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ABSTRACT. This paper presents a direct method to numerically study the strength, in the sense of
shakedown, of elastic perfectly plastic media with a periodic microstructure, submitted to vari-
able loads. The macroscopic admissible strength domains are obtained by solving constrained
nonlinear optimization problems on a three-dimensional unit cell. These problems represent
the shakedown analysis problems. Static and kinematic approaches of shakedown are tested by
applying the developed method to a layered material and to a periodically perforated sheet.

RÉSUMÉ. On propose une méthode directe permettant d’étudier numériquement la résistance, au
sens de l’adaptation, de matériaux élastoplastiques parfaits à microstructure périodique, lors-
qu’ils sont soumis à des sollicitations variables. Les domaines de chargements macroscopiques
admissibles sont obtenus en résolvant, sur une cellule de base tridimensionnelle, des problèmes
d’optimisation non linéaire sous contraintes traduisant les problèmes d’adaptation. Les ap-
proches statique et cinématique de l’adaptation sont testées par application de la méthode aux
cas d’un matériau stratifié et d’une plaque périodiquement trouée.

KEYWORDS: elastic plastic shakedown, static approach, kinematic approach, periodic homoge-
nization, numerical modeling, 3D unit cell, convex optimization.
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1. Introduction

The emergence of new materials with specific properties requires latest researches
in many fields such as aircraft, car or biomechanical industries. In this sense, this
study concerns the strength capacity of elastic perfectly plastic materials which exhibit
a periodic microstructure and which are submitted to variable mechanical loadings.
This consists in coupling two theories:

– firstly the periodic homogenization theory, which allows to take into account the
influence of the heterogeneities of the studied material on its macroscopic behavior,

– secondly the shakedown theory, which allows to take into account the variable
aspect of the loadings by requiring very little information. Indeed, to know if a struc-
ture submitted to variable loads shakes down, that is to know if the plastically dissi-
pated energy is bounded, there is no need to describe the time evolution of the load-
ings: bounds are sufficient to carry out direct shakedown analysis.

The methodology is the same as the one proposed by [SUQ 83] for the coupling be-
tween periodic homogenization and limit analysis. The shakedown analysis (either
the static approach of Melan [MEL 36] or the kinematic approach of Koiter [KOI 60])
is carried out on a unit cell –three-dimensional in our study– representative of the
heterogeneities of the structure and the results are expressed in terms of admissible
strength domains of external loads: the macroscopic strains or stresses. By using the
finite element method and the von-Mises yield criterion, direct shakedown analysis be-
comes a mathematical programming problem that is solved by a nonlinear constrained
optimization software.

After some theoretical definitions concerning periodic homogenization (section 2),
section 3 presents the static approach of the coupling by introducing a specific formu-
lation which allows to take rigorously into account the periodicity and average rela-
tions lying the microscopic and the macroscopic quantities. This formulation allows
to solve the cellular problems and to express the optimization conditions. The admis-
sible domains are eventually obtained by implementing this coupling in the finite ele-
ment software SIC ([AUN 90]) interfaced with the optimization software LANCELOT
([CON 92]). Section 4 deals then with the dual problem [DEB 76] –the kinematic ap-
proach of the coupling– in order to compare the performances of the two approaches.
Finally, section 5 presents two application examples: the study of the strength capac-
ity of a layered material and of a perforated sheet submitted to macroscopic loadings
in the plane of the layers and of the sheet, respectively.

2. Periodic homogenization and localization problems

As mentioned in Introduction, the studied materials exhibit a periodic microstruc-
ture obtained by periodic translation, in the three spatial directions, of a pattern called
unit cell and denoted by V . For instance, figure 1 shows a three-dimensional unit cell
associated with an elastic plastic layered material. To take into account the influence
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Figure 1. Heterogeneous material and associated 3D unit cell

of the heterogeneities on the macroscopic behavior of the layered material, it is thus
necessary to introduce two scales: the macroscopic scale of the structure, denoted by
X , and the microscopic scale of the heterogeneities, denoted by y. In the following
all the macroscopic quantities are expressed at the point X and represented by capital
letters, and all the microscopic quantities are expressed at the point y and represented
by small letters. When there are many heterogeneities, the state variables fields fluc-
tuate highly in the heterogeneous material. Therefore, when the size of the unit cell
becomes much smaller than the one of the structure, the macroscopic strain E and
stress Σ are linked ([SUQ 83]) by the average relations [1] where V ∗ is the volume
occupied by the material part of V.

Σ =< σ >,
1

|V |

∫

V ∗

σ dV and E =< ε(u) >,
1

|V |

∫

∂V

u �s n dS [1]

As explained in [BOR 01], the periodicity properties of the media also imply that the
microscopic strain and stress fields, ε and σ, are V -periodic. As a consequence, the
local strain field ε is splitted into two parts: a constant one, E, deriving from E.y and
a fluctuating one, εper, deriving from a periodic displacement on the unit cell, uper,
such that:

u = E.y + uper ⇔ ε(u) = E + ε(uper) [2]

The local elastic problems appearing in the shakedown analysis (cf. section 3) can
then be expressed either in terms of given macroscopic strain or stress. This leads to
consider the following localization problems:

Strains approach: Pstrain Stresses approach: Pstress

E given, E =< ε(u) > Σ given, Σ =< σ >
Find uper and σ s.t.: Find uper and σ s.t.:























div σ = 0 in V ∗

σ = d : ε(u) in V ∗

uper = u − E.y per. on ∂V
σ.n antiperiodic on ∂V
σ.n = 0 on ∂H























div σ = 0 in V ∗

σ = d : ε(u) in V ∗

uper = u− < ε(u) > .y per. on ∂V
σ.n antiperiodic on ∂V
σ.n = 0 on ∂H
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where H denotes the potential holes such that ∂H ∩∂V = ∅, d is the elastic stiffness
tensor, and n is the outer normal on the boundary ∂V of V or the inner normal on the
boundary ∂H of H . It must be noted that these formulations do not take into account
the case when there are rigid inclusions in the unit cell. As explained in section 3, the
resolution of either Pstrain or Pstress is essential to write the optimization problem.

3. The static approach of the coupling

3.1. Some definitions and assumptions

Let us first introduce some definitions and assumptions necessary to describe the
framework of the study and also to write the shakedown problem.

The cellular analysis to carry out in order to obtain the macroscopic admissible
domains can be summarized as follows: an initial domain of prescribed macroscopic
loading paths is given and we search how much this domain can be amplified such that
shakedown occurs in the unit cell. In our case, the loading paths are assumed to be
included in a convex polyhedron D defined as a linear combination of n independent
loads P

0
i , i = 1..n:

D =

{

P(t) | P(t) =
n

∑

i=1

µi(t)P
0
i , µi(t) ∈ [µi

−, µi
+]

}

[3]

In this definition, P represents either a state of macroscopic strains or a state of macro-
scopic stresses, and t is a loading parameter denoting the time in the following.

The medium is supposed to exhibit at each point y of the unit cell a plasticity
domain F (y) in which the microscopic stress σ must stay to be plastically admissible.
In our study we assume furthermore that each component, for instance each layer of
the layered material, is elastic-perfectly plastic and that the local plasticity domain is
defined by the way of the von-Mises yield function (σd denotes the deviatoric part of
σ and σ0 the yield stress):

F (y) =

{

σ(y) | F(σ(y), σ0(y)) =

√

3

2
σd(y) : σd(y) − σ0(y) ≤ 0

}

[4]

It is also necessary to introduce a so called reference unit cell, noted V (e). This
fictive unit cell has the same geometrical characteristics as the real one, but each com-
ponent is supposed to exhibit a purely elastic behavior, defined by the Hooke’s law.
It means that once submitted to the same loading as the real unit cell, the response of
this fictive unit cell is purely elastic. In the following, all the purely elastic fields are
noted by the superscript symbol (e).
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3.2. Formulation of the shakedown problem as a maximization problem

On these bases, the coupling between the static theorem of Melan and the periodic
homogenization theory is then enounced as follows: a periodic heterogeneous material
submitted to any variable loading path P : t ∈ [0,+∞[ → P(t) ∈ D shakes down
if there exist a safety factor α > 1 and a time-independent self-equilibrated residual
stress field ρ such that its superposition with the field of the purely elastic stress path
ασ(e) constitutes a safe state of stresses:

∀y ∈ V ∗, ∀t, σ(y, t) = α σ(e)(y, t) + ρ(y) ∈ F (y) [5]

where:

– the stress state σ(e) due to the loading path P occurs in V (e) and satisfies the
localization problem Pstrain (resp. Pstress) if the macroscopic strain E (resp. stress
Σ) is prescribed,

– the residual stress field ρ satisfies the periodicity and average conditions:

Strains approach: P res
strain Stresses approach: P res

stress






divρ = 0 in V∗

ρ.n antiperiodic on ∂V
ρ.n = 0 on ∂H















divρ = 0 in V∗

ρ.n antiperiodic on ∂V
ρ.n = 0 on ∂H
〈ρ〉 = 0

The resolution of the static approach of the coupled problem shakedown / homoge-
nization leads thus to search the maximum value of the coefficient α, such that for any
given loading path taking its values in D the nonlinear conditions (yield conditions)
and the linear conditions (the one to be satisfied by ρ) are satisfied. This becomes thus
a constrained nonlinear optimization problem, P opt, in which P res represents either
P res

strain or P res
stress:

Find αSD such that: αSD = max
ρ

(α) where ρ satisfies:

F
(

α σ(e)(y,P(t)) + ρ(y), σ0(y)
)

≤ 0 ∀ y ∈ V ∗, ∀ P(t) ⊂ D, ∀ t [6a]

P res [6b]

3.3. Discretization of the coupled problem

In order to consider unit cells as complex as possible, it is necessary to discretize
and to implement this method.

3.3.1. Discretization of the initial load domain

The discretization of the initial load domain –the time discretization– is achieved
thanks to the following property [KOE 78]: a media shakes down for any loading path
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included in the polyhedron D if and only if it shakes down for all the vertices of D.
The set D of these vertices is defined as follows:

D =

{

P 0
k | P 0

k =

n
∑

i=1

µiP
0
i , with µi = µi

− or µi
+, k = 1..2n

}

[7]

As a consequence, the yield conditions [6a] need to be expressed only for the 2n

vertices P 0
k , which are called loading points.

3.3.2. A specific formulation

The variational formulations of the localization problems Pstrain/stress and P res

are written by introducing the general formulation [8]:

Pgen















div s = 0 in V∗

s.n antiperiodic on ∂V
s.n = 0 on ∂H
〈s〉 = S only for Pstress and P res

stress

[8]

in which s is either the microscopic stress σ such that σ = d : (E + ε(uper)) or
the microscopic residual stress ρ, and S is either the macroscopic stress Σ or the
null tensor 0. The variational formulation of [8] is then written using the principle
of virtual work with a virtual kinematics of type [2], the average relations [1], the
periodicity conditions [8b], and the traction free conditions [8c]:

∀ δuper, ∀ δE,

∫

V ∗

(ε(δuper) + δE) : s dV = |V | δE : S [9]

Using the finite element method and adding to all the elements of the mesh a fictive
node [DEB 86], the degrees of freedom of which are the components of the macro-
scopic strain E and the nodal forces of which are the components of the macroscopic
stress Σ multiplied by the volume of the unit cell |V |, we obtain [MAG 02] the fol-
lowing discrete form: ∀ δuper,e, ∀ δE,

NELT
∑

e=1

〈δuper,e, δE〉

NGE
∑

i=1

ωi[Bi
hom,e]T {si} det J i = |V | 〈δE〉 {S} [10]

where NELT is the total number of elements of the mesh, e designs the current
element, δuper,e is the virtual displacements vector of nodes of the element e, NGE
the number of Gauss points of the element e, and [Bhom,e] replaces the classical
matrix of the derivated shape functions:

[Bhom,e] = [Be, I] s.t. {εe} = [Bhom,e] {ue} = [Be] {uper,e} + {E} [11]

This formulation allows us to write the discrete forms of Pstrain/stress and P res:

– Elastic problem: taking into account the chosen kinematics [2], [10] becomes
the following linear system of equations:

[K] 〈uper,E〉
T

= 〈0, |V |Σ〉
T [12]
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where the matrix [K] results from the assembly of the elementary stiffness matrices
[Khom,e] such that:

[Khom,e] =
NGE
∑

i=1

ωi[B
hom,e
i ]T [de][Bhom,e

i ] det J i [13]

After implementation in the finite element code SIC, applying a macroscopic strain
or stress becomes as easy as applying a displacement or a force in a classical finite
element code. This problem [12] is thus solved by SIC in order to obtain the purely
elastic stress fields σ

(e)
i (P 0

k ), which are the stresses at each integration point i result-
ing from the loading point P 0

k and necessary to express the inequality constraints [6a].

– Residual stresses problem: the discrete form of P res also is a linear system of
equations, which constitutes the equality constraints of P opt:

[C] {ρ} = 0 [14]

where {ρ} is the vector of the residual stresses at all integration points. The [C]-
matrix is called equilibrium matrix and results from the assembly of the elementary
equilibrium matrices [Ce] such that:

[Ce] = [ω
1
[B

1

hom,e]T det J1| . . . |ωNGE
[B

NGE

hom,e]T det J
NGE

] [15]

The method to build the [C]-matrix has also been implemented in SIC, by using an
optimized storage methodology in order to treat the maximum of equality constraints.

3.3.3. Discretization of the optimization problem

Thanks to these developments in the finite element software SIC, all the data nec-
essary to write the discrete form of P opt are now available. The following nonlin-
ear constrained optimization problem is then solved with the optimization software
LANCELOT, dedicated to large scale optimization problems and based on an aug-
mented lagrangian method:

Find αSD such that: αSD = max
ρ

(α) where ρ satisfies:

F
(

α σ
(e)
i (P 0

k ) + ρi, σ
0
i

)

≤ 0 ∀ k = 1..2n, ∀ i = 1..NGP [16a]

[C] {ρ} = 0 [16b]

This static approach of the coupling leads thus to a maximization problem with: a
linear objective function, 6 ∗ NGP optimization variables (NGP is the total number
of integration points), 2n∗NGP nonlinear inequality constraints (σ0

i is the yield stress
of the integration point i), and NDOF linear equality constraints where NDOF is
the total number of degrees of freedom.
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4. The kinematic approach of the coupling

In order to compare the kinematic and the static approach, we formulate here the
coupling between periodic homogenization and shakedown by using the kinematic
theorem of Koiter [KOI 60]. The definitions of the initial load domain and of the
reference unit cell, as well as the assumption on the local material behavior are the
same as the ones presented in section 3.1.

4.1. The coupled problem

From the kinematic point of view, the unit cell shakes down only if its plastically
dissipated energy is strictly superior to the one due to the loading P . The coupling
states thus the following [CAR 99]: if there exists γ > 1 such that for any plastic
strains rate ε̇p and for any loading path P : t ∈ [0, T [ → P(t) ∈ D satisfying:

∫ T

0

ε̇p(y, t)dt = gradsu(y) ∀ y in V ∗ [17a]

tr ε̇p(y, t) = 0 ∀ y in V ∗, ∀ t [17b]

u(y) = E.y + uper(y) with uper periodic on ∂V [17c]
∫ T

0

∫

V ∗

σ(e)(y, t) : ε̇p(y, t) dV dt = 1 [17d]

the following relation holds:
∫ T

0

∫

V ∗

σ(y, t) : ε̇p(y, t) dV dt ≥ γ [18]

then the unit cell shakes down for any loading path in D.

Note that this theorem is enounced for a prescribed macroscopic stress, but holds
also for a prescribed macroscopic strain: in this case, the displacement u(y) must
satisfy [17c] with E = 〈ε〉 = 0. The purely elastic stress σ(e) is likewise solution of
either the localization problem Pstress or the localization problem Pstrain.

4.2. The associated minimization problem

After having discretized the initial load domain in the same way as presented in
section 3.3.1, a convex analysis reasoning based on the duality of both the static and
kinematic approaches ([DEB 76]) allows us to deduct the discrete kinematic coupling
from the discrete static one. Introducing appropriate vectorial spaces and bilinear
forms, this coupling becomes the following constrained minimization problem:

Find αSD s. t.: αSD = min
ε̇p,uper,E

NGP
∑

i=1

2n
∑

k=1

ωi det J iσ
0
i

√

2

3
ε̇

p
i (P

0
k ) : ε̇

p
i (P

0
k )
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where ε̇p, uper, and E satisfy:

2n
∑

k=1

ε̇
p
i (P

0
k ) = [Bhom,e

i ] 〈uper,e,E〉
T

∀ i = 1..NGP [19a]

tr ε̇
p
i (P

0
k ) = 0 ∀ i = 1..NGP, k = 1..2n [19b]

NGP
∑

i=1

2n
∑

k=1

ωi det J i σ
(e)
i (P 0

k ) : ε̇
p
i (P

0
k ) = 1 [19c]

By comparison with the static approach, the kinematic approach leads to consider a
minimization problem with: a more complex objective function (it is indeed nonlinear
and non differentiable at the origin), more optimization variables (6 ∗ 2n ∗ NGP +
NDOF ), no inequality constraints, and (2n +6)NGP +1 linear equality constraints
(in general (2n + 6)NGP + 1 > NDOF ) composed of 6 ∗ NGP compatibility
constraints, 2n∗NGP incompressibility constraints, and one normalization constraint.
As emphasized by the formulation [19], the data necessary to express this kinematic
coupling are the matrix [Bhom,e

i ] and the stresses σ
(e)
i (P 0

k ), which have already been
computed by the finite element developments of the static approach.

5. Application examples

5.1. The two studied materials

Layer 1 Layer 2

Young’s modulus 2.1 ∗ 10
5 MPa 1.2 ∗ 10

5 MPa
Poisson’s ratio 0.3 0.27

Yield stress σ1

0 = 180 MPa σ2

0 = 80 MPa
Thickness ratio h1/h2 = 1/3

Table 1. Properties of each layer of the material shown figure 1

In order to validate and apply the proposed methods, we consider two types of
materials. The first one is the layered material presented figure 1, which is constituted
by the superposition of two layers of different characteristics (cf. table 1). This layered
material is first submitted to the macroscopic strain state (E11, E22, 0, 0, 0, 0) and
then to the macroscopic stress state (Σ11, Σ22, 0, 0, 0, 0). For the second type of
loading, the static and the kinematic approach are treated. Thanks to the invariance in
the in-plane directions, each layer of the unit cell is meshed with a unique quadratic
brick element with 20 nodes.

The second studied material is the periodically perforated aluminum sheet shown
figure 2 which is submitted to the macroscopic stress state (Σ11, Σ22, 0, 0, 0, 0) and
whose mechanical and geometrical characteristics are: E = 69550 MPa, ν = 0.337,
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σ0 = 159 MPa and 2r/d = 0.3. Some symmetry considerations allow to work
on only one eighth of the unit cell which is meshed with the same quadratic brick
elements as the layered material. These symmetries lead ([LEN 84]) to consider the
following localization problems:















div s = 0 in V∗ with additional relations for Pstress :
s.n = 0 on ∂Vtop ∪ ∂H σ = d : ε(u),
s.n − (n.s.n).n = 0 on ∂Vbot ∪ ∂Vlat uper.n = 0 on ∂Vlat ∪ ∂Vbot,
〈s11〉 = S11, 〈s22〉 = S22 Ei3 = E3i = E12 = E21 = 0

[20]

PSfrag replacements

y1

y1

y2
y2

y3

y3

y1

y2

y3

X1

X2

X3

∂H

∂Vlat
∂Vtop

∂Vbot

0.1

d/2r

r+
d/2

Unit cell Eighth of the unit cellPerforated sheet

Figure 2. 3D unit cell of a perforated sheet

5.2. Numerical simulations

Because of the symmetry of the von-Mises criterion with respect to the origin,
all the results presented in this section are plotted in the half-plane P2 ≥ 0 when
the materials are submitted to bi-axial tensile tests in the plane (P1,P2). For all
the following results, the initial load domains are rectangles with one vertex at the
origin. Thus, the unit cell shakes down for any variable loading path included in such
a rectangle, with the vertex opposite from the origin inside the shakedown envelope.
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LA − SIC/LANCELOT − Static
LA − SIC − Incremental computations

SD − SIC/LANCELOT − Kinematic

Figure 3. Layered material computed in the planes (E11, E22) and (Σ11,Σ22) with
E0

11 = E0
22 = 10−3
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The results of the numerical simulations on the layered material are presented
figure 3 and show the macroscopic strength domains with respect to elasticity (E),
shakedown (SD), and limit analysis (LA). The computations in the plane (E11, E22)
emphasize a good correlation between the results obtained by the presented static
method and the one obtained by a semi-analytical method using LPNLP ([HAC 01],
[PIE 75]). It also emphasizes that the collapse loads with respect to shakedown coin-
cide with the ones with respect to alternating plasticity. The computations in the plane
(Σ11,Σ22) imply two major comments: firstly, the limit analysis results (considering
one loading point in [16a] are in good correlation with the ones issued from incremen-
tal computations in SIC ([BOU 98])1; and secondly, the shakedown results obtained
by the static approach and the ones obtained by the kinematic approach are not totally
identical however they should be. This probably comes from the non differentiability
of the dissipation function at the origin, which is not treated in LANCELOT. This
point should be further investigated following the works of [CAR 99] for example.

The results of the numerical simulations on the perforated sheet are presented fig-
ure 4. Concerning the limit analysis results, there is once more a good correlation
between the proposed results and the ones obtained by the incremental method de-
veloped in SIC. The gap between our limit analysis domain and the one of [DEB 85]
emphasizes the influence of the plane stress hypothesis that is assumed in [DEB 85].

 0

 0.2
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 1

 1.2

−0.8 −0.6 −0.4 −0.2  0  0.2  0.4  0.6  0.8  1
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E − SIC/LANCELOT
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LA − SIC − Plane stress [DEB 85]

LA − SIC − Incremental computations

Figure 4. Perforated sheet computed in the plane (Σ11,Σ22) by the static approach

6. Concluding remarks

The proposed direct numerical method allows to obtain macroscopic admissible
strength domains for elastic perfectly plastic, heterogeneous and periodic materials
submitted to variable loads. The general nature of the static developments allows to
study the plastic collapse due to unlimited plastic dissipation, for any 3D unit cell.
The kinematic approach need however to be further investigated in order to take into
account the singularity of the dissipation function at the origin.

1. This limit analysis domain has also been correlated with analytical results of the literature
([MAG 04]).
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