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ABSTRACT.We present a general formulation for analysis of fluid-structure interaction problems
using the particle finite element method (PFEM). The key feature of the PFEM is the use of
a Lagrangian description to model the motion of nodes (particles) in both the fluid and the
structure domains. Nodes are thus viewed as particles which can freely move and even separate
from the main analysis domain representing, for instance, the effect of water drops. A mesh
connects the nodes defining the discretized domain where the governing equations, expressed in
an integral from, are solved as in the standard FEM. The necessary stabilization for dealing with
the incompressibility condition in the fluid is introduced via the finite calculus (FIC) method. A
fractional step scheme for the transient coupled fluid-structure solution is described. Examples
of application of the PFEM method to solve a number of fluid-structure interaction problems
involving large motions of the free surface and splashing of waves are presented.

RÉSUMÉ.On présente une formulation générale pour l’analyse de problèmes d’interaction fluide-
structure fondée sur la méthode des éléments finis particulaires (MEFP). L’aspect essentiel de
la MEFP est la représentation lagrangienne du mouvement des noeuds dans les domaines fluide
et structure. Les noeuds sont ainsi vus comme des particules qui peuvent se mouvoir librement et
même se séparer du domaine principal d’analyse modélisation de gouttes d’eau). Un maillage
connecte les noeuds définissant le domaine discrétisé sur lequel les équations de champ, écrites
sous forme intégrale, sont résolues comme avec la méthode des éléments finis classique. La né-
cessaire stabilisation permettant la prise en compte de la condition d’incompressibilité dans le
fluide est introduite via l’analyse finie. Un schéma à pas fractionnaire pour le problème d’évolu-
tion fluide-structure couplé est décrit. Des exemples d’application de la MEFP à des problèmes
d’interaction avec grands mouvements de surface libre et aspersion par vagues sont présentés.
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1. Introduction

There is an increasing interest in the development of robust and efficient numerical
methods for analysis of engineering problems involving the interaction of fluids and
structures accounting for large motions of the fluid free surface and the existance
of fully or partially submerged bodies. Examples of this kind are common in ship
hydrodynamics, off-shore structures, spillways in dams, free surface channel flows,
liquid containers, stirring reactors, mould filling processes, etc.

The movement of solids in fluids is usually analyzed with the finite element method
(FEM) [ZIE 00] using the so called arbitrary Lagrangian-Eulerian (ALE) formulation
[DON 03]. In the ALE approach the movement of the fluid particles is decoupled from
that of the mesh nodes. Hence the relative velocity between mesh nodes and particles
is used as the convective velocity in the momentum equations.

Typical difficulties of fluid-structure interaction (FSI) analysis using the FEM with
both the Eulerian and ALE formulation include the treatment of the convective terms
and the incompressibility constraint in the fluid equations, the modelling and tracking
of the free surface in the fluid, the transfer of information between the fluid and solid
domains via the contact interfaces, the modelling of wave splashing, the possibility
to deal with large rigid body motions of the structure within the fluid domain, the
efficient updating of the finite element meshes for both the structure and the fluid, etc.

Most of these problems disappear if aLagrangian descriptionis used to formulate
the governing equations of both the solid and the fluid domain. In the Lagrangian
formulation the motion of the individual particles is followed and, consequently, nodes
in a finite element mesh can be viewed as moving “particles”. Hence, the motion of
the mesh discretizing the total domain (including both the fluid and solid parts) is
followed during the transient solution.

In this paper we present a particular class of Lagrangian formulation to solve prob-
lems involving the interaction between fluids and solids in a unified manner. The
method, called theparticle finite element method(PFEM), treats the mesh nodes in
the fluid and solid domains as particles which can freely move an even separate from
the main fluid domain representing, for instance, the effect of water drops. A finite
element mesh connects the nodes defining the discretized domain where the governing
equations are solved in the standard FEM fashion. The PFEM is the natural evolution
of recent work of the authors for the solution of FSI problems using Lagrangian finite
element and meshless methods [AUB 04, IDE 03, IDE 03B, IDE 04, ONA 03, ONA 04B].

An advantage of the Lagrangian formulation is that the convective terms do not
enter in the fluid equations. The difficulty is however transferred to the problem of
adequately (and efficiently) moving the mesh nodes. Indeed for large mesh motions
remeshing may be a frequent necessity along the time solution. We use an innovative
mesh regeneration procedure blending elements of different shapes using an extended
Delaunay tesselation [IDE 03, IDE 03C].

The layout of the paper is the following. In the next section the basic ideas of
the PFEM are outlined. Next the basic equation for an incompressible flow using a
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Lagrangian description and a finite calculus (FIC) formulation are presented. Then a
fractional step scheme for the transient solution via standard finite element procedures
is described. Details of the treatment of the coupled FSI problem are given. The
procedures for mesh generation and for identification of the free surface nodes are
briefly outlined. Finally, the efficiency of theparticle finite element method(PFEM)
is shown in its application to a number of FSI problems involving large flow motions,
surface waves, moving bodies. etc.

2. Rationale of the Particle Finite Element Method

In the PFEM approach presented here, both the fluid and the solid domains are
modelled using anupdated Lagrangian formulation. The finite element method (FEM)
is used to solve the continuum equations in both domains. Hence a mesh discretizing
these domains must be generated in order to solve the governing equations for both
the fluid and solid problems in the standard FEM fashion. We note once more that
the nodes discretizing the fluid and solid domains can be viewed as material particles
which motion is tracked during the transient solution.

The quality of the numerical solution obviously depends on the discretization cho-
sen as in the standard FEM. Adaptive mesh refinement techniques can be used to
improve the solution in zones where large motions of the fluid or the structure occur.

The Lagrangian formulation allows to track the motion of each single fluid particle
(a node). This is useful to model the separation of water particles from the main fluid
domain and to follow their subsequent motion as individual particles with an initial
velocity and subject to gravity forces.

In summary, a typical solution with the PFEM involves the following steps.

1) Discretize the fluid and solid domains with a finite element mesh. For the mesh
generation process we use and extended Delaunay technique (see Section 8) starting
with an initial collection of points which then become the mesh nodes.

2) Identify the external boundaries for both the fluid and solid domains. This is an
essential step as some boundaries (such as the free surface in fluids) may be severely
distorted during the solution process including separation and re-entring of nodes. The
Alpha Shape method [EDE 99] is used for the boundary definition (see Section 9).

3) Solve the coupled Lagrangian equations of motion for the fluid and the solid
domains. Compute the relevant state variables in both domains at each time step:
velocities, pressure and viscous stresses in the fluid and displacements, stresses and
strains in the solid.

4) Move the mesh nodes to a new position in terms of the time increment size.
This step is typically a consequence of the solution process of step 3.

5) Generate a new mesh if needed. The mesh regeneration process can take place
after a prescribed number of time steps or when the actual mesh has suffered se-
vere distosions due to the Lagrangian motion. In our work we use an innovative
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mesh generation scheme based on the extended Delaunay tesselation (Section 7)
[I DE 03, IDE 03B, IDE 04].

6) Go back to step 2 and repeat the solution process for the next time step.

Details of the stabilized Lagrangian FEM for the solution of the fluid equations using
a FIC formulation are presented in the next section. The fractional scheme chosen for
the transient coupled FSI solution using the FEM and details of the boundary recog-
nition method and the mesh regeneration process are given in subsequent sections.
Finally some examples of application of the PFEM are given.

3. Lagrangian equations for an incompressible fluid. FIC formulation

The standard infinitesimal equations for a viscous incompressible fluid can be writ-
ten in an updated Lagrangian frame as [ONA 98, ZIE 00]

Momentum
rmi = 0 in Ω [1]

Mass balance
rd = 0 in Ω [2]

where

rmi
= ρ

∂vi

∂t
+

∂σij

∂xj
− bi [3]

rd =
∂vi

∂xi
i, j = 1, nd [4]

Abovend is the number of space dimensions,vi is the velocity along the ith global
axis,ρ is the (constant) density of the fluid,bi are the body forces andσij are the total
stresses given by

σij = sij − δijp [5]

wherep is the absolute pressure (defined positive in compression). As usual the devi-
atoric stressessij are related to the viscosity by the standard expression

sij = 2µ

(
ε̇ij − δij

1
3

∂vk

∂xk

)
[6]

whereδij is the Kronecker delta and the strain ratesε̇ij are

ε̇ij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
[7]

In our work we will solve amodified set of governingequations derived using a
finite calculus (FIC) formulation. The FIC governing equations are [ONA 98, ONA 00,
ONA 01]
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Momentum

rmi
− 1

2
hj

∂rmi

∂xj
= 0 [8]

Mass balance

rd −
1
2
hj

∂rd

∂xj
= 0 [9]

The problem definition is completed with the following boundary conditions

njσij − ti +
1
2
hjnjrmi

= 0 onΓt [10a]

vj − vp
j = 0 onΓv [10b]

and the initial condition isvj = v0
j for t = t0. The standard sum convention for

repeated indexes is assumed unless otherwise specified.

In [10a] and [10b]ti andvp
j are surface tractions and prescribed velocities on the

boundariesΓt andΓv, respectively,nj are the components of the unit normal vector
to the boundary.

Eqs. [8], [9] and [10a] are obtained by invoking the standard balance laws in fluid
mechanics (balance of mass, momentum and equilibrium of surface tractions) in a
domain of finite size.

Theh′is in above equations arecharacteristic lengthsof the domain where balance
is enforced. Details of the derivation of [7]–[10] can be found in [ONA 98, ONA 00,
ONA 01, ONA 04B].

Eqs. [8]–[10] are the starting point for deriving stabilized finite element methods
for solving the incompressible flow equations in a Lagrangian frame of reference us-
ing equal order interpolation for the velocity and pressure variables [IDE 02, IDE 03,
IDE 03B, IDE 04, ONA 03, AUB 04]. Application of the FIC formulation to finite ele-
ment and meshless analysis of fluid flow problems can be found in [GAR 03, ONA 00,
ONA 03, ONA 04, ONA 00B, ONA 04C, ONA 01, ONA 98B].

Transformation of the mass balance equation. Integral governing equations.The
underlined term in [9] can be expressed in terms of the momentum equations. The
new expression for the mass balance equation is [ONA 04, ONA 04C]

rd −
nd∑
i=1

τi
∂rmi

∂xi
= 0 [11]

with
τi = 3h2

i /8µ [12]

Theτi’s in [11], when scaled by the density, are termedintrinsic time parameters.
Similar values forτi (usuallyτi = τ is taken) are used in other works from ad-hoc ex-
tensions of the 1D advective-diffusive problem [COD 98, COD 00, COD 02, COD 02B,
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CRU 97, CRU 99, DON 03, FRA 92, HAN 00, HUG 86, HUG 89, HUG 94, ONA 98,
ONA 00, SHE 96, STO 04, TEZ 92, ZIE 00].

At this stage it is not longer necessary to retain the stabilization terms in the mo-
mentum equations. These terms are critical in Eulerian formulations to stabilize the
numerical solution for high values of the convective terms. In the Lagrangian formula-
tion the convective terms dissapear from the momentum equations and the FIC terms
in these equations are just useful to derive the form of the mass balance equation given
by [11] and can be disregarded there onwards. Consistenly, the stabilization terms are
also neglected in the Neuman boundary conditions [10a].

The weighted residual expression of the final form of the momentum and mass
balance equations can be written as

∫
Ω

δvirmidΩ +
∫

Γi

δvi(njσij − ti)dΓ = 0 [13]

∫
Ω

q
[
rd −

nd∑
i=1

τi
∂rmi

∂xi

]
dΩ = 0 [14]

The computation of the residual terms in [14] can be simplified if we introduce now
the pressure gradient projectionsπi, defined as

πi = rmi −
∂p

∂xi
[15]

We express nowrmi
in [14] in terms of theπi which then become additional variables.

The system of integral equations is therefore augmented in the necessary number of
equations by imposing that the residualsrmi

vanish within the analysis domain (in an
average sense). This gives the final system of governing equation (after substitution of
[5] and [6] into [3] and integration by parts of the deviatoric stresses and the pressure
terms) as:

∫
Ω

[
δviρ

∂vi

∂t
+ δε̇ij(sij − δijp)

]
dΩ−

∫
Ω

δvibidΩ−
∫

Γt

δvitidΓ = 0 [16]

∫
Ω

q
∂vi

∂xi
dΩ +

∫
Ω

nd∑
i=1

τi
∂q

∂xi

(
∂p

∂xi
+ πi

)
dΩ = 0 [17]

∫
Ω

δπiτi

(
∂p

∂xi
+ πi

)
dΩ = 0 no sum ini [18]

with i, j, k = 1, nd. In Eqs. [18]δπi are appropriate weighting functions and theτi

weights are introduced for symmetry reasons.
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4. Finite element discretization

We chooseC◦ continuous interpolations of the velocities, the pressure and the
pressure gradient projectionsπi over each element withn nodes. The interpolations
are written as

vi =
n∑

j=1

Nj v̄
j
i , p =

n∑
j=1

Nj p̄
j , πi =

n∑
j=1

Nj π̄
j
i [19]

where (̄·)j
denotes nodal variables andNj are the shape functions [ZIE00]. More

details of the mesh discretization process and the choice of shape functions are given
in Section 8.

Substituting the approximations [19] into [16]–[18] and choosing a Galerking form
with δvi = q = δπi = Ni leads to the following system of discretized equations

M ˙̄v + ḡ − f = 0 [20a]

GT v̄ + Lp̄ + Qπ̄ππ = 0 [20b]

QT p̄ + M̂π̄ππ = 0 [20c]

where

ḡ =
∫

Ω

BT [s−mp]dΩ [21]

is the internal nodal force vector derived from the momentum equations,s is the devi-
atoric stress vector,B is the strain rate matrix andm = [1, 1, 0]T for 2D problems.

This vector and the rest of the matrices and vectors in Eqs. [20] are assembled
from the element contributions given by (for 2D problems)

Mij =
∫

Ωe

ρNiNjdΩ , ḡi =
∫

Ω

BT
i [s−mp]dΩ , Bi =


∂Ni

∂x1
0

0 ∂Ni

∂x2

∂Ni

∂x2

∂Ni

∂x1


Lij =

∫
Ωe

τk
∂Ni

∂xk

∂Nj

∂xk
dΩ , Q = [Q1,Q2] , Qk

ij =
∫

Ωe

τk
∂Ni

∂xk
NjdΩ

M̂ =
[
M̂1 0
0 M̂2

]
, M̂k

ij =
∫

Ωe

τkNiNjdΩ , Gij =
∫

Ωe

BT
i mNjdΩ

fi =
∫

Ωe

NibdΩ +
∫

Γe

NitdΓ , b = [b1, b2]T , t = [t1, t2]T

[22]
with i, j = 1, n andk, l = 1, 2. As usual the deviatoric stressessij are related to the
strain rateṡεij by [6].

It can be shown that the system of Eqs. [20] leads to a stabilized numerical solu-
tion. For details see [ONA03].



644 REEF – 13/2004. Giens 2003

5. Fractional step method for fluid-structure interaction analysis

A simple and effective iterative algorithm can be obtained by splitting the pressure
from the momentum equations as follows

v̄∗ = v̄n −∆tM−1[gn+θ1,j − fn+1] [23a]

v̄n+1,j = v̄∗ + ∆tM−1Gδp̄ [23b]

In Eq. [23a]

gn+θ1,j =
∫

Ωn+θ1,j

BT [sn+θ1,j − αmT pn]dΩ

andα is a variable taking values equal to zero or one. Forα = 0, δp ≡ pn+1,j and
for α = 1, δp = ∆p. Note that in both cases the sum of [23a] and [23b] gives the
time discretization of the momentum equations with the pressures computed attn+1.
In above equations and in the following superindexj denotes the iteration number
within each time step.

The value of̄vn+1,j from [23b] is substituted now into Eq.[20b] to give

GT v̄∗ + ∆tGT M−1Gδp̄ + Lp̄n+1,j + Qπ̄ππn+θ2,j = 0 [24a]

The productGT M−1G can be approximated by a laplacian matrix, i.e.

GT M−1G = L̂ with L̂ij '
∫

Ωe

1
ρ
∇∇∇T Ni∇∇∇Nj dΩ [24b]

In above equationsθ1 andθ2 are algorithmic parameters ranging between zero and
one. A discussion of the choice ofθ1 andθ2 is given below.

A semi-implicit algorithm can be derived as follows. For each iteration:

Step 1 Computev∗ from Eq.[23a] withM = Md where subscriptd denotes hereon-
wards a diagonal matrix.

Step 2 Computeδp̄ andpn+1 from Eq.[24a] as

δp̄ = −(L + ∆tL̂)−1[GT v̄∗ + Qπ̄ππn+θ2,j + αLp̄n] [25a]

pn+1,j = pn + δp [25b]

Step 3 Computev̄n+1,j from Eq.[23b] withM = Md

Step 4 Computēπππn+1,j from Eq.[20c] as

π̄ππn+1,j = −M̂−1
d QT p̄n+1,j [26]
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Step 5 Solve for the movement of the structure due to the fluid flow forces.

This implies solving the dynamic equations of motion for the structure written
as

Msd̈ + Ksd = fext [27]

whered andd̈ are respectively the displacement and acceleration vectors of the
nodes discretizing the structure,Ms andKs are the mass and stiffness matrices
of the structure andfext is the vector of external nodal forces accounting for the
fluid flow forces induced by the pressure and the viscous stresses. Clearly the
main driving forces for the motion of the structure is the fluid pressure which
acts as normal a surface traction on the structure. Indeed [27] can be augmented
with an appropriate damping term. The form of all the relevant matrices and
vectors can be found in standard books on FEM for structural analysis [ZIE00].

Solution of [27] in time can be performed using implicit or fully explicit time
integration algorithms. In both cases the values of the nodal displacements, ve-
locities and accelerations of the structure attn+1 are found for thejth iteration.

Step 6 Update the mesh nodes in a Lagrangian manner as

xn+1,j
i = xn

i + v̄n+1,j
i ∆t [28]

Step 7 Generate a new mesh. This is performed using the method described in Sec-
tion 6.

Step 8 Check the convergence of the velocity and pressure fields in the fluid and the
displacements strains and stresses in the structure. If convergence is achieved
move to the next time step, otherwise return to step 1 for the next iteration with
j + 1 → j.

Despite the motion of the nodes within the iterative process, in general there is no
need to regenerate the mesh at each iteration. A new mesh is typically generated after
a prescribed number of converged time steps, or when the nodal displacements induce
significant geometrical distorsions in some elements.In the examples presented in the
paper the mesh in the fluid domain has been regenerated at each time step.

The boundary conditions are applied as follows. No condition is applied in the
computation of the fractional velocitiesv∗ in [23a]. The prescribed velocities at the
boundary are applied when solving forv̄n+1,j in step 3. The prescribed pressures
at the boundary are imposed by making zero the pressure increments at the relevant
boundary nodes and makinḡpn equal to the prescribed pressure values. Details of
the treatment of the contact conditions at the solid-fluid interface are given in the next
Section [IDE04].

Note that solution of steps 1, 3 and 4 does not require the solution of a system of
equations as a diagonal form is chosen forM andM̂. The whole solution process
within a time step can be linearized by choosingθ1 = θ2 = 0 and now the iteration
loop is no longer necessary. The implicit solution forθ1 = θ2 = 1 is however very
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effective as larger time steps can be used. This requires some iterations within steps
1–8 until converged values for the fluid and solid variables and the new position of the
mesh nodes at timen + 1 are found.

In the examples presented in the paper the time increment size has been chosen as

∆t = min(∆ti) with ∆ti =
|v|

hmin
i

[29]

wherehmin
i is the distance between nodei and the closest node in the mesh.

REMARK 1. – Although not explicitely mentioned forθ1 = 1 all matrices and vectors
in [26]–[28] are computed at the final configurationΩn+1,j . This means that the
integration domain changes for each iteration and, hence, all the terms involving space
derivatives must be updated at each iteration. This problem dissapears ifΩn is taken
as the reference configuration (θ1 = 0) as this remains fixed during the iterations. The
penalty to pay in this case, however, is the evaluation of the Jacobian matrix at each
iteration [AUB04].

6. Treatment of contact between fluid and solid interfaces

The condition of prescribed velocities or pressures at the solid boundaries in the
PFEM are applied in strong form to the boundary nodes. These nodes might belong to
fixed external boundaries or to moving boundaries linked to the interacting solids. In
some problems it is useful to define a layer of nodes adjacent to the external boundary
in the fluid where the condition of prescribed velocity is imposed. These nodes typ-
ically remain fixed during the solution process. Contact between water particles and
the solid boundaries is accounted for by the incompressibility condition whichnatu-
rally prevents the water nodes to penetrate into the solid boundaries. This simple way
to treat the water-wall contact is another attractive feature of the PFEM formulation.

7. Generation of a New Mesh

One of the key points for the success of the Lagrangian flow formulation described
here is the fast regeneration of a mesh at every time step on the basis of the position
of the nodes in the space domain. In our work the mesh is generated using the so
called extended Delaunay tesselation (EDT) presented in [IDE03, IDE03C, IDE04].
The EDT allows one to generate non standard meshes combining elements of arbitrary
polyhedrical shapes (triangles, quadrilaterals and other polygons in 2D and tetrahedra,
hexahedra and arbitrary polyhedra in 3D) in a computing time of ordern, wheren is
the total number of nodes in the mesh. TheC◦ continuous shape functions of the ele-
ments can be simply obtained using the so called meshless finite element interpolation
(MFEM) [I DE03, IDE03C, IDE04].
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8. Identification of boundary surfaces

One of the main tasks in the PFEM is the correct definition of the boundary do-
main. Sometimes, boundary nodes are explicitly identified differently from internal
nodes. In other cases, the total set of nodes is the only information available and the
algorithm must recognize the boundary nodes.

Considering that the nodes follow a variableh(x) distribution, whereh(x) is the
minimum distance between two nodes, the following criterion has been used.All
nodes on an empty sphere with a radius greater thanαh, are considered as boundary
nodes. In practice,α is a parameter close to, but greater than one. This criterion
coincides with the Alpha Shape concept [EDE99].

Once a decision has been made concerning which nodes are on the boundaries, the
boundary surface must be defined. In this work, the boundary surface is defined by
all the polyhedral surfaces (or polygons in 2D) having all their nodes on the boundary
and belonging to just one polyhedron.

The method described also allows to identify isolated fluid particles outside the
main fluid domain. These particles are treated as part of the external boundary where
the pressure is fixed to the atmospheric value.

Figure 1 shows a schematic example of the process to identify individual particles
(or a group of particles) starting from a given collection of nodes.

Figure 1. Identification of individual particles (or a group of particles) starting from
a given collection of nodes

9. Modelling a rigid structure as a viscous fluid

A simple and yet effective way to analyze the rigid motion of solid bodies in fluids
with the Lagrangian flow description is to model the solid as a fluid with a viscosity
much higher than that of the surrounding fluid. The fractional step scheme of Section
6 can be readily applied skipping now step 5 and solving now for the simultaneous



648 REEF – 13/2004. Giens 2003

motion of both fluid domains (the actual fluid and the fictitious fluid modelling the
quasi-rigid body). Examples of this type are presented in Sections 10.3 and 10.4.

Indeed this approach can be further extended to account for the elastic deformation
of the solid treated now as a visco-elastic fluid. This will however introduce some
complexity in the formulation and the full coupled FSI scheme described in Section 5
is preferable.

10. Examples

The examples chosen show the applicability of the PFEM to solve problems in-
volving large fluid motions and FSI situations. The fractional step algorithm of Sec-
tion 5 withθ2 = 1 andα = 1 has been used in all cases.

In examples 11.1–11.7 a value ofθ1 = 1 has been chosen. This basically means
that the final configurationΩn+1,j has been taken as the reference configuration at
each iteration. In example 11.8θ1 = 0 has been selected and, hence, the initial
configurationΩn has been taken as a fixed reference configuration for all the iterations
within a time step.

10.1. Collapse of a water column

The first problem solved to show the potential of the PFEM is the study of the
collapse of a water column. This problem was solved in [KOS96] both experimen-
tally and numerically. It has became a classical example to validate the Lagrangian
formulation for fluid flows. The water is initially kept within a rectangular container
including a removable vertical board. A double layer of nodes in the solid walls is
used in order to prevent water nodes from exiting the analysis domain. The boundary
conditions impose zero velocity at the wall nodes and zero (atmospheric) pressure at
the free surface. Figures 2b and 2c show the mesh discretizing the water domain and
the solid walls at two different times of the analysis. The method allows one to follow
the large motion of the water particles including separation of some water drops. The
collapse starts at time t = 0, when the board is removed. Viscosity and surface tension
are neglected in the analysis. Figures 2 and 3 show the point positions at different time
steps. The dark points represent the free-surface detected with the algorithm described
in Section 8. The internal points are shown in a gray colour and the fixed points in
black.

Figure 4 shows the finite element mesh generated at a time step. We recall that this
mesh is used to solve the equations of motion of the fluid particles as described in the
previous sections.

The water is running on the bottom wall until, at 0.3 sec it impinges on the right
vertical wall. Breaking waves appear at 0.6 sec. At about 1 sec. the wave again
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reaches the left wall. Agreement with the experimental results of [KOS96] both in the
shape of the free surface as well as in its time evolution are excellent.

The 3D solution of the same problem is shown in Figure 5. More information on
the PFEM solution of this problem can be found in [IDE 04].

Figure 2. Water column collapse at different time steps

10.2. Sloshing problems

The simple problem of the free oscillation of an incompressible liquid in a con-
tainer is considered next. Numerical solutions for this problem can be found in several
references [RAD98]. This problem is interesting because there is an analytical solu-
tion for small amplitudes. Figure 6 shows a schematic view of the problem and the
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Figure 3. Water column collapse at different time steps (continued)

Figure 4. Finite element mesh discretizing the fluid domain and the container walls at
a certain time step
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point distribution in the initial position. The dark points represent the fixed points on
the walls where the velocity is fixed to zero.

a) t = 0 sec. b) t = 0.2 sec.

c) t = 0.4 sec. d) t = 0.6 sec.

e) t = 0.8 sec. f) t = 1.1 sec.

Figure 5. Water column collapse in a 3D domain

Figure 6 shows the time evolution of the amplitude compared with the analytical
results for the near inviscid case. Little numerical viscosity is observed on the phase
wave and amplitude in spite of the relative poor point distribution.

The analytical solution is only acceptable for small wave amplitudes. For larger
amplitudes, additional waves are overlapping and, finally, the wave breaks and also
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some particles separate from the fluid domain due to their large velocity. Figure 7
shows the numerical results obtained with the PFEM for larger sloshing amplitudes.
Breaking waves as well as separation effects can be seen on the free-surface. This
particular and very complicated effect is well represented by the PFEM.

Figure 6. Sloshing. Initial point distribution and comparison of the numerical and
analytical solutions

Figure 7. PFEM results for a large amplitude sloshing problem

In order to test the potentiality of the PFEM in a 3D domain, the same sloshing
problem was solved in 3D. Figure 8 shows the different point positions at two time
steps. Each point position was represented by a sphere and only a half of the fixed
recipient is represented on the figure. This sphere representation is only used in order
to improve the visualization of the numerical results.

10.3. Wave breaking on a beach

The initial position of the wave was given an oblique angle with the beach line.
In this way, 3D effects show more clearly. When the wave hits the slope, the crest
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of the wave accelerates differently accordingly with the depth, inducing the wave to
correct its oblique position and break parallel to the beach. The results may be seen in
Figure 9 for different time steps. The 2D solution of a similar problems is reported in
[ONA04C].

Figure 8. 3D sloshing problem

10.4. Fixed ship hit by wave

This example is a very schematic representation of a ship when is hit by a big
wave (Figure 10). The ship can not move and initially the free-surface near the ship is
horizontal. Fixed nodes represent the ship as well as the domain walls. The example
tests the suitability of the PFEM to solve water-wall contact situations even in the
presence of curved walls. Note the breaking and splashing of the waves under the ship
prow and the rebound of the incoming wave. It is also interesting to see the different
water-wall contact situations at the internal and external ship surfaces and the moving
free-surface at the back of the ship.

10.5. Semi-submerged rotating water mill

The example shown in Figure 11 is the analysis of a rotating water mill semi-
submerged in water. The blades of the mill are treated as a rigid body with an imposed
rotating velocity, while the water is initially in a stationary flat position. Fluid structure
interactions with free-surfaces and water fragmentation are well reproduced in this
example.

10.6. Floating wood piece

The next example shows an initially stationary recipient with a floating piece of
wood where a wave is produced on the left side. The wood has been simulated by
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a liquid of higher viscosity as described in Section 9. The wave intercepts the wood
piece producing a breaking wave and displacing the floating wood as shown in Figure
12.

Figure 9. Oblique breaking wave on a 3D domain
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Figure 10. Fixed ship hit by incoming wave

10.7. Container ship hit by an incoming wave

Figure 13 shows the analysis of the motion of the transverse sections of a container
ship hit by an incoming wave. The dynamic motion of the ship is induced by the resul-
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tant of the pressure and the viscous forces acting on the ship boundaries. The section
of the ship analyzed corresponds now to that of a real container ship. Differently to
the case of Section 11.4 the rigid ship is free to move laterally due to the sea wave
forces. The objective of the study was to asses the influence of the stabilizers in the
ship roll. The figures show clearly how the PFEM predicts the ship and wave motions
in a realistic manner.

Figure 11. Rotating water mill
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Figure 12.Floating wood piece hit by a wave

10.8. Rigid cube falling in a recipient with water

In the next example a solid cube is initially free and falls down within a water
recipient. In this example, the rigid solid is modeled first as a fictitious fluid with
a higher viscosity, similarly as for the floating solid of Section 11.6. The results of
this analysis are shown in Figure 14. Note that the method reproduces very well the
interaction of the cube with the free surface as well as the overall sinking process. A
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Figure 13. Ship with stabilizers hit by a lateral wave
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small deformation of the cube is produced. This can be reduced by increasing further
the fictitious viscosity of the cube particles.

Figure 14. Solid cube falling into a recipient with water. The cube is modelled as a
very viscous fluid

The same problem is analyzed again considering now the cube as a rigid solid
subjected to pressure and viscous forces acting in its boundaries. The resultant of the
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fluid forces and the weight of the cube are applied to the center of the cube. These
forces govern the displacement of the cube which is computed by solving the dynamic
equations of motion as described in the fractional step algorithm of Section 6, similarly
as for the rigid ships of the previous example. Here again the moving cube contours
define a boundary condition for the fluid particles at each time step.

Initially the solid falls down freely due to the gravity forces (Figure 15). Once
in contact with the water surface, the Alpha-Shape method recognizes the different
boundary contours which are shown with a thick line in the figure. The pressure and
viscous forces are evaluated in all the domain and in particular on the cube contours.
The fluid forces introduce a negative acceleration in the vertical motion until, once
the cube is completely inside the water, the vertical velocity becomes zero. Then,
buoyancy forces bring the cube up to the free-surface. It is interesting to observe that
there is a rotation of the cube. The reason is that the center of the floating forces is
higher in the rotated position than in the initial ones.

Figure 15. Cube falling into a recipient with water. The cube is modelled as a rigid
solid. Motion of the cube and free surface positions at different time steps
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Figure 16. Cube falling in a water recipient. The cube is modeled as a rigid solid.
The finite element meshes generated at the selected instants are shown

Figure 16 shows a repetition of the same problem showing now all the finite el-
ements in the mesh discretizing the fluid. We recall that in all the problems here
described the mesh in the fluid domainis regenerated at each time stepcombining lin-
ear triangles and quadrilateral elements as described in Section 8. Note that some fluid
particles separate from the fluid domain. These particles are treated as free boundary
points with zero pressure and hence fall down due to gravity.

It is interesting to see that the final position of the cube is different from that of
Figure 15. This is due to the unstable character of the cube motion. A small difference
in the numerical computations (for instance in the mesh generation process) shifts the
movement of the cube towards the right or the left. Note that a final rotated equilibrium
position is found in both cases.

10.9. The Rayleigh-Bénard instability

This example shows that the PFEM can also be successfully used to solve fluid
flow problems traditionally analyzed with Eulerian formulations. The problem solved
is that of a heated thin cavity containing a fluid. The flow pattern yields the so called
Rayleigh-Bénard hydrodynamical instability giving a roll pattern along the cavity. In
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(a)

(b)

(c)

(d)

(e)

Figure 17. Rayleigh-Bénard instability withRa = 105 andPr = 10−1. (a) Tempera-
ture field. (b) Detail of temperature field. (c) Velocity norm field. (d) Detail of velocity
norm field plotted on each particle. (e) Velocity vectors on temperature field
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this case the Lagrangian fluid flow equations are solved together with the heat transfer
equation also written in a Lagrangian manner. As mentioned at the introduction of
Section 10 a value ofθ1 = 0 has been taken in this example. Details of the solution
scheme using a Boussinesq approximatlions for the coupling between the heat transfer
equation and the flow equations are given in [AUB04].

The bottom and upper part are isothermal with a temperature of 21◦ C for the bot-
tom and 19◦ C for the top. The initial and reference temperature in the fluid is 20◦ C
and the side parts are adiabatic. The Rayleigh and Prandtl numbers are105 and 10−1.
The mesh has 35500 nodes and 69700 elements at the beginning of the analysis. The
numerical computations start with the fluid at rest as the initial conditions. For rigid-
rigid boundary conditions, the critical value of the Rayleigh number is 1708 so that
the flow is here supercritical. However, a quasi-steady state is reached, with periodic
oscillations of the temperature and the cells. Figure 17 shows results of the tempera-
ture and velocity field showing the development of rolls. Numerical results have been
plotted using the GiD pre/postprocessing system developed at CIMNE [GID04]. More
details on the application of the PFEM to this problem can be found in [AUB04].

11. Conclusions

The particle finite element method (PFEM) seems ideal to treat problems involv-
ing fluids with free surface and submerged or floating structures within a unified La-
grangian finite element framework. Problems such as the analysis of fluid-structure
interactions, large motion of fluid or solid particles, surface waves, water splashing,
separation of water drops, etc. can be easily solved with the PFEM. The success of the
method lies in the accurate and efficient solution of the equations of an incompressible
fluid and of solid dynamics using a stabilized finite element method via a fractional
step scheme allowing the use of low order elements with equal order interpolation for
all the variables. Other essential solution ingredients are the efficient regeneration of
the finite element mesh using an extended Delaunay tesselation, the meshless finite
element interpolation (MFEM) and the identification of the boundary nodes using an
Alpha Shape type technique. The examples presented have shown the potential of the
PFEM for solving a wide class of practical FSI problems.
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