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ABSTRACT. A monolithic strategy based on an hybrid domain decomposition method for the nu-
merical simulation of multiphysic problems is presented. It relies on a "physical" choice of
primal interface unknowns. First numerical assessments are described for poroelasticity prob-
lems.

RÉSUMÉ. Une stratégie monolithique associée à une nouvelle approche de décomposition de
domaine dite hybride pour la simulation numérique de problèmes multi-physiques est propo-
sée. Celle-ci repose sur un choix "physique" des champs primaux d’interface. Une première
application à un problème de compactage de sol (poroélasticité) est présentée.
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1. Introduction

Multiphysic problems form a wide range of problems occurring in mechanics.
They arise when modelling complex systems involving different phenomena with cou-
plings. A classical solution is then to associate to each phenomenon various unknown
physical fields; for instance in poroelasticy, studying the fluid flow inside a deformable
body leads to the research of both skeleton displacement and fluid pressure. However,
after finite element discretization, the presence of several unknown fields leads to large
and massive systems of equations.

Different approaches have been explored to solve such problems with computa-
tional efficiency: partitioned methods and staggered algorithms [FEL 88, LEW 91,
FEL 01] are often preferred to monolithic approaches as they make it possible to
carry out iterative resolutions uncoupling large systems; among others let us cite Suc-
cessive OverRelaxation (SOR) based methods (like ISPP [MAT 96]) and Large Time
INcremental method [DUR 03]. All these methods are based on an uncoupling of the
various physical phenomena, with the possibility of using different solvers for each
uncoupled problem. These methods may lack efficiency when couplings become too
strong because many iterations are then required so that computational cost consider-
ably increases, or when huge 3D problems are considered because the dimension of
the pure mechanical problem is then far greater than the fluid part dimension leading
to unbalanced subsystems. In such cases a monolithic approach can be privileged,
even if such classical method does not easily take into account the multiphysic nature
of the problem.

An interesting computational strategy, which is perfectly suited to modern com-
puting hardware, is to use non-overlapping domain decomposition methods. Basically
these methods consist in substructuring the reference domain, condensing the problem
on the interface between substructures to ensure the continuity of primal unknowns
and the equilibrium of fluxes, and then solving this interface problem using a Krylov
iterative solver. Best known non-overlapping domain decomposition methods are the
primal approach (BDD [MAN 93]) and the dual approach (FETI [FAR 91]). For a
classical elastic problem, the first consists in searching the continuous interface dis-
placement which ensures the action-reaction principle between substructures, while
the second consists in searching the equilibrated interface efforts which ensure the
continuity of the displacement between substructures. Unfortunately the use of clas-
sical domain decomposition methods to solve a coupled problem may lead to poorly
conditioned systems because of the heterogeneousness of the physical dimension of
the unknown fields, even when using an adimensionalization preprocessing.

Hence we propose to use the hybrid domain decomposition method [GOS 04],
which makes it possible to have a physics-friendly approach of multifield problems.
The main idea is to enable a degree-of-freedom-specific treatment (basically primal or
dual) of the interface, so that the interface unknown is physically homogeneous, which
should lead to better performance results when solving strongly coupled problems.
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The paper is organized as follows: in section 2 a general modelling and basic
simulation strategy of poroelastic problems is presented, in section 3 hybrid domain
decomposition approach is described in the context of poromechanics. This method
is applied in section 4 to the simulation of the hardening of a porous media. Finally
section 5 provides conclusions and prospects.

2. Reference poroelasticity problem

2.1. Description

Let us consider the isotherm evolution of a structure Ω made up of a saturated
porous medium, underlying small perturbations around a reference position during
interval of time [0, tf ] [BIO 41, COU 90]. The structure is disturbed by a boundary
loading made up of displacement ~ud on ∂uΩ, and of effort ~Fd on complementary part
∂FΩ, of pressure pd on ∂pΩ and of flow of fluid mass ~Md on complementary part
∂MΩ. No body force is considered in the medium.

~u represents skeleton displacement, ε the skeleton linearised strain tensor, σ the
Cauchy stress tensor, p the pore pressure, m the rate of fluid mass accumulation since
time of reference. ~M is the fluid mass flow.

2.2. Linear poroelasticity constitutive equations

Two balance equations control a porous medium during isotherm evolution: mo-
mentum balance [1] and fluid mass balance [2]:

~divσ = ~0 [1]

ṁ = −div ~M [2]

The structure behavior is assumed to be linear elastic. Within this framework, a ther-
modynamic study leads to Hooke’s law [3] and fluid state equation [4]:

σ = A : ε−B p [3]
m

ρ
= N p+B : ε [4]

where A is the fourth order Hooke’s tensor of the drained skeleton, B is Biot’s ten-
sor and N is the inverse of Biot modulus. It is necessary to add the complementary
relation which rules the fluid transport phenomenon, expressed in Darcy’s law [5]:

~M

ρ
= −K ~grad p [5]

where K is the fluid permeability tensor.
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2.3. Problem formulation

The resolution of the previous problem leads to determine various fields ~u, σ, p, m
and ~M in their various respective admissible space Uad, σad, Pad, M

ad andMad, at
any time t ∈ [0, tf ] ensuring equations [1] to [5] of the model. The weak formulation
reads:

∫

Ω

σ : ε∗ dΩ =

∫

∂FΩ

~Fd. ~u∗dS,∀ ~u∗ ∈ U
ad
0 [6]

∫

Ω

~M. ~grad p∗dΩ−
∫

Ω

ṁ p∗dΩ =

∫

∂MΩ

Md p
∗dS, ∀p∗ ∈ Pad

0 [7]

A finite element space discretization is adopted which leads to a time first order linear
differential equations system:

[

0 0
−BT −C

](

u̇

ṗ

)

+

[

K1 −B

0 −K2

](

u

p

)

=

(

fu
fp

)

[8]

where K1, K2 are the rigidity and permeability matrices, B is the poromechanical
coupling matrix and C the fluid compressibility matrix. fu is the vector of generalized
forces and fp the vector of generalized flows. An incremental implicit Euler scheme
is then used to solve [8]:

[

K1 −B

−BT −(C +K2∆t)

] (

un+1

pn+1

)

=

[

0 0
−BT −C

](

un
pn

)

+

(

fn+1
u

∆t fn+1
p

)

[9]

or using standard notation:

Kxn+1 = fn+1 [10]

3. An hybrid domain decomposition method

3.1. Principle and choice of primal variables

Let us first consider a two-substructure partitioning of a porous medium Ω, Ω =
Ω(1)

⋃

Ω(2) and Υ = ∂Ω(1)
⋂

∂Ω(2) is the interface between substructures (Figure
1).
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Figure 1. Two-subdomain decomposition

It is possible to completely rewrite equations [1] to [5] on the two substructures
Ω(1) and Ω(2):

s = 1 or 2































































~divσ(s) = ~0 in Ω(s)

ṁ(s) = −div ~M (s) in Ω(s)

σ(s) = A : ε(s) −B p(s) in Ω(s)

m(s)

ρ
= N p(s) +B : ε(s) in Ω(s)

~M(s)

ρ
= −K ~grad p(s) in Ω(s)

~u(s) = ~u
(s)
d on ∂uΩ(s)

⋂

∂uΩ

σ(s)~n(s) = ~Fd on ∂FΩ(s)
⋂

∂FΩ
p(s) = pd on ∂pΩ(s)

⋂

∂pΩ
~M (s)~n(s) = Md on ∂MΩ(s)

⋂

∂MΩ

[11]

the two systems are linked by interface boundary conditions:

{

~u(1) = ~u(2)

p(1) = p(2)
on Υ unknowns continuity [12]

{

σ(1)~n(1) + σ(2)~n(2) = ~0
~M (1)~n(1) + ~M (2)~n(2) = 0

on Υ fluxes balance [13]

The domain decomposition method in primal form (BDD [MAN 93]) consists in look-
ing for the continuous interface displacement and pressure fields which ensure the
action-reaction principle and flow balance [13] between substructures, while the dual
approach consists in searching the equilibrated interface effort and flow which ensure
the continuity of the displacement and pressure between substructures [12]. For both
methods, the interface problem is physically heterogeneous as it mixes pressure and
displacement unknowns or effort and fluid flow unknowns.

In order to get an interface unknown homogeneous to an effort we propose to treat
in a primal way the pressure and in a dual way the displacement. In other words we



528 REEF – 13/2004. Giens 2003

search the interface fields of balanced intereffort λu and continuous pressure which
guarantee the continuity of displacements and the conservation of flow:

seeking for (~λu, p)
{

~λu = σ(1)~n(1) = −σ(2)~n(2)

p = p(1) = p(2)
on Υ

with respect of
{

~u(1) = ~u(2)

~M (1)~n(1) + ~M (2)~n(2) = 0
on Υ

This step lies within the more general scope of the hybrid domain decomposition
method as described in [GOS 04].

3.2. A dual/primal condensed hybrid system

Let us consider one linear displacement/pressure system ([10]) (we omit subscript
n). We denote by i the internal degrees of freedom, p and u interface pressure and
displacement degrees of freedom. Considering a two-subdomain decomposition, the
system reads:
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A(s)
u x

(s)
u = 0

[14]

Matrices A(s)
p are boolean assembly operators from local interface to global ge-

ometric interface, matrices A(s)
u are signed boolean assembly operators from local

interface to global connectivity interface so that the last line of the previous system
expresses the continuity of displacement field (see figure 2).

In order to simplify writings and extend to several subdomains, we adopt the fol-
lowing notations (b represents either u or p and b̄ its complementary) :

Kb =

(

Kii Kib̄

Kb̄i Kb̄b̄

)

K̄b =

(

Kib

Kb̄b

)
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PSfrag replacements
Ω Ω(1)

Ω(1)

t(1)
A
(1)
p

A(1)
u

Figure 2. Trace and assembly operators

if v =





vi
v1
v2



 then v̄b =

(

vi
vb̄

)

Trace operator: tTb vb =
(

0i
vb

)

System ([14]) then reads:
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T
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λu

∑

A(s)
u t

(s)
u x̄

(s)
p = 0

[15]

Solving on each subdomain a system where pressure and effort boundary con-
ditions are imposed on the interface we eliminate internal degrees of freedom and
unknown interface displacements, and then we only keep pressure and intereffort in-
terface unknowns. If the subdomain lacks Dirichlet boundary conditions ("floating
substructure") we have to introduce admissible solid body motions; we denote by
R
(s)
p a basis of ker(K(s)

p ) and α(s) the magnitude of these motions.
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x̄
(s)
p = K

(s)
p

+
(

−K̄
(s)
p A

(s)
p

T
xp + f̄

(s)
p + t

(s)
u

T
A(s)
u

T
λu

)

+R
(s)
p α

(s)
p

R
(s)
p

T
(

−K̄
(s)
p A

(s)
p

T
xp + f̄

(s)
p + t

(s)
u

T
A(s)
u

T
λu

)

= 0
[16]

The condensed problem with unknowns xp and λu then reads:





Spu

(

Gp

Gu

)

(

−GT
p GT

u

)

0









(

xp
λu

)

α



 =





(

bp
−bu

)

−e



 [17]

with






Gp =
(

. . . A
(s)
p (K̄

(s)
p )TR

(s)
p . . .

)

Gu =
(

. . . A(s)
u t

(s)
u R

(s)
p . . .

)







bp =
∑

A
(s)
p

(

f
(s)
p − (K̄

(s)
p )TK+

p
(s)
f̄
(s)
p

)

bu =
∑

A(s)
u t

(s)
u K

(s)
p

+
f̄
(s)
p

Spu =
∑

(

A
(s)
p 0

0 A(s)
u

)

S(s)
pu

(

A
(s)
p 0

0 A(s)
u

)T

, α =









...
α(s)

...









, e =











...

R
(s)
p

T
f̄
(s)
p

...











S(s)
pu =









(

K
(s)
pp − K̄

(s)T
p K

(s)
p

+
K̄

(s)
p

)

(

K̄
(s)T
p K

(s)
p

+
t
(s)
u

T
)

−

(

K̄
(s)T
p K

(s)
p

+
t
(s)
u

T
)T (

t
(s)
u K

(s)
p

+
t
(s)
u

T
)









From a local point of view, we can notice that the top left block of matrix S
(s)
pu

is the primal schur complement related to pressure degrees of freedom and that the
bottom right block is the dual Schur complement related to displacement degrees of
freedom, the extradiagonal blocks are skew-symmetric coupling terms.

3.3. Preconditioning/coarse problem

The condensed linear system is a constraint system. Matrix Spu being a sum of
local contributions, an efficient numerical strategy is then to use a projected Krylov
algorithm (a GMRes solver is preferred since the linear system is non-symmetric or
non-positive when symmetrized). The definition of a smart preconditioner is an im-
portant issue and we propose to use the classical strategy consisting in approximating
the inverse of a sum of local contributions by a scaled sum of local inverses.
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Noticing that S(s)
pu is the local operator which associates resulting interface flux

and displacement to given interface pressure and effort, its inverse is S(s)
up [18] which

associates resulting interface pressure and effort to given flux and displacement.

S(s)
up =









(

t
(s)
p K

(s)
u

−1
t
(s)
p

T
)

−

(

K̄
(s)T
u K

(s)
u

−1
t
(s)
p

T
)T

(

K̄
(s)T
u K

(s)
u

−1
t
(s)
p

T
)

(

K
(s)
uu − K̄

(s)T
u K

(s)
u

−1
K̄

(s)
u

)









[18]

Note that in such a situation, matrix K(s)
u is always inversible. Preconditioning oper-

ator Ŝ−1
pu writes

Ŝ−1
pu =

∑

(

W
(s)
p A

(s)
p 0

0 W (s)
u A(s)

u

)

S(s)
up

(

W
(s)
p A

(s)
p 0

0 W (s)
u A(s)

u

)T

[19]

where Wp and Wu are diagonal scaling matrices. These can be defined according
to the multiplicity of degrees of freedom or according to the difference of behavior
between substructures [RIX 99, GOS 02].

Let G =

(

−Gp

Gd

)

, constraint GT

(

xp
λu

)

= −e is taken into account by initializa-

tion
(

xp
λu

)

0

and projector PQ where Q is an approximation of the preconditioner.

(

xp
λu

)

0

= QG
(

GTQG
)

−1
e, PQ = Id −QG

(

GTQG
)

−1
GT [20]

3.4. On a primal/dual approach

Previous notations make it possible to give the formulation where displacement
is treated as a primal unknown and pressure as a dual unknown. The resulting inter-
face unknown is displacement/flux. Such an approach is not based on any physical
consideration.

Spu

(

λp
xu

)

=

(

−bp
bu

)

=





−
∑

A(s)
p t

(s)
p K

(s)
u

+
f̄
(s)
u

∑

A
(s)
u

(

f
(s)
u − (K̄

(s)
u )TK+

u
(s)
f̄
(s)
u

)



 [21]

Spu =
∑

(

A(s)
p 0

0 A
(s)
u

)

S(s)
pu

(

A(s)
p 0

0 A
(s)
u

)T

[22]

Ŝ−

pu1 =
∑

(

W (s)
p A(s)

p 0

0 W
(s)
u A

(s)
u

)

S(s)
pu

(

W (s)
p A(s)

p 0

0 W
(s)
u A

(s)
u

)T

[23]



532 REEF – 13/2004. Giens 2003

H =

(

. . .W (s)
p A(s)

p (K̄
(s)
p )TR

(s)
p . . .

. . .−W
(s)
u A

(s)
u t

(s)
p R

(s)
p . . .

)











P = Id −H
(

HTSpuH
)

−1

HTSpu
(

λp
xu

)

0

= H
(

HTSpuH
)

−1

HT

(

−bp
bu

)

4. Numerical assessments

Let us consider the problem of soil compaction described in figure 3. The struc-
ture is made up of a portion of soil of 5m length, 4m of width and 3m of depth. A
compaction effort (effort growing linearly till a threshold) is imposed on a 2m × 2m
zone. The top part is submitted to the atmospheric pressure, elsewhere the walls are
assumed to be impermeable and only transverse displacements are possible.

PSfrag replacements
P = P0

−→
F d

−→
Md =

−→
0

Figure 3. Porous media compaction

Only isotropic and linear phenomena are considered and the set of coefficients for
an argilite medium, according to [GOR 99] reads: mechanical characteristics of the
skeleton λ = 662 MPa, µ = 1885 MPa, module of Biot 1

N
= 6800 MPa, coefficient

of Biot B = 0.6, coefficient of permeability K = 10. 10−16m2 Pa −1 s−1. Because
of the significant difference of magnitude between coefficient values, an adimension-
alization process was performed.

The structure is meshed with hexaedral elements. A Q2 −Q1 approximation (Q2

for displacement, Q1 for pressure) is used. The considered grid contains 480 elements
and 8300 degrees of freedom. The decomposition into 3 subdomains is automatically
carried out using the ZeBuLoN [FOE 96] code mesher. The time discretization leads
to the resolution of 20 linear systems.

The performance results of the primal, dual and hybrid domain decomposition
approaches based on the average number of iterations to converge, are presented in
Tab. 1. Those results comply with a same relative GMRes error ratio, lower than
10−10.
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Approach without preconditioning with preconditioning
Primal/dual 417 26
Primal 286 26
Dual 265 28
Dual/primal 214 27

Table 1. Average iteration number for linear system convergence
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1e-08

1e-06

0.0001

0.01

1

0 50 100 150 200 250 300 350 400 450

Dual/Primal
Dual

Primal
Primal/Dual

Figure 4. Convergence of residual norm for non-preconditioned problems

These results highlight the better performance levels of dual/primal approach when
no preconditioning was used. The primal/dual approach which does not have physical
sense leads to even poorer efficiency.

It is shown that the preconditioning gives the same kind of performance results
as usual methods (FETI or BDD) with their optimal preconditioners, what proves the
good behavior of the hybrid preconditioner.

Figure 4 presents the evolution of the residual norm for the first linear system
which is mostly linked to the spectrum of the operator. It seems that being more
respectful of the physic nature of unknowns, the hybrid method benefits from the
good behaviors of the dual and primal approaches: first iterations look like the dual
approach with a quick ratio-decrease, after a slowdown a superconvergent behavior
similar to the one of the primal approach is quickly achieved.

5. Conclusion and prospect

A monolithic strategy based on an hybrid non-overlapping decomposition method
was presented. First results obtained on a simple test look promising. Another sig-
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nificant validation process should be undergone for ambitious porous problems with
mechanical and fluid non-linearities (plasticity, damage, variation of permeability).
Since the optimal preconditioner exists, a very interesting prospect is to study "sim-
plified" preconditioners based on a partial physical or spacial scale uncoupling (like
lumped preconditioner for FETI), benefitting from the advantageous spectrum of hy-
brid operator. Work on uncoupling according to physical time scales will also be
carried out.
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