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ABSTRACT.Two implicit residual type estimators yielding upper bounds of the error are pre-
sented which do not require flux equilibration. One of them is based on the ideas introduced
in [MAC 00, CAR 99, MOR 03, PRU 02]. The new approach introduced here is based on using
the estimated error function rather than the estimated error norms. Once the upper bounds are
computed, also lower bounds for the error are obtained with little supplementary effort.

RÉSUMÉ.On présente deux estimateurs d’erreur qui ne nécessitent point d’équilibration locale
de flux (contraintes) et qui fournissent des bornes supérieures de l’erreur. Le premier se base
dans les idées introduites dans [MAC 00, CAR 99, MOR 03, PRU 02]. L’estimateur introduit ici
suit la même philosophie mais se base dans l’estimation des fonctions d’erreur et pas seulement
celle des normes. Une fois les estimateurs en borne supérieure calculés, des bornes inférieures
peuvent être obtenues avec un petit effort suplémentaire.

KEYWORDS:error estimation, flux-free estimates, adaptivity, upper and lower bounds of the error.

MOTS-CLÉS :estimation d’erreur, estimateurs sans flux, adaptivité, bornes supérieures (majora-
tions) et inférieures (minorations) de l’erreur.
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1. Introduction

The goal of the application of computational mechanics to engineering practice
is often the evaluation of particular quantities of interest. These quantities are also
denoted as engineering outputs of the problem. The goal of an adaptive procedure
is to control efficiently the accuracy of these outputs, which represent the relevant
engineering quantities. Recently, a number of researchers have addressed the problem
of assessing and controlling the error of the numerical solution in these outputs of
interest, instead of the classical energy norm error estimation.

It is worth noting that goal oriented error estimates have the attractive feature of
being directly computable from energy estimates of the error. It suffices to apply them
to the approximations of the primal and dual (with respect to the output) problems.
In order to bound the error in the quantity of interest, simultaneous lower and upper
bounds of the energy error are needed.

Many approaches for computing bounds on outputs, as [PAR 97] and [PRU 99],
are based in this important property, thus, based on the obtention of accurate upper
and lower bounds for the energy norm of the error.

In this work, a new approach to obtain simultaneous upper and lower bounds of the
energy norm of the error is presented. The main advantage is that it does not require
neither flux jumps computations nor equilibration strategies. It is therefore well-suited
for assessing the error in a 3D context, where the equilibration and the computation of
fluxes is very expensive.

The approach described in this paper uses the solution associated with a finetruth
mesh as a reference solution. The reference mesh is much finer than the current orig-
inal mesh and therefore the reference solution is much closer to the unknown exact
solution than the computed with the original mesh. Thus, a reference erroreref is
introduced as an alternative to the exact errore. The reference and the exact errors
are practically identical, being the reference error slightly lower than the exact error.
The error estimates introduced below are indeed upper and lower bounds of the er-
ror. However, the overestimation (upper bound) is only proved with respect to the
reference error, not with respect to the exact error. It may happen that the error esti-
mate ranges between the reference and the exact errors. In that case, paradoxically,
theupper boundis underestimating the exact error. Some work has been devoted to
obtain upper bounds with respect to the exact solution [BON 02]. These approaches
are based on solving the local equations using equilibrium methods. Nevertheless,
this problemarises only if the estimate is extremely sharp and the introduced overes-
timation with respect to the reference error is lower than the difference between the
reference and the exact solution. In practice, this happens rarely.

2. Model problem and error equations

The model problem is stated as follows: findu ∈ H1
Γ
D

(Ω) such that

a(u, v) = l (v) , ∀v ∈ H1
0(Ω) , [1]
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whereH1
Γ
D

(Ω) andH1
0(Ω) are the standard Sobolev spaces satisfying the Dirichlet

and homogeneous boundary conditions respectively.

The finite element interpolation space and the finite element solution are denoted
by V h and uh respectively, and the energy norm is denoted by‖·‖. Let xi, i =
1 . . . nnode denote the nodes of the mesh andφi ∈ V h the corresponding shape func-
tions. The support ofφi is denoted byωi and it is called the star centered in or
associated with nodexi.

Note that the shape functions are a partition of unity,

nnode∑

i=1

φi(x) = 1, ∀x ∈ Ω. [2]

This essential property is used in the following to define residual estimators based
in stars. Similar approaches have been used in references [BAB 78], [CAR 99] and
[MOR 03].

We address the problem of assessing the error,e := u − uh ∈ H1
0(Ω).

The global equation for the error is

a(e, v) = l (v) − a(uh, v) =: R (v) , ∀v ∈ H1
0(Ω) , [3]

whereR (·) stands for the weak residual associated touh.

In practice, the exact errore is replaced by its projection into the reference space,
eref ∈ V ref

0 := V ref ∩ H1
0(Ω). The new interpolation space,V ref , is obtained either

by h-refinement or byp-refinement fromV h (that is, either̃h < h or p̃ > p).

3. Upper bounds estimators in stars

In this section, two estimates are presented, both providing an upper bound of the
energy norm of the reference error.

The first strategy introduces a local approximationeωi

u ∈ V ref
0,ωi of the contribution

of the starωi to the reference error, whereV ref
0,ωi denote the local restriction of the

reference space to the starωi, that is,V ref
0,ωi := V ref

0 ∩ H1
(
ωi

)
. Theneωi

u is defined
to be the solution of

aωi

(
eωi

u , v
)

= R
(
φiv

)
, ∀v ∈ V ref

0,ωi , [4]

whereaωi(·, ·) is the restriction of the bilinear forma(·, ·) to the starωi.

A global estimate of the error is defined adding the local contributions, that is

eu :=

nnode∑

i=1

eωi

u . [5]
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Note thateu belongs to the “broken” space, that is,eu ∈ V ref
brok :=

⊕
V ref

0,Ωk
, where

V ref
0,Ωk

is the restriction of the reference space to the elementΩk . In other words, the
restriction ofeu to an element belongs to the reference space, and hence is continuous,
but it is generally discontinuous across interelement boundaries.

The following theorem states thateu defined in Eq. (5) behaves as an upper bound
residual type error estimator based in a flux equilibration technique, see references
[BAN 85] and [AIN 93].

Theorem 1. The estimateeu ∈ V ref
brok introduced in Eq. (5) verifies

a(eu, v) = a(eref , v) , ∀v ∈ V ref
0 . [6]

Thus, the norm ofeu is an upper bound of the energy norm of the reference error, that
is

ε+ (eu) := ‖eu‖
2 ≥ ‖eref‖

2. [7]

To derive the second estimate a weighted version of the bilinear forma(·, ·) is
introduced,aφi

(·, ·). That is, if

a(u, v) =

∫
f(u, v) =⇒ aφi

(u, v) :=

∫
φif(u, v), [8]

and its induced norm is denoted by‖·‖φi .

Then a new family of local estimates,ηωi

u ∈ V ref
0,ωi , are defined as the solution of

aφi(
ηωi

u , v
)

= R
(
φiv

)
, ∀v ∈ V ref

0,ωi . [9]

Also a global estimate,ηu ∈ V ref
brok, is considered

ηu :=

nnode∑

i=1

ηωi

u . [10]

Theorem 2. Let ηu be the global estimate defined in Eq. (10). Then an upper bound
is computed fromηu using the weighted norms as

ε+ (ηu) :=

nnode∑

i=1

‖ηωi

u ‖2
φi ≥ ‖eref‖

2. [11]

REMARK .— Note that upper bound estimates are obtained without any flux recov-
ery or flux splitting technique. The effect of the flux jumps across each edge of the
mesh is implicitly taken into account because the support of the local problems are
the stars, which include the interelement edges. There is no need of computing and
postprocessing the fluxes of the finite element solution,uh, along the interelement
edges.
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4. Lower bound recovering

The idea of obtaining a lower bound by a simple post-processing of the upper
bound error estimate, is to construct continuous estimates from them. A simple av-
eraging technique can be considered [DIE 03]. However, in this case, the particular
form of the estimateseu andηu can be taken into account in order to improve the
lower bounds.

The idea is that the local estimates,eωi

u and ηωi

u , are discontinuous along the
boundary of the starωi. In order to enforce continuity it suffices to considerφieωi

u

andφiηωi

u .

Thereforee
W

andη
W

given by

e
W

:=

nnode∑

i=1

φieωi

u , η
W

:=

nnode∑

i=1

φiηωi

u , [12]

are continuous global estimates.

Theorem 3. Let eωi

u , ηωi

u ∈ V ref
0,ωi , i = 1 . . . nnode be the estimates obtained solving

Eqs. (4) and (9) respectively. Then the continuous estimatese
W

andη
W

defined in Eq.
(12) yield lower bounds of the energy norm of the exact error:

ε− (e
W

) :=

(
nnode∑
i=1

‖eωi

u ‖2
ωi

)2

‖e
W
‖2

and ε− (η
W

) :=

(
nnode∑
i=1

‖ηωi

u ‖2
φi

)2

‖η
W
‖2

=
ε+ (ηu)

2

‖η
W
‖2

,

where‖·‖ωi stands for the norm associated to the local bilinear formaωi(·, ·), ‖v‖2
ωi =

aωi(v, v). That is

ε− (e
W

) ≤ ‖e‖2 and ε− (η
W

) ≤ ‖e‖2. [13]

To improve this lower bounds, once the continuous estimate is computed, a global
error assessment is introduced to take into account pollution errors [HUE 00]. Follow-
ing this strategy, two new estimates,eG

W
andηG

W
, are obtained usinge

W
andη

W
. Both

eG
W

andηG
W

are continuous and provide new lower bounds for the error. The lower
bounds provided byeG

W
andηG

W
are sharper than the lower bounds provided bye

W

andη
W

.

5. Numerical examples

In this section, the behavior of the estimates introduced in the previous sections
is analyzed using two numerical examples: one thermic (scalar unknown) and one
mechanical (vectorial unknown).
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The quality of the error estimates is measured with the indexρ, defined by

ρ :=
estimated error
reference error

− 1, [14]

that is,ρ is the effectivity index minus one. The quality of the estimates is given by
the absolute value ofρ and the sign ofρ indicates if the estimate is an upper (positive
ρ) or a lower bound (negativeρ).

In the examples bilinear finite elements are used (p= 1), and the reference space
V ref is obtained refining the initial mesh (h-refinement).

Four error estimates are considered: two upper-bound estimates,eu andηu, and
two continuous estimateseG

W
andηG

W
, which provide lower bounds for the error.

5.1. Example 1: thermal problem

The Poisson equation is solved in a squared domain,Ω, with boundary conditions
Dirichlet homogeneous onΓ

D
:= {(x, 0); 0 ≤ x ≤ 1} and Neumann homogeneous

elsewhere on∂Ω. The source terms is taken such that the exact solution has the
following analytical expression (Figure (1))

u(x, y) =
1

2000
x2(1 − x)2

(
e10x2

− 1
)

y2(1 − y)2
(
e10y2

− 1
)

. [15]

Figure 1. Example 1: exact solution

Two different non-uniform meshes have been considered (Figure (2)). The ref-
erence space is obtained dividing each element of the mesh into42 new elements.

ndof ‖eref‖ ρ(ε+ (eu)) ρ(ε+ (ηu)) ρ(ε−
(
e
G

W

)
) ρ(ε−

(
η
G

W

)
)

240 .2447 .0123 .3174 .0066 .0259
1081 .1164 .0024 .2727 .0016 .0292

Table 1. Estimates obtained in example 1
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Figure 2. Example 1: initial meshes for example 1

Paradoxically, in this example, the lower bounds provide positive values of the
parameterρ. This is becauseε−

(
eG
W

)
andε−

(
ηG

W

)
are lower than the exact error but

not necessarily lower than the reference error which is used to computeρ. A similar
phenomenon occurs forε+ (eu). The estimateε+ (eu) is larger than the reference
error but not necessarily larger than the exact error. Then, even if‖eref‖

2 ≤ ε+ and
ε− ≤ ‖e‖2 stands, it may happen, see table, thatε+ (eu) < ε−

(
ηG

W

)
. This can be

avoided projecting the continuous functionseG
W

andηG
W

into V ref by a simple nodal
interpolation. In this case,ε−

(
eG
W

)
andε−

(
ηG

W

)
are lower bounds for the squared

energy norm of the reference error‖eref‖
2, and thusε− ≤ ‖eref‖

2 ≤ ε+.

The local effectivity indexes associated witheu are analyzed in the histogram in
Figure (3), which shows the occurrences of the local effectivity indexes. Only ele-
ments with a significant contribution to the error are considered. The elements such
that the corresponding local error is lower than1% of ‖e‖/nel (beingnel the number
of elements) are not taken into account (62.319% of the elements). The histogram is
concentrated around100% and therefore the local behavior of the estimate is good.
The global upper bound property is also recovered in a large number of elements.

  0.90  0.95  1.00  1.05  1.10  1.15  1.20  1.25  1.30

    0

   50

  100

  150

  200

  250

Figure 3. Effectivity index histogram of the estimateε+ (eu) for the mesh with 1081
ndof

In Figure (4) the spatial distributions of the estimateeu and reference error are
shown. Note that the estimate performs well and the plots are practically identical.
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Figure 4. Example 1: spacial distribution of the reference error (left) and the esti-
mated errorε+ (eu) (right) for the mesh with 1081 ndof

5.2. Example 2: plane mechanical problem

In this section the behavior of the estimateε+ (eu) introduced above and the asso-
ciated upper and lower bounds is analyzed in a plane-stress linear elasticity problem.
The domain is a one-fourth of a symmetrically loaded plate with two rectangular holes,
as shown in Figure (5). A horizontal unit distributed force is applied alongΓ0, and
the symmetry is taken into account enforcing homogeneous essential boundary condi-
tions on the normal displacements; stress-free condition apply on all other boundaries
and components. The Young’s modulus and Poisson ratio are taken to be 1 and 0.3,
respectively.

0Γ

Figure 5. Example 2: model problem and initial meshes with 70 nodes (center) and
1 294 nodal points (right)

The considered meshes are shown in Figure (5). For the coarse mesh (70 nodes),
the reference mesh is obtained dividing each element into82 new ones, while for the
refined one (1 294 nodes) each element is divided into42 new ones.

The results concerning the assessment of the energy norm of the reference error
are shown in table 2. In mechanical problems the obtained effectivities forε+ (eu) are
not as good as for the previous example.
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nodes ‖eref‖
‖eref‖
‖uh‖

ρ(ε+ (eu)) ρ(ε−
(
eG
W

)
)

70 .15434 .13561 .21822 -.42410
1294 .0354100 .0308283 .16310 -.62755

Table 2. Example 2: upper and lower bounds for‖eref‖

  0.0
 2.50E-02
 5.00E-02
 7.50E-02
 0.10
 0.12
 0.15
 0.17
 0.20
 0.22
 0.25
 0.28
 0.30
 0.32
 0.35
 0.38
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 1.04E+02
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Figure 6. Example 2: spatial distribution of the reference error (up left) and estimate
(up right), and local distribution of the effectivities(ρ+1)% (down) for the mesh with
70 nodes

As in the previous example, the spatial distribution and local effectivities of the
estimateε+ (eu) shown in Figure (6) provide good indicators which may be used in
an adaptive procedure.

6. Concluding remarks

A general strategy to estimate the error in finite element computations has been
introduced yielding both upper and lower bounds for the error. The main features of
this approach are the following:

– The upper bound is obtained using a residual estimator based on solving local
problems on stars (local subdomains). The local problems do not require to com-
pute and equilibrate fluxes. The estimated error function is discontinuous across the
element edges.

– A lower bound is obtained by postprocessing the approximation of the error
function computed for the upper bound estimate. The error function is smoothed out
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to obtain a continuous function. Then, the error estimate in energy norm is computed
in a straightforward manner.

The motivation for obtaining simultaneous upper and lower bounds of the energy
norm of the error arises from the necessity of estimating the error in quantities of
interest, for goal oriented adaptivity. In this context, the assessment of the energy
norm of the error is required for both the primal problem (the original one) and a
dual problem related with the selected quantity of interest. In order to obtain accurate
bounds of the error in the quantity of interest both upper and lower bounds of the
energy norm of the error are required. The present approach is a simple and efficient
tool for this purpose.

Compared to other approaches based in the same idea [MAC 00, CAR 99, MOR 03,
PRU 02], the strategy introduced here shows a better behavior in the numerical tests,
yielding sharper error estimates. Although this is demonstrated in all the studied ex-
amples (both mechanical and thermal, 2D and 3D...) a further analysis is required to
obtain a general proof of this property.
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