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Abstract

The free vibration and buckling behaviours of 2D-FG porous microbeams
are explored in this paper utilizing the Quasi-3D beam deformation theory
based on the modified couple stress theory and a Differential Quadrature
Galerkin Method (DQGM) systematically, as a combination of the Differ-
ential Quadrature Method (DQM) and the semi-analytical Galerkin method,
which has used to reduce computational cost for problems in dynamics. The
governing equations are obtained using the Lagrange’s principle. The mass
and stiffness matrices are calculated using the weighting coefficient matrices
given by the differential quadrature (DQ) and Gauss-Lobatto quadrature
rules. The matrices are expressed in a similar form to that of the Differential
Quadrature Method by introducing an interpolation basis on the element
boundary of the Galerkin method. The sampling points are determined by
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the Gauss-Lobatto node method. The influence of the thickness-to-material
length scale parameter (MLSP) on the nondimensional natural frequencies
and nondimensional critical buckling loads of 2D-FG porous microbeams
are investigated, along with the effects of the boundary condition, aspect ratio
and gradient index. The results are validated with literature to establish the
accuracy of the procedure described. This work will provide a numerical basis
for the design of FG microstructures in the field of micromechanics. These
results can be applied to the engineering design of porous FG microstructures.

Keywords: DQGM, 2D-FG microbeam, porosity, couple stress, vibration
and buckling.

1 Introduction

Rapid development of new material components has become necessary
due to the expanding manufacturing demands in the aerospace, automotive
and marine industries. By enlarging the range of the advanced materials
that industrial scientists may create to satisfy the demands of mechanical
characteristics such as enhanced stiffness and low density, etc. Researchers
were attracted to the functionally graded materials (FGMs) to improve their
performance and characteristics in the required directions as compared to
conventional homogeneous materials. By adjusting the material character-
istics of FGM during production, which will withstand exposure to severe
environmental conditions, desired advanced mechanical properties may be
attained. This is why industrialists and researchers are interested in examin-
ing how FGM construction functions when considering static, buckling and
dynamic loads.

As it is known in structural engineering, most of structural components
such as beams, plates and shells are generally thick and the presence of
shear deformations is unavoidable. Researchers frequently refer to the first-
order shear deformable beam theory (FSBT), higher-order shear deformable
beam theory (HSBT), and shear and normal deformable beam theory also
known as quasi-3D theory are well-used by researchers. The FSBT is the
most straightforward model, but it requires a shear correction factor since
it does not satisfy the zero traction boundary criteria at the top and bottom
surfaces of the beam [1, 2]. As a result, the HSBT theories were proposed,
which improved the transverse shear stress distribution and consequently
eliminating the requirement for a shear correction factor (SCF) [3]. How-
ever, the normal strain or stretch effects which becomes very important and
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should be considered for thick typical FGBs, is not taken into account by
HSBT theories. As a result, quasi-3D theories [4, 5] that consider the shear
and stretching effects are generated using the assumption of higher order
variation of both axial and transverse displacements. Conventional FGBs (or
1D-FGBs) designed by varying material characteristics just in one direction
sometimes may not meet necessary requirements, such as the temperature,
hygrothermal and stress distributions in two or three directions for specific
advanced construction such aircraft vehicles and shuttles [6]. To address
this shortcoming of the traditional FGBs, researchers have recently focused
their attention on a novel type of FGB with material properties that vary
in two or three dimensions. In [7], a method based on the Element Free
Galerkin method is provided for the simulation and optimization of the vibra-
tion response of bidirectional functionally graded beams. Semi-analytical
elasticity solutions for the bending and thermal deformations of BDFGBs
with varying end conditions are obtained by employing the state-space based
differential quadrature approach in [8]. [9] investigated the flexure behaviour
of the two directions FG sandwich beams using a quasi-3D theory and
a Meshless approach. [10] explored the vibrational responses of 2D-FG
Timoshenko beams excited by a moving concentrated load based on com-
bination between finite element and Newmark method. Using the Galerkin
approach, the bending vibration of bi-directionally exponentially orthotropic
plates supported on the Pasternak elastic foundation were inspected by [11].
More recently, [12] studied the effect of variable axial loads (VALs) on
the maximum frequencies and buckling loads of bi-directional functionally
graded beam. The beam was modelled by Reddy type higher shear deforma-
tion model and Ritz procedure was used to solve the system of governing
equations related to the provided problem. [13] this paper proposes a new
nonlocal higher-order hyperbolic shear deformation beam theory (HSBT)
for the static bending and vibration of nanoscale-beams. [14] in this article,
static deflection and buckling of functionally graded (FG) nanoscale beams
made of porous material are carried out based on the nonlocal Timoshenko
beam model which captures the small scale influences. [15] forced vibration
analysis of a cracked functionally graded microbeam is investigated by using
modified couple stress theory with damping effect. [16] in this study, static
bending of an edge cracked cantilever nanobeam composed of functionally
graded material (FGM) subjected to transversal point load at the free end of
the beam is investigated based on modified couple stress theory. [17] in this
work, dynamic behaviour of functionally graded (FG) porous nano-beams is
studied based on nonlocal nth-order shear deformation theory which takes
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into the effect of shear deformation without considering shear correction
factors. [18] the bending, stability (buckling) and vibration response of nano
sized beams is presented in this study based on the Eringen’s nonlocal elas-
ticity theory in conjunction with the Euler-Bernoulli beam theory. [19] this
paper presents a new nonlocal Hyperbolic Shear Deformation Beam The-
ory (HSDBT) for the free vibration of porous Functionally Graded (FG)
nanobeams. [20] this study explores the linear and nonlinear solutions of
sigmoid functionally graded material (S-FGM) nanoplate with porous effects.
[21] this paper presents sets of explicit analytical equations that compute
the static displacements of nanobeams by adopting the nonlocal elasticity
theory of Eringen within the framework of Euler Bernoulli and Timoshenko
beam theories. [22] investigated the dynamic and buckling response of bidi-
rectional graded material beams (BDFB) with transverse cracks. [23] this
work explores the free vibratory behaviour of imperfect BD-FG microbeams
with a crack using the Quasi-3D shear and normal deformation beam concept,
MCST, and DQFEM. [24] the study aims to investigate the dynamic response
of a tapered rotor shaft system made of ceramic-metal materials using the
differential quadrature finite elements method (DQFEM). The purpose of the
investigation is to identify natural frequencies for modelling and analysis of
the structure. [25] employs the h-p hybrid finite element method to perform
dynamic analysis of a symmetrical on-board rotor on mobile dimensionally
stable supports.

Recently, materials with a porous structure have attracted the attention
of several researchers because of their special mechanical characteristics.
The presence of porosity can affect the functionally graded materials and have
a great advantage like good protection from temperature, good insulation
of sound and a very good absorption of energy and electromagnetic waves.
In the literature, one can find various researches on porous structures. Among
the first works in this field, we find the works of [26], who worked on the
impact of the presence of porosities in functionally graded materials realized
by a process of sequential infiltration in several stages. They determined that
it is important to consider the porosity effect when designing and studying the
behaviour of FGM structures. In another study, [27] investigated the nonlinear
and linear dynamic responses of FGM beams made of porous materials
and taking in consideration the fixed boundary supports. [28] presented an
analysis on the buckling of a circular shaped plate made of porous metallic
foam material. [29] made a study on the elastic buckling and the static
bending of porous beams made of metal foam via the theory of Timoshenko’s
beam. In their work [30], they also studied the non-linear free vibrations of a
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porous foam metal sandwich beam. [31] did a work on the free vibration of
thick rectangular plates made of porous metal foam using the unified Carrera
formulation. [32] examined the post-buckling behaviour of metal foam
nanobeams with imperfect geometry. [14] investigated the static deflection
and buckling of functionally graded (FG) nanoscale beams in porous material
and are made based on the nonlocal Timoshenko beam model that captures
small-scale influences. [33] investigated the stability and dynamic behaviour
of porous cell plates with uniform and non-uniform porosity variations using
first-order shear deformation theory. [34] investigated the thermomechani-
cal performance of porous FG beams subjected to various thermal loads
with two distinct porosity distributions using the improved four-variable
shear-strain beam theory. With new technological advancements, extreme
requirements based on the use of micro/nano electromechanical systems
(MEMS/NEMS) such as actuators, thin films, sensors, probes, etc. have
been raised by different industries [35]. However, experiments indicate that
the mechanical behaviour of micro/nano elements cannot be studied by
classical continuum theories (CCT), due to their limitations in capturing
the scaling effect. More reliable prediction can be obtained using higher
order continuum theories (HOCT) in which additional hardware parameters
and scales are required [36]. In order to study the size effect in micro and
nano structures, in the literature, several have proposed non-classical theories
of continuum mechanics. Among these theories is the work of [37] who
presented a high order non-local strain-gradient and elasticity theory that
take in to account high order stress gradients and the non -locality of the
deformation gradient. The theory of strain gradient elasticity was introduced
by the work of [38], hence the density of potential energy depends on the first
and second gradients of the deformation. [39] made an observation on the
effect of the size of the structure when it is reduced to the micro/nano scale,
from the experimental results, which allowed the application of the order
equilibrium conditions to strain gradient elasticity theory and the number of
independent elastic length scale parameters is reduced from five to three,
[39] suggested a Modified Stress Gradient Theory (MSGT), from which
a new upper-order measurements were used to characterise stress gradient
behaviours. This theory proposes that the strain energy density is dependent
on the symmetric strain, deviatoric stretch gradient and symmetric rotation
gradient tensors, and also the dilation gradient vector. Within the framework
of the modified deformation gradient theory, several researchers have studied
the behaviours of vibration, buckling and bending of micro-structures, such
as [40–43]. In the scientific research literature, some researchers have studied



398 A. Saimi et al.

the mechanical characteristics of microbeams. For example, [44] analysed
free vibration and static bending of microbeams with functional gradient
material using modified torque stress theory and the theory of higher order
beam. Based on theory of amended torque stress, the effect of temperature on
the free vibrations and the buckling of microbeams has been treated by [45].
Using the theory of non-local elasticity and the theory of Timoshenko’s beam,
[46] have investigated the bending of isotropic microbeams. furthermore [47]
analysed a porous microbeam model for vibration analysis based on modified
stress gradient theory and sinusoidal beam theory via the method Analytics
from Navier’s. Most of the above works have used analytical or experimental
methods in their studies. And also, some have used numerical methods such
as the generalized differential quadrature method [48]. There is also the
work of [49] who investigate free vibration analysis of functionally graded
porous microplates with shear and normal deformation via the classical finite
element method. [50] investigated the vibrational and critical circular speed
characteristics of a functionally graded (FG) rotary micro-disk using a non-
local continuum model called the modified couple stress (MCS) model. For
deriving and solving non-classical final relations, the generalized differential
quadrature (GDQ) approach and variational method are used. [51] studied the
stability of cantilevered curved microtubules in axons using various size ele-
ments and the generalized differential quadrature method to solve equations.
Recently a new combination between the hierarchical finite element method
and the generalized differential quadrature method was applied for the study
of the dynamic response of an onboard rotor [52], this method was used for
the first time in the work of [53] for the applications to vibrations and bending
of Mindlin plates with curvilinear domains. [54] presented a dynamic finite
elements procedure capable of analysing the dynamic behaviour of perforated
Timoshenko microbeams in thermal environment and subjected to moving
mass for the first time. [55] investigated the behaviour of the nonlinear flex-
ural free vibration micro beams with reinforcement of graphene platelets via
the classical finite element method coupled with trigonometric shear flexible
beam model. [56] investigated a comparative study of various formulations
with a weak form of quadrature element method. [57] used a quasi-3D
theory for free vibration analysis of FG microbeams to investigate the effect
of porosity distribution form. Based on the uneven porosity distribution of
the porous FG materials, [49] used the classical finite element approach
to investigate the size-dependent natural frequencies of functional gradient
shear (FG) and normal deformable porous square microplates. [58] examined
the size-dependent free vibration of porous nanoplates resting on a Kerr
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foundation in a hygrothermal environment. The material properties of func-
tionally graded (FG) porous nanoplates are supposed to change continuously
in the thickness direction, with three different porosity patterns, according
to the modified power-law model. [59] combined a classical finite element
method and the transverse shear-normal deformable beam theory (TSNDBT)
for the dynamics and stability analysis of bidirectional FG microbeam with
2D porosity and variable material length scale. [60] studied the vibration
behaviour of 2D-FG nano and microbeams made of porous materials, via the
generalized differential quadrature method (GDQM) based on Timoshenko
beam. [61] studied the buckling behaviour of 2D-FG nano and microbeams
made of porous materials, via the generalized differential quadrature method
(GDQM) based on Euler Bernoulli beam.

What can be seen from the works cited above and others existing in the lit-
erature is that studies on beams in graded materials are the basis of numerical
resolution methods such as finite element, isogeometric, DQM and analytical
like Ritz and Navier method with limitations. Furthermore, no research has
been conducted in the literature yet that involves the free vibration analysis
of BDFG microbeams by using a semi-numerical procedure to solve the gov-
erning equations of motions more efficiently, such as the named Differential
Quadrature Galerkin method (DQGM), which combines the efficiency of
quadrature for integration and calculation speed and the semi-analytical part
which provides the precision of the obtained results and the variable boundary
conditions. Hence, this paper is devoted to investigating the free vibration
and buckling responses of bi-directional FG porous microbeams in combi-
nation with quasi-3D beam theory by employing a robust semi-analytical
procedure named Differential Quadrature Galerkin Method (DQGM) as a
combination of the Differential Quadrature Method (DQM) and the semi-
analytical Galerkin method, which has used to reduce computational cost
for problems in engineering design. The material characteristics of the FG
beam change according to a power law along both thickness and axial axes.
The Lagrange’s principle is used to generate the governing equations. The
mass, geometric and stiffness matrices are calculated using the weighting
coefficient matrices given by the differential quadrature (DQ) and Gauss-
Lobatto quadrature rules. The matrices are expressed in a similar form to
that of the Differential Quadrature Method by introducing an interpolation
basis on the element boundary of the Galerkin method. The sampling points
are determined by the Gauss-Lobatto node method. The collected results are
compared to the existing results in the literature to check the accuracy of
the presented method. The influence of FG beam material gradient indices,
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length to thickness ratios, boundary conditions, and other characteristics on
the frequency and buckling load of BDFG beams are thoroughly examined
and analysed.

2 Formulation and Theories

2.1 Model of Porous 2D-FG Microbeam

In this work, we consider a bidirectionally porous functionally graded mate-
rial micro-beam with the following geometric properties: a length L, a width
b, and a thickness h, as shown in Figure 1.

Assume that the FG porous microbeam is composed of a mixture of metal
on the bottom surface z = −h/2, and ceramic on the top surface z = h/2.
Moreover, the material parameters are assumed to vary continuously along
the thickness and length directions. It also includes the influence of porosi-
ties in the production process of functionally graded porous materials. The
porosity distribution in the FG microbeam is assumed across the thickness
direction, according to the porosity with even distribution. The distribu-
tions of the material properties of the FG porous microbeam take the form
according to the following equations:

solide FGM: P (z) = (Pc − Pm)

(
z

h
+

1

2

)kz(x
L

)kx
+ Pm (1)

Even: P (z) = (Pc − Pm)

(
z

h
+

1

2

)kz(x
L

)kx
+ Pm − α0

2
(Pc + Pm)

(2)

Figure 1 Geometry of porous bidirectional FG microbeam.
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Where Pm, Pc, indicate materials properties such as the young’s modulus,
mass density, Poisson’s ratio, and VMLSP. The indices c and m indicate
ceramic and metal respectively. kz, kx are the power-law volume fraction
index that defines the FG material variation characterization through the
thickness and the length of the microbeam. The coefficient α0(α0 ≤ 1) is
the volume fraction of the porosity distribution to determine the porosity
void size.

2.2 Strain Gradient Elasticity Theory

According to the Modified Couple Stress Theory (MCST) of [62], the strain,
kinetic, and potential energies will be employed to develop the governing
equations of the porous microbeam:

U =
1

2

∫ L

0

∫
A
(σijεij +ms

ijχ
s
ij)dAdx (3)

Hence εij , and χs
ij represents respectively the strain tensor, and the

rotationally symmetric gradient tensor which are defined by the following
equations, a subscripted comma is used to denote the derivative with respect
to the followed variable.

εij =
1

2
(ui,j + uj,i) (4)

χs
ij =

1

2
(θi,j + θj,i) (5)

θi =
1

2
eijkuk,j (6)

Where ui, θi are the components of displacement vector, the compo-
nents of rotation vectors, the Kronecker delta and the permutation symbols,
respectively.

σij = λεmmδij + 2µεij (7)

ms
ij = 2µl22χ

s
ij (8)

σ is are the classical stress tensor, and ms is the higher order strain tensors.
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The independent parameters of symmetrical rotational gradients-related
material length scale are represented by l.

µ =
E

2(1 + ν)
(9)

λ =
Eν

(1− ν2)
(10)

Hence µ and λ are the Lame constants, and ν is the Poisson’s ratio.

2.3 Kinematics Formulation

Based on a Quasi-3D beam theory, the displacement field at any arbitrary
location on the microbeam is assumed to be stated as follows in the current
work [63]: 

u1(x, z, t) = u(x, t)− z
dwb

dx
+ f1(z)

dws

dx

u2(x, z, t) = 0

u3(x, z, t) = wb(x, t) + ws(x, t) + f2(z)wz(x, t)

(11)

According to this theory, the transverse displacement is divided into three
parts wb, ws and wz .

Where u, wb, ws and wz are respectively, the displacement in the plane
in the directions x−, the bending, shear and normal components of the
transverse displacement of the points on the neutral axis of the beam. Our
choice of functions is determined based on shear function given by Reddy
Equation (12) knowing that f2(z) = 1 + df1

dz (z):

f1(z) = −4z3

3h3
(12)

By introducing Equation (11) into Equation (4), we obtain the non-zero
deformation torsor components:

ε11 =
du

dx
− z

d2wb

dx2
+ f1

d2ws

dx2

ε33 =
df2
dz

wz

γ13 =

(
1 +

df1
dz

)
dws

dx
+ f2

dwz

dx

(13)
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By replacing Equation (13) in (7) we obtain the strain tensor:

σ11 =

(
E

1− ν2

)
ε11 +

(
Eν

1− ν2

)
ε33

σ13 =

(
E

1− ν2

)(
1− ν

2

)
γ13

σ33 =

(
Eν

1− ν2

)
ε11 +

(
E

1− ν2

)
ε33

(14)

Introducing Equation (11) into (6) gives:
θ1 = 0

θ2 =
1

2

(
−2

dwb

dx
−
(
1− df1

dz

)
dws

dx
− f2

dwz

dx

)
θ3 = 0

(15)

The components non-zero of rotationally symmetrical gradient tensor χs

are obtained by replacing Equation (15) in Equation (5):
χs
23 = χs

32 =
1

4

(
d2f1
dz2

dws

dx
− df2

dz

dwz

dx

)
χs
12 = χs

21 =
1

4

(
−2

d2wb

dx2
−
(
1− df1

dz

)
d2ws

dx2
− f2

d2wz

dx2

) (16)

Replacing Equation (16) in Equation (8) gives the non-zero higher order
constraints ms

ij such as:
ms

23 = ms
32 =

E

(1 + ν)
l2

2χs
23

ms
12 = ms

21 =
E

(1 + ν)
l2

2χs
12

(17)

The substitution of Equations (11)–(17) in Equation (3):

U =
1

2

∫ L

0

(
J1

(
du

dx

)2

− 2J2
du

dx

d2wb

dx2
+ 2J3

du

dx

d2ws

dx2

− 2J4
d2wb

dx2
d2ws

dx2
+ J5

(
d2wb

dx2

)2

+ J6

(
d2ws

dx2

)2
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+ J7wz
2 + 2J8

du

dx
wz − 2J9

d2wb

dx2
wz + 2J9

d2ws

dx2
wz

+ J11

(
dws

dx

)2

+ 2J12
dws

dx

dwz

dx
+ J13

(
dwz

dx

)2

+
1

2
J14

(
d2wb

dx2

)2

+
1

2
J15

d2wb

dx2
d2ws

dx2
+

1

8
J16

(
d2ws

dx2

)2

+
1

4
J17

d2ws

dx2
d2wz

dx2
+

1

2
J18

d2wb

dx2
d2wz

dx2
+

1

8
J19

(
d2wz

dx2

)2

+
1

8
J20

(
dws

dx

)2

+
1

8
J21

(
dwz

dx

)2

− 1

4
J22

dws

dx

dwz

dx

)
dx (18)

With:

{I1:7} = b

∫ h
2

−h
2

(
E

1− ν2

)(
1, z, f1, zf1, z

2, f1
2,

(
df2
dz

)2
)
dz

{I8:10} = b

∫ h
2

−h
2

(
Eν

1− ν2

)
df2
dz

(1, z, f1)dz

{I11:13} = b

∫ h
2

−h
2

(
E

2(1 + ν)

)((
1 +

df1
dz

)2

, f2

(
1 +

df1
dz

)
, f2

2

)
dz

{J14:22} = b

∫ h
2

−h
2

(
E

(1 + ν)
l2

(
1,

(
1− df1

dz

)
,

(
1− df1

dz

)2

,

f2

(
1− df1

dz

)
, f2, f2

2,

(
d2f1
dz2

)2

,

(
df2
dz

)2

,
d2f1
dz2

df2
dz

))
dz

(19)
The potential energy is given as follow:

V = −1

2

∫ L

0
N0

[(
dwb

dx

)2

+

(
dws

dx

)2

+ 2
dwb

dx

dws

dx

]
dx (20)
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The Kinetic Energy can be written as:

T =
1

2

∫ l

0

∫
A
ρ[u̇21 + u̇22 + u̇23]dAdx (21)

By replacing Equation (11) in Equation (21) we obtain the final form of
the kinetic energy:

T =
1

2

∫ l

0

[
J1(u̇

2 + ẇ2
b + ẇ2

s + 2ẇbẇs)− 2J2u̇
dẇb

dx
+ 2J3u̇

dẇs

dx

− 2J4
dẇb

dx

dẇs

dx
+ J5

(
dẇb

dx

)2

+ J6

(
dẇs

dx

)2

+ J7ẇ
2
z + 2J8(ẇbẇz + ẇsẇz)

]
dx (22)

Hence the mass moments of inertia are given by:

{J1, J2, J3, J4, J5, J6, J7, J8}

= b

∫ h
2

−h
2

ρ(1, z, f1, zf1, z
2, f1

2, f2
2, f2)dz (23)

2.4 Differential Quadrature Galerkin Formulation

The derivative of a function at a point is approximated by a weighted linear
sum of field variables along a line through the spot using established DQ
criteria. Any other complete basis, besides to Lagrange functions, can be
utilized to formulate DQ rules [52, 64, 65].

As a result, the order n derivative of a field variable g(x) at a discrete
location xi can be represented as:

∂ng(x, t)

∂xn

∣∣∣∣
xi

=
N∑
j=1

A
(n)
ij g(xj , t) (i = 1, 2, 3, . . . , N) (24)

With A
(n)
ij is the weighting coefficient related to the derivative of order n,

and the weighting coefficient is obtained by the following.
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If n = 1, then

A
(1)
ij =

M(xi)

(xi − xj)M(xj)
i ̸= j, i, j = 1, 2, . . . , N

A
(1)
ii = −

n∑
j=1,j ̸=i

A
(1)
ij i = 1, 2, . . . , N

(25)

With

M(xi) =

N∏
k=1,k ̸=i

(xi − xk)

M(xj) =
N∏

k=1,k ̸=i

(xj − xk)

(26)

If n > 1, the second and higher order derivatives, the weighting
coefficients are determined using the following simple recurrence relation:

A
(n)
ij = n

(
A

(1)
ij ∗A(n−1)

ii −
A

(n−1)
ij

(xi − xj)

)
i ̸= j, i, j = 1, 2, . . . , N, n > 1

A
(n)
ii = −

N∑
j=1,j ̸=i

A
(n)
ij i = 1, 2, . . . , N

(27)
The Gauss-Lobatto quadrature rules theory can be found in the mathemat-

ical literature; The Gauss-Lobatto quadrature rule with a degree of accuracy.
(2n− 3) for the function g(x) defined in [−1, 1] is:∫ 1

−1
f(x)dx =

N∑
j=1

Cjg(xj) (28)

With the weighting coefficient Cj of the Gauss-Lobatto integration is
given by:

C1 = CN =
2

N(N − 1)
, Cj =

2

N(N − 1)[PN−1(xj)]
2 (j ̸= 1, N)

(29)
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xj is the (j − 1) zero of the first order derivative of PN−1(x). We will
utilize the recursion formula as Equations (30) and (31) to solve the roots
of Legendre polynomials; it is simple to find thousands of roots this way.

PN+1(x) =
2N + 1

N + 1
xPN (x)− N

N + 1
PN−1(x) (30)

With P0(x) = 1, P1(x) = x. The n-order derivation of Legendre
polynomials can be determined by the following equation:

P
(n)
N+1(x) = xP

(n)
N (x) + (N + n)P

(n)
N (x) (31)

In order to obtain a denser population near the boundaries, the sample
points are selected according to the Gauss-Lobatto grid distribution of nodes.

xj = − cos

(
j − 1

N − 1
π

)
(32)

The Gauss-Lobatto nodes are solved with the Newton-Raphson iteration
method.

xiT+1 = xiT − F ′(xiT )
−1

F (xiT ), iT = 0, 1, . . . (33)

x = [x2, x3, . . . , xN−1]
T (34)

F (x) = [f(x2), f(x3), . . . , f(xN−1)]
T (35)

F ′(x) =

[
∂f(xj)

∂xi

]
(N−2)×(N−2)

(36)

f(xj) =

N∑
k−1, k ̸=j

1

xj − xk
j = 2, 3, . . . , N − 1 (37)

∂f(xj)

∂xi
=


−

N∑
k=1, k ̸=j

1

(xj − xk)
2 , (i = j)

1

(xj − xi)
2 , (i ̸= j)

(38)

The value of x at the iT th iteration step is denoted by k. This approach is
less affected by the starting value. As beginning values, the values given by
Equation (32) are employed.
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In this section we aim to illustrate the use of DQGM through the
microbeam.

According to the Galerkin method, the displacement functions u(x, t),
wb,s,z(x, t) are assumed respecting the boundary conditions as follows:

u[x(ξ)] =
N∑

m=1

[
Um

dXm

dt

]
ejωt

wb[x(ξ)] =

N∑
m=1

[BmXm]ejωt

ws[x(ξ)] =
N∑

m=1

[SmXm]ejωt

wz[x(ξ)] =

N∑
m=1

[ZmXm]ejωt

(39)

With Xm is the shape functions at m mode as given by Equation (40).
The number N of sampling points is equal to m maximum number of shape
modes. Where r, p, and q are index coefficients for different boundary condi-
tions BCs. The values of r, p, and q are given for each boundary condition by
Table 1.

Xm = (−1)r sin(p+1)

(
mπ

x(ξ)

L

)(
cos

(
(2m− r)iπ

x(ξ)

2L

)
− 1

)q

(40)

The local coordinates are related to the dimensionless coordinates by the
relation:

x =
Le

2
(ξ + 1) avec − 1 ≤ ξ ≤ 1 (41)

Table 1 Boundary conditions

Boundary Conditions S-S C-S C-C C-F

r 0 0 0 1

p 0 0 1 −1

q 0 1 0 1
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The displacement vectors of the element are noted as follows:

U
T
= [U1 U2 . . . UN ]ejωt

Wb
T
= [B1 B2 . . . BN ]ejωt

Ws
T
= [S1 S2 . . . SN ]ejωt

Wz
T
= [Z1 S2 . . . SN ]ejωt

(42)

So, the equations of u[x(ξ)] and wb,s,z[x(ξ)] became:
u(ξ) = [Nu]

TU

wb(ξ) = [Nw]
TW b

ws(ξ) = [Nw]
TW s

wz(ξ) = [Nw]
TW z

(43)

Therefore

[Nu]
T =

[
dX1(ξ)

dt

dX2(ξ)

dt

dX3(ξ)

dt

dX4(ξ)

dt
. . .

dXN (ξ)

dt

]
[Nw]

T = [X1(ξ) X2(ξ) X3(ξ) X4(ξ) . . . XN (ξ)]

(44)

The Gauss-Lobatto node calculation ξj , j = 1, 2, . . . , N . Defines the
following displacement vectors:

uT = [u(ξ1) u(ξ2) . . . u(ξN )]

wb
T = [wb(ξ1) wb(ξ2) . . . wb(ξN )]

ws
T = [ws(ξ1) ws(ξ2) . . . ws(ξN )]

wz
T = [wz(ξ1) wz(ξ2) . . . wz(ξN )]

(45)

By replacing the Gauss-Lobatto nodes in Equation (45), we obtain the
transfer matrices G, as follows:

uT = Gu U

wb = Gb W b

ws = Gs W s

wz = Gz W z

(46)
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Were 
Gu = [[Nu](ξ1) [Nu](ξ2) . . . [Nu](ξN )]T

Gb = [[Nw](ξ1) [Nw](ξ2) . . . [Nw](ξN )]T

Gs = [[Nw](ξ1) [Nw](ξ2) . . . [Nw](ξN )]T

Gz = [[Nw](ξ1) [Nw](ξ2) . . . [Nw](ξN )]T

(47)

All knot distribution shapes for differencing and squaring are [−1, 1].
Therefore, in order to apply them in practice, the following modifications
must be made to the differentiation and quadrature matrices,

C =
L

2
C, A

(1)
=

2

L
A(1), A

(2)
=

4

L2
A(2) (48)

Where L is the length of the beam.
Equations (24)–(48) can be used to substitute energy Equations (18), (20),

(22) and Lagrange’s equations to get the governing equations of motion.

[K]11 [K]12 [K]13 [K]14

[K]22 [K]23 [K]24
[K]33 [K]34

sym [K]44

− ω2


[M ]11 [M ]12 [M ]13 [0]

[M ]22 [M ]23 [M ]24
[M ]33 [M ]34

sym [M ]44





u
wb

ws

wz

 = [0] (49)

Component of the mass matrix

[M ]11 = C[J1Gu Gu]

[M ]12 = −C[J2Gu A
(1)

Gb]

[M ]13 = C[J3Gu A
(1)

Gs]

[M ]22 = C[J1GbGb + J5A
(1)

GbA
(1)

Gb]

[M ]23 = C[J1GbGs − J4A
(1)

GbA
(1)

Gs]

[M ]24 = C[J8GbGz]

[M ]33 = C[J1GsGs + J6A
(1)

GsA
(1)

Gs]

[M ]34 = C[J8GsGz]

[M ]44 = C[J7GzGz]

(50)
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The components of the strain matrix

[K]11 = C[I1A
(1)

GuA
(1)

Gu]

[K]12 = −C[I2A
(1)

GuA
(2)

Gb]

[K]13 = C[I3A
(1)

GuA
(2)

Gs]

[K]14 = C[I8A
(1)

GuGz]

[K]22 = C

[(
I5 +

1

2
I14

)
A

(2)
GbA

(2)
Gb

]
−N0C[A

(1)
GbA

(1)
Gb]

[K]23 = C

[(
1

4
I15 − I4

)
A

(2)
GbA

(2)
Gs

]
−N0C[A

(1)
GbA

(1)
Gs]

[K]24 = C

[
−I9A

(2)
GbGz +

1

4
I18A

(2)
GbA

(2)
Gz

]
[K]33 = C

[(
I6 +

1

8
I16

)
A

(2)
GsA

(2)
Gs

+

(
I11 +

1

8
I20

)
A

(1)
GsA

(1)
Gs

]
−N0C

[
A

(1)
GsA

(1)
Gs

]
[K]34 = C

[
I10A

(2)
GsGz +

(
I12 −

1

8
I22

)
A

(1)
GsA

(1)
Gz

+
1

8
I17A

(2)
GsA

(2)
Gz

]
[K]44 = C

[
J7GzGz +

(
J13 +

1

8
J21

)
A

(1)
GzA

(1)
Gz

+
1

8
J19A

(2)
GzA

(2)
Gz

]
(51)

3 Discussion of Results

A microbeam made of Aluminium/Silicon-carbide (Al/SiC) porous function-
ally graded material is studied in this section with MLSP based on (MCST).
The material properties for the 2D-FG porous microbeam are assumed in
the current analysis as follow. For the ceramic part the Young’s modulus
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Ec = 427 GPa, the mass density ρc = 3100 Kg/m3, Poisson’s ratio νc = 0.17
and the MLSP lc = 22.5 µm. For the metal part the Young’s modulus
Em = 70 GPa, the mass density ρc = 2702 Kg/m3, Poisson’s ratio νc = 0.3
and the MLSP lm = 15 µm.

The following nondimensional parameters are introduced to simplify the
results for the FG porous microbeam.

Dimensionless fundamental frequency (DFF) (ω)

ω =
ωL2

h

√
ρm
Em

(52)

Dimensionless critical buckling load (DCBL)

N = N0
12L2

Ecbh3
(53)

In the convergence section, we have two cases for convergence. The first
case represented by Tables 2–3, illustrates the convergence results of both
dimensionless fundamental frequency and dimensionless critical buckling
parameters for a perfect 2D-FG microbeam for different fraction volume
indices in both directions kx and kz , and different boundary conditions (SS,
CC, CF). The second case represented by Tables 4–5 illustrates the same thing
for porous 2D-FG microbeam. From the convergence results in Tables 2–5,
the dimensionless fundamental frequency parameters and the dimensionless
critical buckling parameters converges quickly with N sampling points equal
7 to 10 demonstrating the efficacy of the resolution approach used and to
ensure a good validation with the literature. In the following, we will choose
a number of sampling N = 20. Because according to the convergence results
the frequency parameters have already been converged.

Table 2 Convergence of DFF for the 2D-FG perfect microbeams with (L/h = 5,
h/l = 2, lc = lm)

DFF

SS CC CF

kx = 0 kx = 2 kx = 0 kx = 2 kx = 0 kx = 2

N kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1

5 9.4677 7.1235 6.1753 5.1450 18.9728 6.9854 5.8526 4.9328 3.6629 2.7577 1.9311 1.7581

6 9.4764 7.1303 6.1844 5.1518 19.0126 14.6040 13.8354 11.2777 3.6449 2.7442 1.9264 1.7520

7 9.4841 7.1356 6.1922 5.1573 19.8321 15.0279 13.6209 11.1841 3.6470 2.7457 1.9272 1.7528

8 9.4839 7.1354 6.1920 5.1572 20.0446 15.1925 13.8070 11.3274 3.6471 2.7458 1.9272 1.7529

9 9.4837 7.1353 6.1918 5.1570 20.4773 15.5243 14.1865 11.6195 3.6471 2.7458 1.9272 1.7529

10 9.4837 7.1353 6.1918 5.1570 20.4428 15.4977 14.1563 11.5962 3.6471 2.7458 1.9272 1.7529

20 9.4837 7.1353 6.1918 5.1570 20.4428 15.4977 14.1563 11.5962 3.6471 2.7458 1.9272 1.7529

30 9.4837 7.1353 6.1918 5.1570 20.4428 15.4977 14.1563 11.5962 3.6471 2.7458 1.9272 1.7529
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Table 3 Convergence of DCBL for the 2D-FG perfect microbeams with (L/h = 5,
h/l = 2, lc = lm)

DCBL

SS CC CF

kx = 0 kx = 2 kx = 0 kx = 2 kx = 0 kx = 2

N kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1

5 19.7494 10.9941 8.3230 5.6687 66.2980 12.3510 8.3215 5.7955 5.6575 3.0077 1.5109 1.1943

6 21.3992 11.3913 8.3251 5.6684 70.0058 37.7366 33.6399 21.3966 5.5989 2.9763 1.5027 1.1854

7 21.3644 11.3711 8.3191 5.6621 71.5022 39.8331 30.0585 19.9139 5.6049 2.9795 1.5038 1.1864

8 21.3644 11.3711 8.3189 5.6621 74.5748 40.6761 30.8755 20.4216 5.6054 2.9797 1.5039 1.1865

9 21.3644 11.3711 8.3188 5.6620 74.4801 42.4066 32.5647 21.4701 5.6054 2.9797 1.5039 1.1864

10 21.3644 11.3711 8.3188 5.6620 74.3280 42.2676 32.4289 21.3857 5.6054 2.9797 1.5039 1.1864

20 21.3644 11.3711 8.3188 5.6620 74.3280 42.2676 32.4288 21.3857 5.6054 2.9797 1.5039 1.1864

30 21.3644 11.3711 8.3188 5.6620 74.3280 42.2676 32.4288 21.3857 5.6054 2.9797 1.5039 1.1864

Table 4 Convergence of DFF for the 2D-FG porous microbeams with (α0 = 0.1, L/h = 5,
h/l = 2, lc = lm)

DFF

SS CC CF

kx = 0 kx = 2 kx = 0 kx = 2 kx = 0 kx = 2

N kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1

5 9.1735 6.6774 5.7397 4.5723 8.6878 6.6416 5.4394 4.4253 3.5424 2.5785 1.7130 1.5026

6 9.1819 6.6839 5.7488 4.5788 18.3682 13.7737 12.9366 10.1519 3.5251 2.5658 1.7100 1.4982

7 9.1895 6.6886 5.7565 4.5839 19.1594 14.0885 12.7201 10.0054 3.5271 2.5673 1.7106 1.4989

8 9.1893 6.6885 5.7563 4.5838 19.3634 14.2432 12.8980 10.1381 3.5272 2.5674 1.7106 1.4989

9 9.1891 6.6883 5.7561 4.5837 19.7788 14.5536 13.2606 10.4082 3.5272 2.5674 1.7106 1.4989

10 9.1891 6.6883 5.7561 4.5837 19.7456 14.5287 13.2317 10.3867 3.5272 2.5674 1.7106 1.4989

20 9.1891 6.6883 5.7561 4.5837 19.7456 14.5287 13.2317 10.3867 3.5272 2.5674 1.7106 1.4989

30 9.1891 6.6883 5.7561 4.5837 19.7456 14.5287 13.2317 10.3867 3.5272 2.5674 1.7106 1.4989

Table 5 Convergence of DCBL for the 2D-FG porous microbeams with (α0 = 0.1, L/h =
5, h/l = 2, lc = lm)

DCBL

SS CC CF

kx = 0 kx = 2 kx = 0 kx = 2 kx = 0 kx = 2

N kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1 kz = 0 kz = 1

5 16.7154 8.8517 6.4395 4.0023 18.1717 9.8853 6.4381 4.1677 4.7973 2.3685 1.0733 0.7838

6 18.1715 9.0011 6.4424 4.0030 55.9549 29.3196 26.8216 15.7731 4.7477 2.3438 1.0689 0.7787

7 18.1422 8.9847 6.4387 3.9990 59.0687 29.8650 23.4443 14.2340 4.7528 2.3463 1.0696 0.7793

8 18.1422 8.9847 6.4386 3.9989 60.3224 30.5182 24.0961 14.6094 4.7532 2.3465 1.0696 0.7794

9 18.1421 8.9847 6.4384 3.9988 62.8960 31.8466 25.4434 15.3848 4.7532 2.3465 1.0696 0.7794

10 18.1421 8.9847 6.4384 3.9988 62.6893 31.7392 25.3350 15.3223 4.7532 2.3465 1.0696 0.7794

20 18.1421 8.9847 6.4384 3.9988 62.6893 31.7392 25.3350 15.3223 4.7532 2.3465 1.0696 0.7794

30 18.1421 8.9847 6.4384 3.9988 62.6893 31.7392 25.3350 15.3223 4.7532 2.3465 1.0696 0.7794

In order to examine the current models, a comparative study of dimen-
sionless fundamental frequency and dimensionless critical buckling is first
carried out with the literature. For a 2D-FG porous microbeam in Tables 6–7
with lc = lm. The material properties for the 2D-FG porous microbeam are
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Table 6 Comparative investigations for various aspect ratios and gradient indices based on
the DFFs of C-C 2D-FG porous microbeams (α0 = 0.1, lm/h = 0.15, lc = lm)

L/h kx Method kz = 0 kz = 1 kz = 5 kz = 10

12 0 Present (εz ̸= 0) 23.2119 15.6230 12.9759 12.3695
[59] (FEM) 23.7744 15.8815 13.0625 12.4194
[60] (DQM) 23.4313 16.0784 13.4679 12.8762

1 Present (εz ̸= 0) 15.8261 13.3166 12.1570 11.8483
[59] (FEM) 15.7363 13.3487 12.1727 11.8631
[60] (DQM) 15.9708 13.7593 12.6711 12.1504

5 Present (εz ̸= 0) 12.3370 11.8131 11.5620 11.4759
[59] (FEM) 12.4628 11.9103 11.6172 11.5206
[60] (DQM) 12.8238 12.3764 12.1504 12.0730

18 0 Present (εz ̸= 0) 24.0368 16.1882 13.2853 12.6650
[59] (FEM) 24.2657 16.2084 13.3671 12.7092
[60] (DQM) 24.0340 16.4872 13.8296 13.2224

1 Present (εz ̸= 0) 16.1570 13.6011 12.4379 12.1214
[59] (FEM) 16.1678 13.6281 12.4439 12.1274
[60] (DQM) 16.3903 14.1134 13.0049 12.4664

5 Present (εz ̸= 0) 12.6136 12.0763 11.8235 11.7343
[59] (FEM) 12.7278 12.1625 11.8697 11.7709
[60] (DQM) 13.1532 12.6933 12.4664 12.3870

Table 7 Comparative investigations for various aspect ratios and gradient indices based on
the DCBLs of C-C 2D-FG porous microbeams (L/h = 40, h/lm = 5, lc = lm)

α0 kx Method kz = 0 kx = 0.1 kx = 0.5 kx = 2 kx = 6

0 0 Present (εz ̸= 0) 43.5651 41.5934 36.8637 32.4295 30.3817
[59] (FEM) 46.9072 44.6636 39.2169 33.9166 31.3078
[61] (DQM) 48.8871 45.1740 40.7701 35.3948 32.6857

2 Present (εz ̸= 0) 32.3204 31.6331 30.0452 28.5777 27.7830
[59] (FEM) 32.8990 32.6283 30.7448 29.1715 28.3059
[61] (DQM) 36.1409 35.5350 34.0439 32.2045 31.1965

6 Present (εz ̸= 0) 29.3430 28.9955 28.2020 27.4686 27.0524
[59] (FEM) 29.6824 29.3969 28.6935 27.9522 27.5283
[61] (DQM) 33.9679 33.5835 32.6386 31.4597 30.8114

0.1 0 Present (εz ̸= 0) 39.3220 37.3459 32.5840 28.1240 26.1475
[59] (FEM) 43.4190 41.1079 35.5980 30.2177 27.6552
[61] (DQM) 43.0365 41.3188 36.8804 31.4834 28.7908

2 Present (εz ̸= 0) 28.1184 27.4314 25.8416 24.3796 23.6016
[59] (FEM) 29.2270 28.6101 27.0997 25.5398 24.6934
[61] (DQM) 32.2281 31.6270 30.1478 28.3310 27.3355

6 Present (εz ̸= 0) 25.1569 24.8097 24.0170 23.2882 22.8783
[59] (FEM) 26.0302 25.7533 25.0675 24.3385 23.9256
[61] (DQM) 30.0860 29.7043 28.7663 27.5988 26.9563
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assumed in the current validation analysis as follow. For the ceramic part
the Young’s modulus Ec = 349.55 GPa, the mass density ρc = 3800 Kg/m3,
Poisson’s ratio νc = 0.24, and the MLSP lc = 22.5 µm. For the metal part the
Young’s modulus Em = 201.04 GPa, the mass density ρc = 8166 Kg/m3,
Poisson’s ratio νc = 0.3262, and the MLSP lm = 15 µm. The following
nondimensional parameters are introduced to simplify the results for the first
validation:

ω = ωL2

√
ρcA

EcI
, A = b

∫ h
2

−h
2

dz, I = b

∫ h
2

−h
2

z2dz (54)

For the validation of the accuracy of the results obtained in this work with
other research works in the literature, Tables 6–7 present the results provided
from the current DQGM method compared with the classical finite elements
method used in the work [59] and with the differential quadrature method
(DQM) used in the work [60] and [61].

As shown in Table 6, the DFFs of 2D-FG CC porous microbeams are
computed for various aspect ratios, kz and kx. The numerical results are
validated with those reported by [60] based on TBT via DQM and [59] based
on TSNDBT via FEM. We can notice that the results are slightly close.

By addressing the buckling issue of an imperfect CC microbeam made
of 2D-FG materials for various aspect ratios, kz , kx, and the microporosity
volume fraction coefficients as presented in Table 7, validation experiments
are still ongoing in this section.

The results presented in [61] based on the EBT formulation and that
in [59] are used for comparison with the results calculated by the present
theory via DQGM. It is found that the stiffness of the porous Euler-Bernoulli
2D-FG microbeam is significantly higher than that modelled based on the
present theory. It is well known that in EBT, a beam behaves more rigidly
than in TBT, RBT and HBT. The current tabulated results and those published
in the open literature are pretty close, with only a little gap difference,
suggesting that the resolution approach used in this investigation is valid.

Tables 8 to 11 represent the DFFs and DCBLs of 2D-FG microbeams
for various boundary conditions, volume fraction indexes in two direction,
porosity volume fraction coefficients, aspect ratios, and MLSPs. It can be
observed that the results for every example obtained via the use of VMLSP
are consistently higher than those obtained through the use of the constant
MLSP. It is noticed that the VMLSP causes the microbeam’s stiffness to
increase. Additionally, for all cases, an increase in the volume fraction
indexes, kz or kx, results in a decrease in the DFFs and DCBLs. It is to
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highlight that when the gradient index increases, the mass decreases at a
slower rate than the stiffness. Additionally, in all circumstances, the DFFs
and DCBLs are more significantly affected by the kz . Moreover, when the
porosity volume fraction coefficient rises, this effect becomes more obvious.
The DFFs and DCBLs rise as the aspect ratio increases, as predicted. These
findings might act as a baseline for further research.

Figure 2 depicts DFF variation for porous 2D-FG microbeams with
respect to various aspect ratios, thickness to MLSPs, and boundary condi-
tions. It is important to note that the significant size impact reduces when the
aspect ratio drops. The small size impact is declining, notably for Clamped-
Clamped boundary conditions, as the shear deformation effect increases. It is
noteworthy that it is evident that the maximum difference between the DFFs
was obtained by using L/h = 3 and L/h = 5. After setting the aspect ratio to
5, the slope of the curve is decreasing. We notice that the curves’ maximum
slope is attained by utilizing VMLSP and applying the Clamped-Clamped
boundary conditions method. For all circumstances, the minimal slope is
obtained using Clamped-Free boundary conditions. For all examples, the
influence of aspect ratio variation on DFFs is more evident for microbeams
with VMLSP.

It should be noted that the difference between the DFFs produced by
setting the MLSPs to 1 and 2 is minimal for SS 2D-FG porous microbeams.
It is, meanwhile, maximal for CF 2D-FG porous microbeams. For Clamped-
Free microbeams, the impact of aspect ratio change is virtually non-existent
for any thickness value to MLSP. The aspect ratio’s impact on the DFFs of
porous 2D-FG microbeams reduces as thickness to MLSP increases. Figure 3
illustrates how the DCBLs of 2D-FG porous microbeams vary with different
aspect ratios, BCs, and thickness to MLSPs. The influence of these parame-
ters on DCBLs are also explored. Moreover, it is observed that the impacts of
the factors mentioned above are nearly identical to those discovered through
analysis of free vibration behaviour. Also, because VMLSP increases the
stiffness of the porous 2D-FG microbeams, the DFFs and DCBLs acquired
using VMLSP are always more significant than those obtained using constant
MLSP in all cases.

Figures 4–5 illustrate DFFs and DCBLs Variation for porous 2D-FG
microbeams with respect to power indexes kx, kz , boundary conditions (SS,
CC), equal MLSP and VMLSP. According to results in Figures 4–5, we notice
that the increase of porosity volume fraction led to decreasing of both DFFs
and DCBLs. The decreased gap defers from one FG mixture to another. The
results of the curves according to volume fraction kx are almost close to those
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Figure 2 DFFs Variation for porous 2D-FG microbeams with respect to various aspect
ratios, thickness to MLSPs, and boundary conditions, with (kz = 1, kx = 1, α = 0.2).

according to volume fraction kz . The gap in the results of DFFs and DCBLs
between different porosity volume fraction, is less important in the VMLSP
case compared to the equal MLSP case.

Figures 6–7 illustrate DFFs Variation for porous 2D-FG microbeams with
respect to various FG volume fraction indexes kx, kz , thickness to MLSPs,
and boundary conditions. It can be observed that the influence of kx and kz
variation is considerable for the cases with VMLSP. Furthermore, when the
thickness to MLSP (else referred to as determined using lm) increases, the
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Figure 3 DCBLs Variation for porous 2D-FG microbeams with respect to various aspect
ratios, thickness to MLSPs, and boundary conditions, with (kz = 1, kx = 1, α = 0.2).

DFFs decrease in all circumstances. The small size influence clearly enhances
the rigidity of the structure, and this influence is stronger with VMLSP.

The stiffness of the structure is seen to rise not only with the influence
of the tiny size but also with the change of thickness to MLSP. It is noticed
that the stiffness of the structure increases not only with the influence of the
small size but also with the change of thickness to MLSP. It should be noted
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Figure 4 DFFs Variation for porous 2D-FG microbeams with respect to kz and kx, with
L/h = 5, h/l = 2.
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Figure 5 DCBLs Variation for porous 2D-FG microbeams with respect to kz and kx, with
L/h = 5, h/l = 2.
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Figure 6 DFFs Variation for SS porous 2D-FG microbeams with respect to volume fraction
indexes, thickness to MLSPs, with (L/h = 1, α = 0.2).

  

  

Figure 7 DFFs Variation for CC porous 2D-FG microbeams with respect to volume fraction
indexes, thickness to MLSPs, with (L/h = 1, α = 0.2).
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Figure 8 DCBLs Variation for SS porous 2D-FG microbeams with respect to volume
fraction indexes, thickness to MLSPs, with (L/h = 1, α = 0.2).

that the influence of FG volume fraction indexes on DFFs decreases as the
thickness of MLSP increases. One of the most essential things to note is that
as the thickness of the MLSP increases, the impacts of the FG volume fraction
indexes decrease.

Figures 8–9 illustrate DCBLs Variation for porous 2D-FG microbeams
with respect to various FG volume fraction indexes kx, kz , thickness to
MLSPs, and boundary conditions.

Figures 8–9 illustrate DCBLs Variation for porous 2D-FG microbeams
with respect to various FG volume fraction indexes kx, kz , thickness to
MLSPs, and boundary conditions. The effect of varying kx and kz on the
DBCLs of a microbeam with VMLSP is clearly more noticeable than the
effect of having constant MLSP. The microbeam is stiffer with VMLSP than
with the constant MLSP. It is clear that the small size effect is important for
microbeams with VMLSP. This effect, however, decreases as the gradient
index increases in all circumstances. The smaller size effect is shown to
diminish when the effective modulus of elasticity decreases. As previously
stated, the greatest DCBLs are always attained by using VMLSP.
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Figure 9 DCBLs Variation for CC porous 2D-FG microbeams with respect to volume
fraction indexes, thickness to MLSPs, with (L/h = 1, α = 0.2).

4 Conclusion

The analysis of free vibration and buckling behaviours of porous 2D-FG
microbeams are explored in this paper using the Quasi-3D beam deforma-
tion theory based on the modified couple stress theory and a Differential
Quadrature Galerkin Method (DQGM) systematically, as a combination of
the Differential Quadrature Method (DQM) and the semi analytical Galerkin
method, which has used to reduced computational cost for problems in
dynamics. The use of these method is new in the context of porous 2D-FG
microbeams. The governing equations are obtained using the Lagrange’s
principle. The mass, gyroscopic and stiffness matrices are simply calculated
using the weighting coefficient matrices given by the differential quadrature
(DQ) and Gauss-Lobatto quadrature rules. The matrices are expressed in a
similar form to that of the Differential Quadrature Method by introducing
an interpolation basis on the element boundary of the Galerkin method.
The sampling points are determined by the Gauss-Lobatto node method.
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The impacts of the thickness to material length scale parameter (MLSP)
on the nondimensional natural frequencies and nondimensional critical buck-
ling loads of 2D-FG porous microbeams are investigated, along with the
effects of the boundary condition, aspect ratio, and gradient index. To estab-
lish the accuracy of the procedure described, the results are well validated
with literature methods, and the difference between the methods is small,
which explains the efficiency of the methods. The convergence is obtained
for a low sampling point compared to others methods in literatures. Several
cases were handled, allowing us to evaluate the effects of various geometrical
parameters of the porous 2D-FG microbeam.

This work allowed us to draw the following conclusions:

• The matrices of the DQGM are somewhat similar to those of the DQH-
FEM and DQFEM. The convergence of the results can be controlled
by increasing the number of sampling points. The convergence can be
obtained quickly with small sampling points, which mean small matrix
size, and fast computation.

• The difference in results between the DQGM and literature methods
is very small. The DQGM has the benefits of a simple mathematical
concept, quick convergence speed, excellent computational accuracy,
minimal computing amount, and lower memory requirements, among
other things. According to the findings of this study.

• The rigidity of the microbeam increases as a result of VMLSP. As a
result, DFFs and DCBLs calculated using the VMLSP are always higher
than those calculated using the constant MLSP. The use of VMLSP, as
well as the small size effect, enhances the rigidity of the microbeam.
It was observed that raising the porosity volume fraction index causes
a drop in stiffness, which causes a decrease in DFFs and DCBLs. For
DFFs and DCBLs, the small size impact reduces as the aspect ratio
drops. The increase in thickness to MLSPs ratio led to decrease both
DFFs and DCBLs.
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