoelastic rectangular sheet under mechanical excitation in a
magnetic field environment.
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(3) No free charge, no current present in the material.
(4) Displacement of the midplane considering geometric nonlinear effects.

A Cartesian coordinate system is established on the mid-surface of a rect-
angular thin plate. Assume that the displacement of a point on the mid-surface
is represented by u, v and w in the x, y and z directions, respectively.

According to the electromagnetic instanton relationship, for linear mag-
netized materials. 

B = µrµ0H

M = χmH

µr = 1 + χm

(1)

Where M is the magnetization vector, µ0 is the magnetic permeability in
a vacuum, µr is the relative permeability, H is the magnetic field strength
vector, B is the magnetic induction strength vector, J = Bσ∂u/∂t is
the density vector, χm is the magnetic susceptibility, and σ is the electrical
conductivity.

According to the theory of elastic deformation, the displacement of the
plate, whose internal distance from the midplane is z, can be expressed as
follows:

u =

[
u0(x, y)− z

∂w

∂x

]
i+

[
v0(x, y)− z

∂w

∂y

]
j + w(x, y, t)k (2)

In Equation (2), i, j and k are unit vectors; u0, v0 and w are the
displacement components in the middle plane along the x, y, and z axis
directions.

Bringing Equation (2) into the expression for the Lorentzian electromag-
netic force, we get:

= σz

(
iB2

1z

∂2w

∂x∂t
+ jB2

z1

∂2w

∂y∂t

)
= fxi+ fyj (3)

The elastic deformation-induced equivalent magnetic force is:

FE =
∂

∂x

∫ h
2

−h
2

fxzdz +
∂

∂y

∫ h
2

−h
2

fyzdz =
σh3B2

1z

12

(
∂3w

∂x2∂t
+

∂3w

∂y2∂t

)
(4)

Considering the distributed forces due to eddy currents at the mid-platen
surface, using the magnetic dipole model [43] and neglecting the inertial



6 X. Kang et al.

forces in the surface, it is obtained that:

ρh
∂2w

∂t2
+DM∇4w

− 1

2
DN

[(
∂w

∂x

)2∂2w

∂x2
+

(
∂w

∂y

)2∂2w

∂y2
+ 2

∂w

∂x

∂w

∂y

∂2w

∂x∂y

]

− χmB
2
1z

2µrµ0

((
∂w

∂x

)2

+

(
∂w

∂y

)2
)

− σh3B2
1z

12

(
∂3w

∂x2∂t
+

∂3w

∂y2∂t

)
= F0cosΩ0t

(5)

∇4 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
(6)

In Equations (5) and (6), ρ is the density of the rectangular thin plate;DM

is the bending stiffness of the plate; DN is the tensile stiffness of the plate;
B1z is the magnetic induction intensity; ∇4 is the dual Laplace operator;

From the condition of fixed three-sided simple support on one side of the
rectangular sheet, the separation variable method is used so that the transverse
displacement is [44]:

w =
2∑

n=1

Qn(t)Xn(x)sin
πy

b
(7)

In Equation (7)

Xn = coshαnx− cosαnx− Cn(sinhαnx− sinαnx)

Cn =
coshαna+ cosαna

sinhαna+ sinαna

αn =
(4n+ 1)π

4a

Substitute Equations (6) and (7) into Equation (5):

ρh

2∑
n=1

sin
πy

b
XnQ̈n
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+DM


2∑

n=1

sin
πy

b
Xn

(4)Qn −
(π
b

)2 2∑
n=1

sin
πy

b
ẌnQn

+
(π
b

)4 2∑
n=1

sin
πy

b
XnQn



− 1

2
DN



[
2∑

n=1

sin
πy

b
ẊnQn

]2 [ 2∑
n=1

sin
πy

b
ẌnQn

]

−
(π
b

)2[ 2∑
n=1

cos
πy

b
XnQn

]2

×

[(π
b

)2 2∑
n=1

sin
πy

b
XnQn

]

+2
(π
b

)2 2∑
n=1

sin
πy

b
ẊnQn

2∑
n=1

cos
πy

b
XnQn

×
2∑

n=1

cos
πy

b
ẊnQn


− χmB

2
1z

2µrµ0


[

2∑
n=1

sin
πy

b
ẊnQn

]2
+
(π
b

)2[ 2∑
n=1

sin
πy

b
XnQn

]2
− σh3B2

1z

12

{[
2∑

n=1

sin
πy

b
ẌnQ̇n

]
−

[(π
b

)2 2∑
n=1

sin
πy

b
XnQ̇n

]}
= F0cosΩ0t (8)

Using the Galerkin’s method [45], the differential equation of the system
is obtained as Equation (9).

The dimensionless treatment of Equation (9) reduces the system equation
of motion to the Equations (10) and (11).

For the parameters in the Equations (9)–(11), see Appendix A and
Appendix B for details.

ρhb

2

2∑
n=1

AniQ̈n +DM

2∑
n=1

[
b

2
Mni −

π2

b
Cni +

π4

2b3
Ani

]
Qn
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− DN

2



2∑
n=1

(
π2

4b
Bni −

π4

8b3
Hni +

3b

8
Fni

)
Qn

3

+

[
3b

8
(S2i + 2K2i)−

3π4

8b3
P1i +

π2

4b
(S1i + 2K1i)

]
Q1Q2

2

+

[
3b

8
(S4i + 2K4i)−

3π4

8b3
P2i +

π2

4b
(S3i + 2K3i)

]
Q1

2Q2


− χmB

2
1z

2µrµ0

2∑
n=1

[(
4b

3π
Eni +

4

3b
Rni

)
Qn

2 +

(
8b

3π
Y1i +

8

3b
Y2i

)
Q1Q2

]

− σbh3B2
1z

24

2∑
n=1

[
Cni −

(π
b

)2
Ani

]
Q̇n =

2b

π
OiF0cosΩ0t (9)

q̈1(τ) + ω2
1q1(τ) = −g1q2(τ) + c11q̇1(τ) + c21q̇2(τ) + η11q

3
1(τ)

+ η21q
3
2(τ) + S11q1(τ)q

2
2(τ) + S12q

2
1(τ)q2(τ)

+ ς11q
2
1(τ) + ς21q

2
2(τ) + q1(τ)q2(τ) + f1cosΩτ (10)

q̈2(τ) + ω2
2q2(τ) = −g2q1(τ) + c22q̇2(τ) + c12q̇1(τ) + η22q

3
2(τ)

+ η12q
3
1(τ) + S21q1(τ)q

2
2(τ) + S22q

2
1(τ)q2(τ)

+ ς12q
2
1(τ) + ς22q

2
2(τ) + ψ12q1(τ)q2(τ) + f2cosΩτ

(11)

3 Multiscale Method for Solving the System

When solving the weakly nonlinear system using the multiscale method,
introducing the small parameter ε(0 < ε ≪ 1) into Equations (10) and (11),
we get:

q̈1(τ) + ω2
1q1(τ) = −εg̃1q2(τ) + εc̃11q̇1(τ) + εc̃21q̇2(τ)

+ ε[ς̃11q
2
1(τ) + ς̃21q

2
2(τ) + ψ̃11q1(τ)q2(τ)] + εf̃1cosΩτ

+ ε[η̃11q
3
1(τ) + η̃21q

3
2(τ) + S̃11q1(τ)q

2
2(τ)

+ S̃12q
2
1(τ)q2(τ)] (12)
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q̈2(τ) + ω2
2q2(τ) = −εg̃2q1(τ) + εc̃22q̇2(τ) + εc̃12q̇1(τ)

+ ε[ς̃12q
2
1(τ) + ς̃22q

2
2(τ) + ψ̃12q1(τ)q2(τ)] + εf̃2cosΩτ

+ ε[η̃22q
3
2(τ) + η̃12q

3
1(τ) + S̃21q1(τ)q

2
2(τ)

+ S̃22q
2
1(τ)q2(τ)] (13)

Among them, g̃1 = g1
ε , g̃2 = g2

ε , c̃ij =
cij
ε , η̃ij =

ηij
ε , S̃ij =

Sij

ε ,

ς̃ij =
ςij
ε , ψ̃11 =

ψ11

ε , ψ̃12 =
ψ12

ε , f̃i =
fi
ε (i = 1, 2; j = 1, 2).

Suppose the solutions of Equations (12) and (13) are of the form [42]:

q1 = q11(T0, T1) + εq12(T0, T1) (14)

q2 = q21(T0, T1) + εq22(T0, T1) (15)

We let Tn = εnτ(n = 0, 1), where Tn are the different scale time
variables.

Bringing Equations (14), (15) into Equations (12), (13):

[D2
0 + 2εD0D1](q11 + εq12) + ω2

1(q11 + εq12)

= −εg̃1(q21 + εq22) + εc̃11(D0 + εD1)(q11 + εq12)

+ εc̃21(D0 + εD1)(q21 + εq22) + εη̃11(q11 + εq12)
3

+ εη̃21(q21 + εq22)
3 + εS̃11(q11 + εq12)(q21 + εq22)

2

+ εS̃12(q11 + εq12)
2(q21 + εq22) + ες̃11(q11 + εq12)

2

+ ες̃21(q21 + εq22)
2 + εψ̃11(q11 + εq12)(q21 + εq22) + εf̃1cosΩτ

(16)

[D2
0 + 2εD0D1](q11 + εq12) + ω2

1(q11 + εq12)

= −εg̃1(q21 + εq22) + εc̃11(D0 + εD1)(q11 + εq12)

+ εc̃21(D0 + εD1)(q21 + εq22) + εη̃11(q11 + εq12)
3

+ εη̃21(q21 + εq22)
3 + εS̃11(q11 + εq12)(q21 + εq22)

2

+ εS̃12(q11 + εq12)
2(q21 + εq22) + ες̃11(q11 + εq12)

2

+ ες̃21(q21 + εq22)
2 + εψ̃11(q11 + εq12)(q21 + εq22)

+ εf̃1cosΩτ (17)
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Expanded so that the coefficient of the same power of ε is zero.
For the terms of ε0:

D2
0q11 + ω2

1q11 = 0 (18)

D2
0q21 + ω2

2q21 = 0 (19)

For the terms of ε:

D2
0q12 + ω2

1q12 = −2D0D1q11 − g̃1q21 + c̃11D0q11 + c̃21D0q21

+ η̃11q
3
11 + η̃21q

3
21 + S̃11q11q

2
21 + S̃12q21q

2
11

+ ς̃11q
2
11 + ς̃21q

2
21 + ψ̃11q11q21 + f̃1cosΩτ (20)

D2
0q22 + ω2

2q22 = −2D0D1q21 − g̃22q11 + c̃12D0q11 + c̃22D0q21

+ η̃12q
3
11 + η̃22q

3
21 + S̃21q11q

2
21 + S̃22q21q

2
11

+ ς̃12q
2
11 + ς̃22q

2
21 + ψ̃12q11q21 + f̃2cosΩτ (21)

The terms of ε0 are written in complex form:

q11 = A1(T1)exp(iω1T0) +A1(T1)exp(−iω1T0) (22)

q21 = A2(T1)exp(iω2T0) +A2(T1)exp(−iω2T0) (23)

Where A1 and A2 are the complex functions to be determined, and A1

and A2 are their corresponding conjugate complex numbers. Substituting
Equations (22), (23) into Equations (20), (21), we obtain:

D2
0q12 + ω2

1q12 = (−2iω1A
′
1 + iω1c̃11A1 + 3η̃11A

2
1A1

+ 2S̃11A1A2A2)exp(iω1T0)

+ (−g̃1A2 + iω2c̃21A2 + 3η̃21A
2
2A2

+ 2S̃12A1A2A1)exp(iω2T0) + η̃11A
3
1exp(3iω1T0)

+ η̃21A
3
2exp(3iω2T0) + S̃11A1A

2
2exp[i(ω1 + 2ω2)T0]

+ S̃11A1A2
2
exp[i(ω1 − 2ω2)T0]

+ S̃12A
2
1A2exp[i(2ω1 + ω2)T0]
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+ S̃12A2A1
2
exp[i(ω2 − 2ω1)T0]

+ S̃11A
2
2A1exp[i(2ω2 − ω1)T0]

+ S̃12A
2
1A2exp[i(2ω1 − ω2)T0] + ς̃11A1exp(2iω1T0)

+ ς̃21A2exp(2iω2T0) + ψ̃11A1A2exp[i(ω1 + ω2)T0]

+ ψ̃11A1A2exp[i(ω2 − ω1)T0] + 0.5f̃1exp(iΩτ) + cc
(24)

D2
0q22 + ω2

1q22 = (−2iω2A
′
2 + iω2c̃22A2 + 3η̃22A

2
2A2

+ 2S̃22A1A2A1)exp(iω2T0)

+ (−g̃22A1 + iω1c̃12A1 + 3η̃12A
2
1A1

+ 2S̃12A1A2A2)exp(iω1T0) + η̃22A
3
2exp(3iω2T0)

+ η̃12A
3
1exp(3iω1T0) + S̃22A2A

2
1exp[i(ω2 + 2ω1)T0]

+ S̃22A2A1
2
exp[i(ω2 − 2ω1)T0]

+ S̃21A
2
2A1exp[i(2ω2 + ω1)T0]

+ S̃21A1A2
2
exp[i(ω1 − 2ω2)T0]

+ S̃22A
2
1A2exp[i(2ω1 − ω2)T0]

+ S̃21A
2
2A1exp[i(2ω2 − ω1)T0] + ς̃12A1exp(2iω1T0)

+ ς̃22A2exp(2iω2T0) + ψ̃12A1A2exp[i(ω1 + ω2)T0]

+ ψ̃12A1A2exp[i(ω1 − ω2)T0]

+ ψ̃12A1exp[i(ω2 − ω1)T0] +
1

2
f̃2exp?(iΩτ) + cc

(25)

In Equations (24), (25) cc denotes the conjugate complex of the previous
terms, and A′

1 and A′
2 denote the derivatives of A1 and A2 with respect to T1.

If between two mode intrinsic frequencies, ω2 = 3ω1 is satisfied, then
there is a 1:3 resonance phenomenon. Let the difference between ω2 and 3ω1

be a small quantity of the same order of ε and introduce the coordination
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parameter σ1, then [46]:
ω2 = 3ω1 + εσ1 (26)

4 Principal and Internal Resonance

When the frequency Ω of the dimensionless simple harmonic force
approaches the system intrinsic frequency ω1, the system undergoes a first-
order principal and internal resonance. To represent the relationship between
the frequency of the simple harmonic force and the intrinsic frequency of the
system, let the difference between ω1 and Ω be a small quantity of the same
order of ε, and introduces the coordination parameter σ2, then:

Ω = ω1 + εσ2 (27)

Equations (26), (27) lead to the condition that q12 and q22 eliminate the
permanent term as:

− 2iω1A
′
1 + iω1c̃11A1 + 3η̃11A

2
1A1 + 2S̃11A1A2A2

+ S̃12A2A1
2
exp(iσ1T1) + 0.5f̃1exp(iσ2T1) = 0 (28)

− 2iω2A
′
2 + iω2c̃22A2 + 3η̃22A

2
2A2 + 2S̃22A1A2A1

+ η̃12A
3
1exp(−iσ1T1) = 0 (29)

From Equations (28), (29), it can be seen that there is no weakening trend
of both A1 and A2. The first-order mode A1 is associated with the simple
harmonic force and generates the main resonance. The second-order mode
is an internal indirect excitation due to the main resonance generated by the
first-order mode.

Assumptions:

Ak =
1

2
ak(T1)exp[iθk(T1)] (k = 1, 2) (30)

Substituting Equation (30) into Equations (28), (29), further separates the
real part from the imaginary part [33]:

8ω1a
′
1 = 4ω1c̃11a1 + S̃12a

2
1a2sinβ1 + 4f̃1sinβ2 (31)

8ω2a
′
2 = 4ω2a2c̃22 − η̃12a

3
1sinβ1 (32)
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8ω1θ
′
1a1 = −(3η̃11a

2
1 + 2S̃11a

2
2)a1 − S̃12a

2
1a2cosβ1 − 4f̃1cosβ2 (33)

8ω2θ
′
2a2 = −(3η̃22a

2
2 + 2S̃22a

2
1)a2 − η̃12a

3
1cosβ1 (34)

In Equations (31)–(34), β1 = θ2 − 3θ1 + σ1T1, β2 = σ2T1 − θ1.

4ω1c̃11a1 + S̃12a
2
1a2sinβ1 + 4f̃1sinβ2 = 0 (35)

4ω2a2c̃22 − η̃12a
3
1sinβ1 = 0 (36)

(3η̃11a
2
1 + 2S̃11a

2
2)a1 + S̃12a

2
1a2cosβ1 + 4f̃1cosβ2 = 8ω1σ2a1 (37)

(3η̃22a
2
2 + 2S̃22a

2
1)a2 + η̃12a

3
1cosβ1 = 8ω2a2(3σ2 − σ1) (38)

Let a1 ̸= 0, a2 ̸= 0. The joint cubic Equations (35)–(38), eliminating
β1, β2:

[8ω2a2(3σ2 − σ1) + 3η̃22a
3
2 + 2S̃22a

2
1a2]

2
+ 16ω2

2a
2
2c̃

2
22 − η̃212a

6
1 = 0

(39)

[2η̃12ω1σ2a
2
1 + 0.5(η̃12S̃11 + S̃12S̃22)a

2
1a

2
2 + 0.75η̃11η̃12a

4
1

+ 3S̃12ω2a
2
2(3σ2 − σ1) + 0.75η̃22S̃12a

4
2]

+ (c̃11η̃12ω1a
2
1 + c̃22S̃12ω2a

2
2)

2
− η̃212a

2
1f̃

2
1 = 0 (40)

5 Example Analysis

From Equations (10), (11), ω1 = k1/ωn =
√
k1/k2 = 1/ω2, and the need

to achieve 1:3 internal resonance requires that the value of ω1/ω2 is close to
1/3. Taking b/a = 2, the condition can be satisfied [47]. The object of this
study is a rectangular thin plate, whose material is soft ferromagnetic.

Parameter values [43]: Electrical conductivity σ = 2.3 × 106(Ω ·m)−1,
Material density ρ = 7800 kg/m3, Poisson’s ratio µ = 0.3, Modulus of
elasticity E = 2 × 1011 Pa, a = 0.6 m, b = 1.2 m, h = 0.003 m,
Magnetization coefficient χm = 1000.

5.1 Amplitude-frequency Response Analysis

The amplitude-frequency characteristic curves at various magnetic field
strengths for the simple harmonic force amplitude F0 = 25000 N/m2 are
shown in Figure 2. From Figure 2, it can be concluded that both modes are
excited and the image curves show a complex phenomenon of multiple values
and steps.
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From Figure 2, it can be known that the number of steady-state solu-
tions of the first-order and second-order modes is transformed from a
single solution to multiple solutions when the magnetic field disturbance is
ignored. When the magnetic field is considered, the resonance region of two
modes becomes smaller and the maximum value of the resonance response
also becomes smaller. This indicates that the magnetic field suppresses the
resonance response of two modes.

5.2 Dynamic Response Analysis

The system of dimensionless differential Equations (10), (11) are solved
using MATLAB software and programmed according to the Runge-Kutta
method, at this time taking Ω = ω1 + εσ2 = 0.6, εσ2 = 0.02, ω1 = 0.577,
ω2 = 1.733.

The waveforms, phase trajectory curves, and Poincaré scatter plots for
two orders under the first-order principal and internal resonance with mag-
netic field strength B1z = 0T and simple harmonic force amplitude F0 =
25000 N/m2 are shown in Figure 3. Where (a), (c), (e) represent the first-order
mode response, which is directly influenced by the simple harmonic force;
(b), (d), (f) represent the second-order mode response, which is not directly
influenced by the simple harmonic force, but by the internal resonance with
the first-order mode, the energy of two modes is transferred, thus contributing
to the indirect excitation. From the displacement time curve and phase trajec-
tory diagram, it is obvious that the amplitude of the first-order mode is about
10 times of the second-order mode amplitude when F0 = 25000 N/m2. This
indicates that the resonance situation is dominated by the first-order mode at
this point.

When the magnetic field strength B1z = 0T , the phase trajectory map
of the first-order mode in Figure 3 presents a symmetric multiple limit-loop
phase set, and the points of the Poincaré mapping are distributed on a closed
curve with a quasi-periodic shape. The second-order mode, on the other hand,
presents a shape of a center-symmetric irregular multiple limit-loop set, and
the points on the image are a certain collection of scattered points, showing
chaotic morphology, as can be seen from the Poincaré mapping of the second-
order mode.

The waveforms, phase trajectory curves and Poincaré scatter diagrams for
two orders under the first-order principal and internal resonance for simple
harmonic force amplitude F0 = 25000 N/m2 are displayed in Figures 4 and 5.
As can be known from Figure 5, when B1z = 2.5T , the points on two mode
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2 (a), (c) and (e) are the amplitude-frequency response curves of the first-order mode
for magnetic induction strengths of 0T, 10T and 15T; (b), (d) and (f) are the amplitude-
frequency response curves of the second-order mode for magnetic induction strengths of 0T,
10T and 15T.
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 3 (a), (c) and (e) are the time displacement curve, phase trajectory, and Poincare
map of the first-order mode with magnetic induction equal to 0T; (b), (d) and (f) are the
time displacement curve, phase trajectory, and Poincare map of the second-order mode with
magnetic induction equal to 0T.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4 (a), (c) and (e) are the time displacement curve, phase trajectory, and Poincare
map of the first-order mode with magnetic induction equal to 2.5T; (b), (d) and (f) are the
time displacement curve, phase trajectory, and Poincare map of the second-order mode with
magnetic induction equal to 2.5T.
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 5 (a), (c) and (e) are the time displacement curve, phase trajectory, and Poincare
map of the first-order mode with magnetic induction equal to 10T; (b), (d) and (f) are the
time displacement curve, phase trajectory, and Poincare map of the second-order mode with
magnetic induction equal to 10T.
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Poincaré scatter diagrams are distributed on a cyclic curve, which shows
quasi-periodic form; The phase trajectory curve shows reciprocal motion.
As shown in Figure 5, when B1z = 10T , the phase trajectory curve of two
modes is a cyclic curve, while the Poincaré scatter plot is a point. This shows
that the kinematic state of the system is affected when the system considers
the magnetic field disturbance. The disturbance of the magnetic field will
change with time, so that the modal state, which was in a chaotic or quasi-
periodic state of motion, will eventually change to a stable periodic state of
motion, and the response of the modal state will gradually disappear, with the
magnetic field acting as a damping action.

6 Conclusion

This paper studies the nonlinear motion of a soft ferromagnetic rectangular
thin plate under the action of a magnetic field. The equations of motion of
the soft ferromagnetic rectangular thin plate are derived by considering the
magnetic field effects under the coupling of magnetization and eddy currents.
The control equations of two modes amplitude and phase of the system are
accessed by the Galerkin’s method and multiscale method. The effect of the
variation of the magnetic field on the system motion is further analyzed by
numerical simulations. The results show that:

(1) The vibrational modes can interact with each other in resonant inter-
actions. When the resonance is dominated by first-order modes, the
first-order mode is influenced by the simple harmonic force. The second-
order mode is then influenced by the first-order mode, which further
generates the internal resonance phenomenon.

(2) The existence of internal resonance makes the system energy exchange
between the two mutually coupled modes; the first two modes of the
system are decayed by mutual coupling oscillation under the action of
the magnetic field, and the decay rate is accelerated with the increase of
magnetic field strength. The amplitude-frequency characteristic curves
are accompanied by nonlinear phenomena such as multiple values and
jumps; the magnetic field strength has a suppressive effect on the
resonance amplitude.

(3) From the dynamic response, it is clear that the passage of time, without
magnetic field disturbance, does not affect the kinematic state of the
system. The mode in the main resonance will remain in a stable periodic
motion, while the mode in the inner resonance will remain in a chaotic
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state. When the system considers the magnetic field disturbance, the
resonance response of the system will be suppressed significantly, and
the kinematic properties will reach a stable periodic kinematic state with
time and the strengthening of the magnetic field. In practical engineer-
ing, the kinematic properties of the system can be changed by adjusting
the magnetic field strength.
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Appendix A

The parameters in Equation (9) are given below:

Ani =

∫ a

0
XnXidx, Bni =

∫ a

0

(
dXn

dx

)2

XnXidx,

Cni =

∫ a

0

d2Xn

dx2
Xidx, Oi =

∫ a

0
Xidx, Mni =

∫ a

0

d4Xn

dx4
Xidx,

Fni =

∫ a

0

d2Xn

dx2

(
dXn

dx

)2

Xidx, Hni =

∫ a

0
Xn

3Xidx,

P1i =

∫ a

0
X1X2

2Xidx, P2i =

∫ a

0
X2X1

2Xidx,

S1i =

∫ a

0
X1

(
dX2

dx

)2

Xidx, S2i =

∫ a

0

d2X1

dx2

(
dX2

dx

)2

Xidx,

S3i =

∫ a

0
X2

(
dX1

dx

)2

Xidx, S4i =

∫ a

0

d2X2

dx2

(
dX1

dx

)2

Xidx,

K1i =

∫ a

0

dX1

dx

dX2

dx
X2Xidx, K2i =

∫ a

0

dX1

dx

dX2

dx

d2X2

dx2
Xidx,
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K3i =

∫ a

0

dX1

dx

dX2

dx
X1Xidx, K4i =

∫ a

0

dX1

dx

dX2

dx

d2X1

dx2
Xidx,

Eni =

∫ a

0

(
dXn

dx

)2

Xidx, Rni =

∫ a

0
Xn

2Xidx,

Y1i =

∫ a

0

dX1

dx

dX2

dx
Xidx, Y2i =

∫ a

0
X1X2Xidx; (i = 1, 2; n = 1, 2)

Appendix B

The parameters in Equations (10), (11) are given below:

qn =
Qn
h
, k21 =

DMM11

ρhA11
− 2π2DMC11

ρhb2A11
+
π4DM

b4ρh
,

k22 =
DMM22

ρhA22
− 2π2DMC22

ρhb2A22
+
π4DM

b4ρh
,

ωn =
√
k1k2, ω1 =

k1
ωn
, ω2 =

k2
ωn
,

f1 =
4

πρhA11ω2
n

O1F0, f2 =
4

πρhA22ω2
n

O2F0,

g1 =
DMM21

ρhA11ω2
n

− 2π2DMC21

ρhb2A11ω2
n

+
π4DMA21

A11b4ρhω2
n

,

g2 =
DMM12

ρhA22ω2
n

− 2π2DMC12

ρhb2A22ω2
n

+
π4DMA12

A22b4ρhω2
n

,

c11 =
σh2B2

1z

12ρωn

[
C11

A11
−
(π
b

)2]
, c22 =

σh2B2
1z

12ρωn

[
C22

A22
−
(π
b

)2]
,

c21 =
σh2B2

1z

12ρωn

[
C21

A11
−
(π
b

)2]
, c12 =

σh2B2
1z

12ρωn

[
C12

A22
−
(π
b

)2]
,

τ = ωnt, Ω =
Ω0

ωn
, a1 =

hDN

2ρbω2
n

, a2 =
χmB

2
1z

ω2
nρbµrµ0

,

η11 =
a1
A11

(
π2

4b
B11 −

π4

8b3
H11 +

3b

8
F11

)
,
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η21 =
a1
A11

(
π2

4b
B21 −

π4

8b3
H21 +

3b

8
F21

)
,

η22 =
a1
A22

(
π2

4b
B22 −

π4

8b3
H22 +

3b

8
F22

)
,

η12 =
a1
A22

(
π2

4b
B12 −

π4

8b3
H12 +

3b

8
F12

)
,

ς11 =
a2
A11

(
4b

3π
E11 +

4

3b
R11

)
, ς21 =

a2
A11

(
4b

3π
E21 +

4

3b
R21

)
,

ς22 =
a2
A22

(
4b

3π
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4

3b
R22

)
, ς12 =

a2
A22

(
4b

3π
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4

3b
R12

)
,

ψ11 =
a2
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3π
Y11 +

8
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, ψ12 =
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3π
Y12 +

8

3b
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)
,

S11 =
a1
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3b

8
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3π4
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P11 +

π2

4b
(S11+2K11)
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8
(S41+2K41)−
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