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ABSTRACT.The dynamical problem of a brake-like mechanical system composed of an elastic
cylindrical tube in frictional contact with a rigid and rotating cylinder is considered in view
of the interpretation of the phenomenon of brake squeals. The case of stick-slip-separation
waves is considered here by a semi-analytical analysis of the reduced equations and by f.e.m.
numerical simulations in order to complete our discussions given in [MOI 03] on stick-slip
waves.

RÉSUMÉ.La réponse dynamique d’un système de cylindres coaxiaux en contact unilatéral avec
frottement de Coulomb est discuté ici en vue des interprétations du phénomène de crisse-
ment des freins. Les caractéristiques des ondes adhérence-glissement-séparation sont discutées
par des moyens analytiques et numériques comme prolongement de nos résultats antérieurs
[MOI 03] concernant les ondes adhérence-glissement.

KEYWORDS:unilateral contact, Coulomb friction, steady sliding response, flutter instability,
stick-slip-separation waves, analytical solutions, numerical simulations.
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1. Introduction

It is well known that in the frictional contact of solids a contact point may have a
slip or stick or separation regime. The study of the propagation of these zones on con-
tact surfaces may be useful for different applications in statics and in dynamics. For
example, the problem of brake noises has been intensively discussed in the literature
[NAK 96, MOI 98]. The noise emittence is closely related to the friction-induced pe-
riodic vibrations. Different kinds of noises and vibrations can be identified in common
brakes following their frequencies. Brake squeals result from high frequency vibra-
tion (at least4000 Hz) and have a relatively pure spectrum composed of a few main
frequencies. The source of noise is attributed to the vibration of brake components
such as pad or disk and generated by friction. In this paper, an interpretation based
on the fact that brake squeal is a consequence of the flutter instability of the steady
sliding solution of the brake system is discussed. This instability of the steady sliding
response leads to complex nonlinear dynamic responses. In particular, the possibil-
ity of dynamic bifurcation to a periodic dynamic response, in the spirit of Poincaré-
Andronov-Hopf bifurcation, has been illustrated in a simple example of coaxial and
rotating cylinders in frictional contact [MOI 98, MOI 03] . A simple modelling of
a drum or a band brake leads to the study of the dynamical problem of a mechanical
system composed of an elastic cylindrical tube in frictional contact with a rigid and
rotating cylinder. This model problem has enabled us to exhibit the existence of non-
trivial periodic solutions in the form of stick-slip waves propagating on the contact
surface. The possibility of stick-slip-separation waves is discussed here in the same
spirit in order to complete our previous results.

2. The problem of coaxial cylinders

The mechanical response in plane strain of a brake-like system composed of an
elastic tube, of internal radiusR and external radiusR∗, in frictional contact on its
inner surface with a rotating rigid cylinder of radiusR + d and of angular rotation
Ω, is considered when the displacement is assumed to be homogeneous on the outer
surface of the tube. Coulomb’s law of dry friction is assumed with a constant friction
coefficientf . The mismatchd ≥ 0 is a load parameter controlling the normal contact
pressures. The governing equations of the system are

ε = (∇u)s, Div σ = γü,

σ =
ν

(1 + ν)(1− 2ν)
Tr(ε) I +

1
1 + ν

ε,

u(ξ, θ, t) = v(ξ, θ, t) = 0,

σrr(1, θ, t) = −p(θ, t), σrθ(1, θ, t) = −q(θ, t),

u ≥ δ, p ≥ 0, p(u− δ) = 0,

|q| ≤ fp, q(1− v̇)− fp|1− v̇| = 0,
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in terms of non-dimensional variablesu = ū
R , σ = σ̄

E , r = r̄
R , γ = ρR2Ω2

E , ξ =
R∗

R , δ = d
R , t = Ωt̄, u̇ = du

dt . The steady sliding solution is given byue =
δ 1

ξ2−1 ( ξ2

r −r), ve = δf 1
ξ2−1 ( ξ2

r −r)(1+ 1
ξ2(1−2ν) ), pe = δ 1

ξ2−1
1

1+ν (ξ2+ 1
1−2ν ) > 0

andqe = fpe.

The steady sliding response is unstable. The proof of this result can be discussed
under the assumption of sliding motions, in the same spirit as in the sliding of elastic
layers, cf. [ADA 95] or [MAR 95]. The governing equations are nonlinear because
of unilateral contact and friction conditions. Since closed-form dynamical solutions
cannot be generated, two complementary approaches are followed here.

3. Semi-analytical approach

An interesting simplification to the problem has been proposed and discussed in
[MOI 98, MOI 00B] when the displacement is sought in the form

u = U(θ, t)X(r), v = V (θ, t)X(r),

X(r) =
1

ξ2 − 1
(
ξ2

r
− r).

[1]

In this approximation, the following local equations are obtained from the virtual work
equation when admissible displacements are restricted to the considered expressions

Ü − bU ′′ −DV ′ + gU = P,

V̈ − aV ′′ +DU ′ + hV = Q,

P ≥ 0, U − δ ≥ 0, P (U − δ) = 0,

|Q| ≤ fP, Q(1− V̇ )− fP |1− V̇ | = 0,

[2]

where′ denotes the derivative with respect toθ and

a =
ãA

γB
, b =

b̃A

γB
,

g =
2ã+ 2(ξ2 − 1)b̃

γB
, h =

2ξ2b̃
γB

,

ã =
1− ν

(1 + ν)(1− 2ν)
, b̃ =

1
2(1 + ν)

,

A = −2ξ2 ln ξ
ξ2 − 1

+
1 + ξ2

2
> 0, B =

ξ4 ln ξ
ξ2 − 1

+
1− 3ξ2

4
> 0,

D =
aC1 − bC2

A
, C1 =

2ξ2 ln ξ
ξ2 − 1

− 1 > 0,

C2 = −2ξ2 ln ξ
ξ2 − 1

− 1 + 2ξ2 > 0.
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The coupling coefficientD between normal and tangential displacements can be pos-
itive or negative according to the values ofν andξ. Finally, only the non-dimensional
displacements on the contact surfaceU(θ, t) andV (θ, t) and the non-dimensional re-
actionsP (θ, t) andQ(θ, t) remain as unknowns in the reduced equations.

The steady sliding solution is given byUe = δ, Ve = δfg/h, P = Pe and
Qe = fPe. The steady sliding response is unstable for the reduced system. When
f > 0 andD > 0, it has been proved that a small perturbation of the steady sliding
solution will lead to an exploding wave in the sense of the implied rotation, and a
damping wave propagating in the opposite direction. Whenf > 0 andD < 0, the
exploding wave propagates in the opposite sense.

It is expected that in some particular situations, there is a dynamic bifurcation of
Poincaré-Andronov-Hopf’s type. This means that since the steady sliding response
is unstable and there is a flutter instability, the perturbed motion may eventually tend
toward a periodic response. This transition has been obtained numerically in many ex-
amples, cf. [VOL 99]. A first step to clarify this idea is to search for possible periodic
dynamic solutions. A periodic solution is sought in the form of a wave propagating at
constant velocity:

U = U(φ), V = V (φ), φ = θ − ct [3]

wherec is the non-dimensional wave velocity,U andV are periodic functions of
periodT = 2π

k . The physical velocity of the wave is thusc̄ = |c|RΩ and the associated
dynamic response is periodic of frequency|c|kΩ. The propagation occurs in the sense
of the rotation whenc > 0. According to the regime of contact, a slip wave, a stick-
slip wave, a slip-separation wave or a stick-slip-separation wave can be discussed. The
governing equations of such a wave are:

(c2 − b)U ′′ −DV ′ + gU = P,

(c2 − a)V ′′ +DU ′ + hV = Q,

P ≥ 0, U ≥ δ, P (U − δ) = 0,

|Q| ≤ fP, Q(1− V̇ )− fP |1− V̇ | = 0.

[4]

It has been proved that a slip wave does not exist and the existence of a solution
of [4] in the form of stick-slip waves has been discussed in [MOI 98, MOI 00B].
These waves propagate in the sense of the previous exploding perturbed motions, thus
opposite to the rotation of the cylinder forD < 0, with a frequency and a celerity
independent of the rotation velocityΩ. For example, for

√
E/ρ = 1000 m/s,ξ = 1.25,

f = 1, R = 1 m andΩ = 100 rad/s, the celerity is 1255 m/s and the associated frequency
is 10045 Hz. The amplitude of the wave is linearly proportional to the rotationΩ. It
also increases with the friction coefficient f and decreases with the mismatchd. Thus,
for vanishing rotations, the steady sliding solution is recovered as the limit of the
dynamic response. The stick-slip solution can no longer be available if the rotation is
strong enough and the possibility of stick-slip-separation waves must be considered.
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Figure 1.Displacements U,V, phase diagrams and reactions P,Q for a stick-slip-
separation wave, obtained in the semi-analytical approach forν = 0.3, f = 0.7, k =
4, δ = 0.001, Ω = 40rad/s

A family of stick-slip-separation waves is sought for, of periodT = 2π/k, and
composed of a separation zone forθ ∈ [0, ψ1T ], a stick zone forθ ∈ [ψ1T, ψ2T ] and
a slip zone forθ ∈ [ψ2T, T ] with 0 < ψ1 < ψ2 < 1. In the slip, stick and separation
zones, the governing equations are respectively


U = δ, −DV ′ + gδ = P,

(c2 − a)V ′′ + fDV ′ + hV = fgδ,

P ≥ 0, Q = fP, 1 + cV ′ ≥ 0.

[5]
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
U = δ, V ′ = −1/c,

P = gδ +D/c, Q = hV,

P ≥ 0, |Q| < fP.

[6]


(c2 − b)U ′′ −DV ′ + gU = 0,

(c2 − a)V ′′ +DU ′ + hV = 0,

U > δ, P = Q = 0,

[7]

The continuity ofU, V must be ensured at the boundariesθ = Tψ1, Tψ2, T while
U ′, V ′ must be continuous forθ = Tψ1, T only and may be discontinuous at the
transition from a separation regime to a stick regime. Finally, a nonlinear algebraic
system of three unknownsc, ψ1, ψ2 is obtained and can be solved numerically by
Mathematica for different given values off, k,Ω and leads to a solution if all in-
equality conditions are satisfied. For example, figure 1 gives the displacementsU, V ,
the phase diagrams and the contact reaction obtained whenν = 0.3, f = 0.7, k =
4, δ = 0.001,Ω = 40rad/s. The results areψ1 = 0.716, ψ2 = 0.784, wave celerity
1084m/s.

4. Numerical approach

The explicit scheme using Lagrange multipliers, as proposed in [CAR 91] for fric-
tional contact, is applied again as in [MOI 03]. At any time step, the velocity and ac-
celeration vectors,̇um andüm, are related to displacements and time-incrementh fol-
lowing the well knownβ-method, This prediction step is followed by a correction step
when the non-penetration condition is not satisfied. The introduced numerical damp-
ing is not a problem in the computation of the limit cycle since the energy loss of the
system is compensed continuously by the rotating cylinder. However, this damping
accelerates artificially the convergence rate to the limit response. It has been checked
that the convergence rate is practically the same for0.6 ≤ β2 ≤ 0.9 and slower for
0.5 ≤ β2 ≤ 0.6. On the other hand, the same limit cycles have been obtained with
a smaller meshsize. Numerical simulations with various initial data have been per-
formed in order to study the transition to a limit regime which can be a stick-slip or
stick-slip-separation wave. It has been found that the limit regime may be different
for two different initial conditions. The transition from a given initial state to a limit
cyclic response is obtained very quickly, after only about 0.1 sec.

It is checked that a stick-slip-separation wave is effectively obtained when the
mismatch is small enough or when the friction is high enough. For example, when
Ω = 50 rad/s,δ = 0.0004 and f = 0.7, the limit cycle results as a stick-slip-separation
wave. Figure 3 gives the numerical results on the radial displacementU for two mesh
sizes using respectively 36 and 132 nodal points on the contact surface instead of a
stick-slip wave ifΩ = 1rad/s, cf. figure 2.
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Figure 2. A stick-slip wave in mode 4, obtained whenΩ = 1rad/s, δ = 0.0004 and
f = 0.3. The iso-value map of the radial displacement is shown with two mesh sizes
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Figure 3. A stick-slip-separation wave in mode 4, obtained whenΩ = 50rad/s, δ =
0.0004 andf = 0.7. The iso-value map of the radial displacement is shown with two
mesh sizes
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Figure 4.Phase diagrams of the radial displacement obtained by the semi-analytical
and the numerical approches, whenΩ = 100rad/s and f = 0.3 at different load
levelsδ = 0.0005, 0.001, 0.005 (green, black, red lines respectively)
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Figure 5. Influence of the rotationΩ = 32, 380, 1000rad/s (black, blue, red lines)
whenδ = 0.001 andf = 0.9
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Figure 6. Influence of the mode number k=2,3,4 (black, blue, green lines) whenΩ =
100rad/s, δ = 0.0004 andf = 0.7
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The numerical results can be compared to the semi-analytical solution as shown
in figure 4 for the phase diagrams of the radial displacement at different values ofδ.
The influence of the rotation velocity and of the mode number is shown respectively
in figures 5 and 6. The reader can also refer to [OUE 04] for more details on the
discussions.

5. Conclusion

This discussion emphasizes the fact that the sliding of solids cannot be a smooth
motion when the solids are purely elastic without any surface or volume damping
mechanism such as the presence of viscosity. In statics, it is well known that the
sliding of rubber leads to the formation and the propagation of Schallamach waves,
cf. [SCH 71]. In dynamics of solids with frictional contact, our study explores in the
same spirit the existence and propagation of stick-slip or stick-slip-separation waves.

The dynamic bifurcation from the steady sliding solution to a dynamic periodic
response in the spirit of Hopf bifurcation, as illustrated in this discussion, gives an
interesting direction of research for the study of noise emittence problems in various
mechanical processes involving frictional contact. The brake squeal problem of car or
train brakes has been interpreted in this spirit, cf. [MOI 98, MOI 00B], in particular
it has been observed that the flutter modes are very closed to the measured squeal
frequencies.

6. Bibliography

[ADA 95] A DAMS G., “Self-excited oscillations of two elastic half-spaces sliding
with a constant coefficient of friction”,J. Appl. Mech., vol. 62, 1995, p. 867-872.

[CAR 91] CARPENTER N., TAYLOR R., KATONA M., “Lagrange constraints for
transient finite element surface contact”,Int. J. Num. Meth. Engng., vol. 32, 1991,
p. 103-128.

[CRO 91] CROLLA D., LANG A., “Brake noise and vibration: state of art”,Vehicle
Tribologie, vol. 18, 1991, p. 165-174.

[JOH 85] JOHNSON K., Contact mechanics, Cambridge University Press, Cam-
bridge, 1985.

[MAR 95] M ARTINS J., GUIMARAES J., FARIA L., “Dynamic surface solutions in
linear elasticity and viscoelasticity with frictional boundary conditions”,J. Vibra-
tion and Acoustics, vol. 117, 1995, p. 445-451.

[MAR 99] M ARTINS J., BARBARIN S., RAOUS M., PINTO DA COSTA A., “Dy-
namic stability of finite dimensional linear elastic system with unilateral contact
and Coulomb’s friction”,Comp. Meth. Appl. Mech. Engng., vol. 177, 1999, p. 298-
328.



626 REEF – 13/2004. Giens 2003

[MOI 98] M OIROT F., “Etude de la stabilité d’un équilibre en présence du frotte-
ment de Coulomb. Application au crissement des freins à disque”, Thèse, Ecole
Polytechnique, Paris, 1998.

[MOI 00A] M OIROT F., NGUYEN Q.-S., “Brake squeal: a problem of flutter insta-
bility of the steady sliding solution ?”,Arch. Mech., vol. 52, 2000, p. 645-662.

[MOI 00B] M OIROT F., NGUYEN Q.-S., “An example of stick-slip waves”,C. R.
Mecanique, vol. 328, 2000, p. 663-669.

[MOI 03] M OIROT F., NGUYEN Q.-S., OUESLATI A., “An example of stick-slip
and stick-slip-separation waves”,Eur. J. Mechanics A/Solids, vol. 22, 2003,
p. 107-118.

[NAK 96] N AKAI M., YOKOI M., “Band brake squeal”,J. Vibrations and Acoustics,
vol. 118, 1996, p. 187-197.

[NGU 00] NGUYEN Q.-S.,Stability and Nonlinear Solid Mechanics, Wiley, Chich-
ester, 2000.

[OAN 97] OANCEA V., LAURSENT., “Stability analysis of state-dependent dynamic
frictional sliding”, Int. J. Nonlinear Mech., vol. 32, 1997, p. 837-853.

[OUE 02] OUESLATI A., BAILLET L., NGUYEN Q.-S., “Transition vers une onde
glissement-adhérence-décollement sous contact frottant de Coulomb”,Journées
Européennes sur les freins, Paris, 2002, Hermès, p. 155-162.

[OUE 04] OUESLATI A., “Analyse des ondes de surface sous contact unilatéral et
frottement de Coulomb”, Thèse, Ecole Polytechnique, Paris, 2004.

[SCH 71] SCHALLAMACH A., “How does rubber slide ?”,Wear, vol. 17, 1971,
p. 301-312.

[VOL 99] VOLA D., RAOUS M., MARTINS J., “Friction and instability of steady
sliding squeal of a glass/rubber contact”,Int. J. Num. Meth. Engng., vol. 45, 1999,
p. 301-314.

[ZHA 96] ZHARII O., “Frictional contact between the surface wave and a rigid
strip”, J. Appl. Mech., vol. 63, 1996, p. 15-20.


