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ABSTRACT. The thermal analysis using standard linear tetrahedral finite elements may be severely
affected by spurious local extrema in the regions affected by thermal shocks; conceivably dis-
couraging the use of such elements as a result. The present work proposes three numerical
models based on the mixed temperature/heat flux formulation to solve the unsteady thermal
problem. Our new model, called the Mixed continuous formulation, should allow to improve
the thermomechanical coupling effects during the simulation of

�
D forming processes: the

spatial model is based on the Galerkin approach with the linear tetrahedral ��������� mixed fi-
nite elements; time integration is based on an implicit scheme allowing better flexibility in the
choice of time steps. For this study, the

�
D finite element FORGE

�	� R software, able to simulate
strongly coupled thermomechanical problems and steel quenching, is required.

RÉSUMÉ. Basée sur les éléments finis standard linéaires tétrahédriques, la résolution thermique
peut être localement affectée par de faux extremums dans les régions sensibles aux chocs ther-
miques ; au point de décourager l’utilisation de ces éléments. Pour résoudre le problème ther-
mique instationnaire, trois modèles numériques basés sur une formulation mixte en tempéra-
ture/flux de chaleur sont présentés. Notre nouveau modèle, appelé la formulation mixte conti-
nue, devrait nous permettre de mieux rendre compte des effets thermiques et thermomécaniques
au cours des procédés de mise en forme. L’interpolation spatiale est basée sur l’approche Ga-
lerkin avec des éléments finis mixtes linéaires �
������� . L’intégration temporelle repose sur un
schéma implicite, permettant ainsi d’avoir plus de souplesse dans le choix des pas de temps.
Le code Elément Fini

�
D, FORGE

� � R, capable de simuler des procédés thermomécaniques
fortement couplés ainsi que le procédé de traitement thermique, est utilisé pour cette étude.
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1. Introduction

During industrial workpiece forming processes, important thermal phenomena oc-
cur. Thereby the main purpose of this paper is to present an improved method for
solving the thermal problem efficiently. Moreover recent progresses in hot forging
simulations allow to compute the thermo-mechanical behaviour of either the part by
itself [BER 04], or of the whole system made of the part and the tools [MOC 04]. For
the single domain computation, the underlying ambition is to deliver a good compro-
mise between results accuracy and the corresponding computation time while taking
into account the strong mechanical couplings deriving from the mechanical problem.

The literature proposes several resolution techniques for the thermal problem. The
Standard Galerkin approach (SG) applied to diffusion problems [ZIE 89, SOY 90],
is certainly the best-known method, but it nevertheless generates difficulties in treat-
ing thermal shocks: presence of oscillations in the FEM solution inside the regions
affected by thermal shocks [FAC 04]. If an asynchronous time step is associated to
the Galerkin version (asynchronous thermal analysis [ALI 00, BER 04]), the thermal
shocks will be smoothed. This strategy is now used in the thermal solver FORGE �� R
and gives satisfactory results for linear or slightly non-linear problems, as long as there
aren’t too severe thermal shocks. In order to avoid these limitations, a mixed temper-
ature/heat flux formulation of the thermal problem is then introduced [PEL 03].

In this paper, after recalling the governing equations of the unsteady thermal prob-
lem and the SG approach, two discontinuous models are presented : the Explicit Dis-
continuous Taylor Galerkin scheme and the Implicit Discontinuous Galerkin method.
Then, we will describe our numerical model based on the Mixed continuous temper-
ature/heat flux formulation [PEL 04], before delivering some numerical results. The
performance of this method is evaluated by means of test case with analytical solu-
tion, as well as an industrial application, for which a well-behaved numerical solution
is available (it’s the numerical SG FORGE �� R solution).

2. The thermo-mechanical problem

2.1. Mechanical problem

The workpiece is only considered to be deformable and its temperature changes.
The tools are considered to be rigid and isothermal. The mechanical problem (includ-
ing continuity and incompressibility equations) is highly nonlinear due to the rheol-
ogy and to contact; hence a Newton-Raphson method is used. A mixed finite element
method is used to discretise the mechanical problem, for which unknowns are the ve-
locity ���� and the pressure fields � . Linear tetrahedral meshes are then used with the�����
�����

mixed finite element [ALI 00].
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2.2. Thermal problem

The thermal problem is solved using the classical heat transfer equation. In the
first part, we shall introduce the equation on a single domain � and we will enumerate
the various boundary conditions, applied on separate parts of the boundary ��� .

2.2.1. Heat equation

The expression of the first principle of thermodynamics is considered in order to
take into account the influence of the thermal conditions :�! #" %$ &('*),+-/.10 �  #2 �43 ��6587 [1] #" �  %$ represents the material derivative of the energy " , 0 is the volumetric heat gen-
eration, �� 5 is the heat flux exchange, ' is the stress tensor, +- is the strain rate tensor
and � the mass density. In order to express this equation [1] in a temperature-based
formulation, further assumptions are to be made:

– The variation of energy is considered to be the product of the variation of tem-
perature 9 and the specific heat of the material : : #" ;$ & :  9 %$ [2]

– By introducing the rate of energy received +< &*'=)>+- and a lagrangian formula-
tion, the problem can be reduced to the following formulation :� : �49� $ .  #2 �43 �� 5?7 & +< [3]

The classical Fourier’s law is now introduced to express the heat flux exchange :��@5 & �?A �� B 9 [4]

where A is the isotropic thermal conductivity. The thermal unsteady problem can be
hence reduced to the following mixed formulation with C unknowns fields, namely the
temperature 9 and the heat flux ��@5 :DEF EG � : �49� $ .  #2 �43 �� 5H7 & +< 3JI 7

on �LKNMPO4Q $�R�� 5 & �?A �� B 9 3PS 7 [5]

2.2.2. Initial and boundary conditions

To be mathematically well defined, the system of governing equations [5] requires
a proper set of initial and boundary conditions.
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2.2.2.1. Initial conditions

With 9UT the initial temperature distribution defined over the domain, the initial
conditions can be simplified to:9 & 9 T Q ��@5 & �� O at the initial time $ & O4V [6]

2.2.2.2. Boundary conditions

Let W
X , W�Y , WUZ and W\[ denote the non-overlapping portions of the boundary W of � ,
and �� ] the unit normal vector pointing outwards to W . Several heat transfer boundary
conditions are then considered:

– Dirichlet boundary condition where a temperature is prescribed on W�X :9 & 9_^a`
b on W
X#K�MPOcQ $�R [7]

– Neuman boundary condition where a heat flux is prescribed through W Y :�� 5 V@�� ] &ed ^a`
b on W�Y#K�MfO4Q $�R [8]

– Conductive boundary condition: heat exchange between part and tool through WgZ
with h4i�j is the heat transfer conduction coefficient and 9\kPl�lnm the tool’s temperature:���5 V �� ] & h i�j 3 9 � 9 kPl�lnm 7 on W Z K�MPOcQ $�R [9]

– Convective/radiative boundary condition: heat exchange between material and
air through W [ can be modelled by convection and by radiation emitted by the domain:DF G �� 5 V �� ] & h 3 9 � 9ponq�k 7 on WU[�K�MPOcQ $�Rh & hcisr . hcth4t &vu t ' t 3 9 . 9Uosq�k 7 3 9 Y . 9 Yosq�k 7 [10]

where h , h4isr and h4t are respectively the global, the convective and the radiative heat
transfer coefficients, 9\osq�k is the ambient temperature, - t is the emissivity of the body
and ' t is the Stefan constant.

3. Numerical resolutions of the thermal problem

3.1. Galerkin Finite Element Method (FEM)

In this case, the thermal problem can be recast into a reduced form with one un-
known, the temperature 9 , by substituting Fourier’s law [5.b] into heat equation [5.a]:� : �49� $ �  #2 �43 A �� B 9 7 & +< on �LK�MfO4Q $�R [11]
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By considering w &yx 9{z}| X 3 � 7 Q�9 & 9 ^~`
b in W X�� the trial functions spaces and� &{x 9*z=| X 3 � 7 Q
9 & O in W X�� the weighting functions spaces, the weak form of
the thermal problem [11] can be written as follows:

To find the temperature field 9�z,w such that �p��z � :�#� � : �c9� $ �  � . �#� A B 9HV B �  � . �#��� h4i�jU9,�  #� . �#�#� hH9,�  ��& � � +� �  � � � ��� d ^a`�bH�  #� . � � � h4i�jU9�kPl�lsm��  #� . � � � hH9Uosq�k��  #� [12]

Using the Standard Galerkin finite element method [ZIE 89], linear tetrahedral ele-
ments are used to discretise the heat transfer equation. The discrete variable is the
temperature field approximated by:9 3P� Q $ 7 &���� l�j�o��� ^���X � ^ 3P� 7 9 ^ 3 $ 7 [13]

where � ]U�  #"�� is the number of nodes of the tetrahedral mesh and � ^ is the piece-
wise linear shape function associated to node 2 . After introducing [13] into [12], the
following matrix equation is obtained:

C
� T� $ . K T & Q [14]

where T is the vector of nodal unknown temperatures, C the capacitance matrix, K
the conductance matrix and Q the internal source and external flux vector, defined as:DEEEEEEEEEEEEEF EEEEEEEEEEEEEG

� ^�� & � � � : � ^ � �  �  ^�� & � � � : 3 �� � V B � ^ 7 � �  � . � � A B � ^ V B � �  � . � ��� h i�j � ^ � �  #�. �#� � h � ^ � �  ��¡ ^ & � � +� � ^  � . � ��� d ^a`�b � ^  #� . � � � h i�j 9 kPl�lsm � ^  #� . � � � h�9 onq�k � ^  #�
REMARK. — The fully-implicit Euler-backward scheme is used to integrate the first-
order differential equation [14] in the time space [BER 04, FAC 04]. Then, once the
temperature at time $ , say T k , is known, the temperature T k �U¢ k at time $ .*£ $ is
obtained by solving the discrete equation:

C
T k �U¢ k � T k£ $ . K T k �U¢ k & Q [15]
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3.2. Discontinuous Galerkin FEM

Based on the constant
� T finite element, two discontinuous Galerkin models are

now presented [PEL 03].

3.2.1. An explicit discontinuous Taylor Galerkin scheme (TDG)

Introduced by [PIC 99], the TDG model combines the advantages of the spatial
discontinuous Galerkin method, based on the

� T finite element where the temperature
and the heat flux are interpolated by a constant per element (figure 1.b), and of the
third degree Taylor time integration which ensures the stability scheme.

Table 1 synthetizes the TDG algorithm where the explicit local solution is based
on the recursive time derivation of the thermal equations. R 9�M denotes the jump of 9
across the face ¤ , which outward unit normal vector is �� ]>¥¦ and surface area is § ¤¨§ .
The weight © ¥¦ are arbitrary chosen such as ª¦?«a¬p�® ¥N¯ © ¥¦ « & �

where ° 3 ¤ 7 denotes

the set of elements adjacent to ¤ .

Initializations :9 k± given�/² �
For all

  z,� ± DO :��@5 k¦ & �§   § �¥
³�´ ¦ A © ¥¦ R 9 k± M ¦¥ § ¤¨§ � �] ¥¦�49 k¦� $ & �§   § � : �¥
³�´ ¦ © ¥¦ R ���5 k ± M ¥¦ V � �] ¥¦ § ¤µ§ . �� : +� k¦
Repeat :

for all
  z,� ± do :� b ���5 k¦� $ b & �§   § �¥
³�´ ¦ A © ¥¦·¶ � b 9 k±� $ b¹¸ ¥¦ § ¤¨§ � �] ¥¦� b � X 9 k¦� $ b � X & �§   § � : �¥
³�´ ¦ © ¥¦ ¶ � b �� 5 k¦� $ bº¸ ¥¦ V � �] ¥¦ § ¤¨§�/²y� . �

Until � & ] . �£ $=»º¼ 3J] . � 7\½ -¿¾¨ÀaÁÃÂ�ÄÄÄÄ  � � X 9 ;$ � � X ÄÄÄÄ@Å X�ÆÈÇÊÉËÍÌ É
For all

  z,� ± DO9 k �U¢ k¦ & 9 k¦ .1£ $ �49 k¦� $ 3P� Q $ 7 . VaVaVaV . £ $ �] ½ � � 9 k¦� $ �End

Table 1. Explicit TDG scheme

REMARK. — With the use of the
� T �Î� T interpolation, the gradient operator is no

longer defined as usual at a strong sense, but must be seen at a weak sense, the sense
of distributions. Using this notion of weak derivative, two new operators are intro-
duced:

B ± called "discrete gradient" and
B ± V "discrete divergence" [BAT 01].
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3.2.2. An implicit discontinuous Galerkin model (DGIMP)

The DGIMP model is an improvement of the TDG method with a more local� T ��� �T formulation [PEL 03]: in the � D case, each element
 

of the triangulation
is subdivided into Ï , then the

� T �Î� T scheme is applied on each sub-element
  ¥

in a
hierarchical way (figure 1.a). The temperature of an element 9 ¦ remains interpolated
by a

� T finite element. On the other hand, the local heat flux of an element ��65 ¦ is
obtained by adding the values ���5 ¦?Ð of each sub-element.

Figure 1. 2D case: a)
� T ��� �T interpolation with subdivision of each element and

local contribution: only the neighbours of element
 

, b)
� T �Î� T interpolation with

local contribution of elements: neighbours [BAT 01]

One finally obtains the following compact scheme:DEEEEF EEEEG �� 5 ¦ Ð & A ¥ R 9 ± M ¥¦  § ¤¨§��� ] ¥¦§   § . §   3 ¤ 7 §� : �c9 ¦� $ & � <§   § �¥
³%´ ¦ �� 5 ¦ Ð V �� ]>¥¦ § ¤¨§ . +� ¦ [16]

So we can solve locally the following problem such as for �  ÒÑ � ± :� : �c9 ¦� $ & � <§   § �¥
³%´ ¦ A ¥ R 9 ± M ¥¦  § ¤µ§ Y§   § . §   3 ¤ 7 § . +� ¦ [17]

For time integration, an implicit Euler scheme is associated to [17]. A linear symmet-
ric system is then deduced and can be written in the general form of :R Ó M x 9 k �U¢ k � &Ôx�Õ � [18]

Thanks to its implicit character, this model is more robust and reliable than the TDG
scheme, hence allowing us to reduce considerably the calculations time.

4. A Mixed continuous formulation

[MAN 99] considers hyperbolic heat conduction equations with the non-Fourier
hypothesis (the heat flux is a linear function of the temperature gradient and the time
derivative heat flux by way of relaxation parameter). A classical Galerkin method is
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used for the spatial discretization (
� Y �Î� X next

� X ��� X ) and a Crank-Nicolson scheme
is adopted to the time integration. Inspired by this paper where this relevant scheme
is only validated with

�
D and C D test cases, our numerical model uses mixed

� X �Î� X
finite element combined with an implicit time integration scheme : it’s called the
Mixed continuous

� X ��� X formulation [PEL 04].

4.1. Weak formulation

Let’s introduce two spaces: w�Ö &×x �\Ö=z,| X 3 � 7 Q
�\Ö & O on W X��
and

�=Ø &*x � �� Ø z R�Ù Y 3 � 7 M Z Q � �� Ø & �� O on W Y�� V
The weak form of the Fourier law [5.b] is given by:�#� A Å X ���5 V � �� Ø  � . �#� �� B 9HV � �� Ø  � & OÚ� � �� Ø z ��Ø
Applying Green’s theorem to the conduction term of the heat equation, the variationnal
formulation of the heat equation [5.a] takes the following form for �p�
ÖÛzÜw4Ö :� �4� � :  9 %$ � Ö  � . �#� �� 5 V �� B � Ö  � � �#� � h4i�jU9,� Ö  #� � �#� � h�9Ý� Ö  ��& � � � +� � Ö  � � � ��� d ^~`
b�� Ö  #� � � � � h4i�jU9UlsÞ;kc� Ö  #� � � � � hH9Uosq�kc� Ö  #�
These two integrals forms are then converted to the discretized equations by apply-
ing a standard finite element technique [ZIE 89] and using appropriate interpolation
functions.

4.2. Continuous ßáàÎâ�ß8à interpolation

In this work, we must be able to choose compatible Mixed finite element on tem-
perature and heat flux: linear

� X element are then used. The same interpolation func-
tions are employed for the temperature ( � Ö ) and each heat flux component ( � Ø ). By
denoting

] "�ã the number of nodes in the element �8o of the triangulation � ± of domain� , we can write in each ��o :DEEEEF EEEEG 9 3P� Q $ 7 &y� osm�ä ��X 9 ä 3 $ 7 � Ö�åä 3P� 75 m 3P� Q $ 7 &y� osm�ä ��X 5 mä 3 $ 7 � Ø åä 3J� 7 � ã z R � QÍ�æM [19]

By denoting k xÎç � � & x 5 q�è;Q 5êé è;Q 5êë è�Q�9#� � the unknown vector at the node ì of the
mesh, the local spatial discretization of the thermal problem can be synthesized by:R�í o M � x�ç o �� $ . R   o M x�ç o � &Ôx ¤ o � [20]



3D unsteady heat transfer problems 687xÎç o � & k x�ç oX Q ç oY Q ç oZ Q ç o[ � is the unknown vector on the element � o ,R�í o M is the
3 ��î K ��î 7 local capacity matrix such that í o &Òï O OO � oñð and� o^�� & � � � å � : � Ö å� � Ö å^  � o VR   o M is the
3 ��î K ��î 7 local conductivity matrix,

  o & ï Ó o Õ ok Õ oóò�o,ð with :DEEEEEEEEEEF EEEEEEEEEEG
m Ó o^�� & �#� å A Å X � Ø å� m � Ø å^  �Hoô� ã z R � Q���McQ Ó o sparse matrix Qm Õ o^�� & � � å � � Ö�å�� � m m � Ø å^  �Hoõ� ã z R � Q���McQ Õ o sparse matrix Qò o^�� & � � � å� h i�j � Ö å� � Ö å^  #� � � � å� h � Ö å� � Ö å^  #� Vx ¤ o � & k x OcQ ¡ o � is the local heat load vector, corresponding to the internal source

and external flux vector defined as for � 2 z x � Q�Ï � :¡ o^ & � �#� å +� � Ö�å^  �Ho � �#� å� d ^a`�b � Ö�å^  #� � �#� å� hci�jê9_kJl�lsm � Ö�å^  #� � �#� å� h49ponq�k � Ö�å^  #�
Finally, a rather sparse symmetric system of Ï � ]U�  #"�� equations for Ï � ]U�  #"�� un-
knowns ç � is obtained for the global spatial discretization.

4.3. Time integration: implicit scheme

The spatially-discretized equation [20] is integrated in time using a three-level
finite difference scheme [SOY 90], presently used in the Forge �	 R thermal structure.
This equation is written at time $÷ö & © X $ � Å X . © Y $ � . © Z $ � � X with © X . © Y . © Z & � ,
where $ � Å X , $ � and $ � � X are three successive time instants. With ø X , ø Y and ø Z
depending on © X , © Y and © Z , the following linear symmetric system is then obtained :3 ø
X í .   7 ç ö & ¤ . í 3 øNY ç � Å X . øUZ ç �

7
[21]

After solving this system [21], the updated unknowns ç � � X is finally estimated as
follows: ç � � X & ç ö � 3 © X ç � Å X . © Y ç �

7© Z [22]
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5. Applications

5.1. Purely thermal test cases

5.1.1. Prescribed temperature

Let us consider first the one-dimensional case of a semi-infinite domain, initially
at the uniform temperature 9 T &õù OÎO�ú � , whose surface temperature rapidly de-
creases to a value 9 ^a`
b & CÎû ú � , kept constant [PEL 03]. The material properties
are: A & � û!üÜV�ý Å X V   Å X Q � &ÿþÎù OÎO  �� V�ý Å Z Q�: & � î O��cV  �� Å X V   Å X . We used
a � D unstructured triangulation with a mesh size h=2.8mm. The results of Mixed
approach presented in figure 2.a show excellent accuracy: the obtained curves ap-
proximate correctly the analytical solutions with an average error of

���
( þ � for the

TDG and C4V�û�û � for the DGIMP), for a coarse mesh and at a satisfactory time calcu-
lations (CPU=72s).

Figure 2. Comparison between the analytical solution and the various numerical re-
sults of Forge �� R: a) prescribed temperature with 2 virtual sensors located at 10mm
(bottom) and 20mm (top) of the thermally regulated border, b) prescribed heat flux
with a virtual sensor located at 1mm of the thermally regulated border

5.1.2. Prescribed heat flux

The steel bar temperature was initially set to 9�T & CÎû�ú � . A heat flux ��^a`
b &� í üÜV�ý Å Y was now set and maintained at one of faces; occuring the warming up of
the bar quickly. An � D unstructured triangulation with a mesh size h=2.3mm is used.
Figure 2.b shows that the SG solution and the Mixed method give improved results
with a minor error percentage, an estimated O4V�O;Ï � in respectively Ï�O s and

� Ï#O s. On
the other hand, the DGIMP results are less accurate, with an average error of aboutÏ � in

� C�O s of simulation time. The TDG remains the less reliable approach: large
computation time ( Ï�O min) and average error of about Ï�O � .

5.2. Hot forging process simulation: compression of one sixth of cylinder

We are now interested in the mechanical work (here the workpiece compression)
coupled with the various thermal exchanges [PEL 04]. The cylinder was initially
at the temperature 9 T &	��ù O�ú � with constitutive data A & C þ V�û üÜV�ý Å X V   Å X ,� & þ�ù�þ O  �� V�ý Å Z , : & î ù � �cV  �� Å X V   Å X . It’s placed between two tools with9 kPl�lsm & C�O�OÎú � : the upper tool moves while the lower tool is fixed.
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Without all heat transfers (conduction and convection) and without frictions between
the part and the tooling (Tresca friction law is required), only self-heating phenomena
occur during all the compression phase. In this anisothermal case, an analytical solu-
tion may be established and comparated to our continuous model. So, figure 3.a allows
to conclude that the internal heat source +< is correctly estimated with our method.

Figure 3. Comparison between the SG Forge C� R , the SG and Mixed Forge �  R : a)
anisothermal case with analytical solution and sensor1, b) Compression with heat
transfer and 3 sensors

In a second test (figure 3.b), friction and thermal exchanges are taken into account:
exchanges occur as well between the tripod and the tools © i�j & CÎO�OÎO�ü � ý � ú � as
between the tripod and the air

3 9Nosq�k & û�OÎú � Qc© & � O�ü � ý � ú � 7 . Three virtual
sensors are placed in order to describe correctly these phenomena :

– sensor 1: centre of the piece for the self-heating (figure 3.b, top),
– sensor 2: surface of the piece for the convection and/or radiation (medium),
– sensor 3: part having contact with the upper tool : conduction (bottom).

Presented in figure 3.b, the results are very relevant with the Mixed curves match-
ing the SG Forge C� R and Forge �� R solutions which serve as the reference values in
absence of analytical solutions or experimental results.

6. Conclusions

For the standard cases of thermal treatments where a thermal transfer condition
is only set (it means a temperature condition or flux condition is given), the Mixed
method is very reliable with accurate results and a coarse mesh. The comparison
of the various methods shows that this Mixed method is stable, robust and rather well
adapted to thermomechanical coupling. Through all these tests, this formulation offers
an excellent compromise between the precision of the estimations of the temperature
field and the calculation time. Therefore, our Mixed method should be preferred to
solve as well the thermal treatment problems and the thermomechanical problems,
such as the hot forging processes. Nevertheless, more validations on instrumented � D
tests for quenching and forging are now useful in order to validate completely our
Mixed formulation, but also experimental results.
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