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ABSTRACT. Welding of thin structures often leads to distortions that must be controlled.
Whereas numerical simulation of small structures is relatively easy, severe difficulties are
encountered in the simulation of large ones. Indeed the mesh must be considerably refined in
the heat affected zone, and this leads to huge simulations and prohibitive computation times.
Three alternative methods are presented here to circumvent this problem. The first one
consists of using only shell elements. The second method consists of using shell elements far
from the heat source and a mobile local 3D mesh close to it. The third method is a
“local/global” approach which consists of first performing a local 3D simulation of a short
portion of the welding bead, and then introducing inelastic strains into some global shell
simulation of the full structure. These methods are critically assessed by comparing their
results to those of a full 3D simulation in the typical case of a welded plate.

RÉSUMÉ. Le soudage de structures minces provoque des distorsions qui doivent être
contrôlées. Mais, alors que la simulation numérique du soudage sur de petites structures est
aujourd’hui assez bien maîtrisée, la simulation de grandes structures se heurte à
d’importantes difficultés. En effet, la nécessité de raffiner le maillage dans la zone affectée
thermiquement le long des joints soudés conduit à des simulations énormes, beaucoup trop
coûteuses en temps de calcul. Cet article présente trois méthodes pour résoudre ce problème.
La première n’utilise que des éléments coques. La seconde met en œuvre un maillage 3D
massif mobile le long du joint soudé et des éléments coques ailleurs. La troisième, dite
“ locale/globale ” consiste à réaliser un calcul local 3D sur une petite portion du joint puis à
transférer les déformations inélastiques sur le maillage coque de la structure complète. Ces
méthodes sont évaluées en comparant leurs résultats avec ceux obtenus par une analyse
transitoire sur un maillage ne comportant que des éléments massifs 3D, dans le cas typique
d’une plaque soudée.

KEYWORDS: welding, finite element, shell element, adaptive refinement, local/global approach.

MOTS-CLÉS : soudage, éléments finis, élément coque, maillage adaptatif, approche
locale/globale.
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1. Introduction

Welding is the main joining technique used in industry. However, welding
processes lead to residual stresses and distortions that must be controlled.
Experiments provide irreplaceable, but partial informations about these stresses and
distorsions, and the only way to fully know them is to perform finite element
simulations accounting for the complex interactions between thermal, metallurgical
and mechanical phenomena.

2D or 3D local meshes give satisfactory stress predictions in the heat-affected
zone (HAZ). However, in the case of large and thin structures like coachworks,
important distortions are generated even far from the HAZ. The prediction of these
distortions raises severe difficulties. Indeed, whereas a fine, often fully 3D mesh is
necessary in the HAZ because of large variations of thermal, metallurgical and
mechanical fields in this zone, a complete mesh of the whole structure is compulsory
to evaluate remote distortions; but a complete 3D mesh is ruled out because of
heaviness and cost of the calculation.

In order to avoid such heavy computations, different methods have been
developed. The most popular one consists of mixing 3D and shell elements.
However, in its simplest version, this method requires the use of a fine 3D mesh for
the entire welding bead (Gu and Goldak, 1991)(Nasstrom et al., 1991). Three
alternative approaches are presented in this paper.

The first one consists of using only shell elements (shell approach). Lindgren
(2002) has showed that this is possible even in the HAZ in specific cases. In the
present work, the thermal computation is based on the assumption of a quadratic
through-the thickness variation of temperature. The metallurgical calculation is fully
coupled with the thermal one and based on a multi-layer approach. The mechanical
computation, which duly accounts for the effect of phase changes and notably
transformation plasticity, is also based on a multi-layer scheme. The performances of
the new “welding shell element” thus defined are assessed by comparing the results
of some simulation using it with those of a 2D axisymmetric simulation, in the
simple case of a disk subjected to some thermal cycle through illumination of one of
its faces by a laser beam. The results of both simulations are also compared to
experimental measurements.

The second method consists of mixing 3D and shell elements, use of 3D elements
being restricted to a small block around the HAZ (adaptive 3D/shell approach). In
contrast to the classical 3D/shell method which involves meshing of the complete
welding bead with solid elements, this local 3D mesh represents only a small portion
of the bead, which implies that it must  move with the heat source within the coarser
shell mesh. Because of this motion, thermal, metallurgical and mechanical quantities
must be “transferred” from shell to 3D elements ahead of the source and from 3D to
shell elements behind it.
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The last method is a local/global approach. It consists of 2 steps. The first one
(local step) consists of performing a transient analysis of a short portion of the
welding bead and HAZ using a 3D mesh. The boundary of this small zone is
assumed to be traction-free in the mechanical simulation; the assumption made here
is that plastic strains essentially depend on local thermal and mechanical fields and
are little affected by the clamping effect arising from the stiffness of the rest of the
structure. The output of this step consists of local inelastic residual strains due to
welding. The second one (global step) consists of performing an elastic simulation of
the full structure using shell elements; the inelastic strains determined previously are
then introduced in some “macro-elements” which represent the welding bead and the
HAZ. This step provides far distortions of the whole structure after complete cooling
and unclamping.

The validity of these 3 approaches is finally assessed by performing numerical
simulations of welding of a thin plate, and comparing the results obtained using each
of them to those of some fully 3D “reference” simulation.

2. Welding shell element

2.1. Generalities

In the first method proposed, shell elements are used even in the HAZ. Thus they
should incorporate special constitutive laws accounting for phenomena occurring
during phase changes and notably transformation plasticity. Previous welding
simulations which used shell elements even in the HAZ (Dong et al., 1997)
(Lindgren and Karlsson, 1988) disregarded effects arising from phase changes.

The constitutive laws used here account for such effects in all steps of the
simulation: thermal, metallurgical and mechanical. The thermal analysis accounts for
dependence of thermal properties upon temperature and metallurgical phases, and
also for transformation latent heats; thus the thermal and metallurgical calculations
are necessarily coupled and performed simultaneously, although they are presented
separately below for the sake of clarity. The metallurgical and mechanical
calculations are based on a multi-layer formulation similar to that commonly used
for composite shells. The mechanical computation accounts for transformation
plasticity and also various, notably geometrical, nonlinearities.

2.2. Thermal computation

The heat conduction equation in the shell reads:

( ) 0=
∂
∂

−
t

H
graddiv ρθλ

���
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where θ  denotes the temperature and H,,ρλ  the thermal conductivity, mass per

unit volume and enthalpy per unit mass, all 3 of which depend on θ  and the
proportions of the phases. This equation is used in this form without expressing

tH ∂∂ /  as tc ∂∂ /θ  where c  denotes the apparent specific heat; an enthalpic

formulation fully coupled with calculation of phase changes (involving calculation of
H  as a function of θ  and the proportions of the phases at each time step) is used
instead. Such a formulation is well fit to problems involving phase changes occurring
within a narrow range of temperature, and also allows to account for different
transformation kinetics upon heating and cooling in a rigorous way, without
“cheating” through introduction of different apparent specific heats during these 2
periods. Also, nonlinear boundary conditions accounting for thermal losses due to
convection and radiation are used on the upper and lower faces of the shell.

Since the shell is assumed to be thin, one can assume some simple through-the-
thickness temperature profile (Voldoire and Andrieux, 1993). This profile is
generally assumed to be polynomial (Surana and Abusaleh, 1990), but other
strategies are possible. The simplest assumption of a linear profile has been used in
(Rubin, 1986), but such a profile imposes an often undesired restriction, namely
equal input and output heat fluxes on the faces of the shell. Another approach
(Surana and Phillips, 1987) consists of defining some “finite element degenerated”
thermal shell element through condensation of the degrees of freedom (d.o.f.) of
some 3D element in the direction of the thickness. The formulation adopted here is
based on the assumption of a quadratic through-the-thickness variation of
temperature. The temperature at any point Q of the shell volume at time t  is thus
given by:

( ) ( ) ( ) ( ) 2
ztPztPtPtQ m ,,,, βαθθ ++= ���

where ( )tPm ,θ  denotes the temperature at the projection P  of point Q  onto the

mid-surface of the shell, z  the distance from point P  to point Q , and ( )tP ,α ,

( )tP ,β  coefficients. These coefficients are readily determined in terms of ( )tPm ,θ
using boundary conditions on the faces of the shell. Thus there is a single nodal
d.o.f., ( )tPm ,θ .

2.3. Metallurgical computation

There are two types of solid-state transformations in steels:

– diffusional transformations (for instance ferritic and austenitic transformations),
isothermal kinetics of which are usually described through Johnson-Mehl-Avrami
type laws;
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– martensitic transformations; the volume fraction of martensite depends only on
temperature (the lesser influence of stresses being disregarded) and is usually
assumed to be given by Koistinen-Marburger’s formula.

The anisothermal kinetics of both types of transformations are described here
using a single heuristic model due to Leblond and Devaux (1984). In the simple case

of 2 phases only, α  and γ , with volume fractions αp  and αγ pp −=1 , and a

transformation from phase γ  to phase α ,  the evolution equation for αp  reads:

( )
( )θτ

θ

αγ

αα
α

→

−
=

pp
p

eq
� ���

where ( )θα eq
p  denotes the “equilibrium” proportion of phase α  at temperature θ

and ( )θτ αγ→  some characteristic reaction time.

2.4. Multi-layer “thermo-metallurgical” shell element

Whereas the through-the-thickness temperature profile is assumed to depend on
3 coefficients only, such an approximation is impossible for the metallurgical
calculation due to the usually sharp variations of the proportions of the phases within
the thickness. A multi-layer approach, similar to that commonly used for composite
shells, is therefore adopted for calculation and storage of the proportions of the
phases.

2.5. Mechanical shell element

Mechanical shell elements available in the literature fall into 2 categories
according to whether they are based on some Kirchhoff-Love-type or Mindlin-
Reissner-type theory. Elements of the first type are seldom used, first because they

do not apply to thick shells, second because they require interpolations of class 1C
which raise considerable numerical difficulties. Mindlin-Reissner-type elements are
easier to handle and more commonly used, although they also raise such difficulties
as discontinuities of the tangent plane between adjacent elements and transverse
shear locking. In this work, we adopt the Mindlin-Reissner-type “T1-element” of
Hughes and Tezduyar (1981). Although quite old, this simple element is “battle-
tested” and applies to thin as well as thick shells. It was originally developed within
a linearized context but the version used duly accounts for large displacements, as
needed for accurate prediction of welding residual distortions.
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2.6. Mechanical model for transformation plasticity

Solid-state transformations occurring during cooling of steels induce some
anomalous plastic behaviour termed “transformation plasticity”. Two physical
explanations have been proposed for this phenomenon. Greenwood and Johnson
(1965) ascribe transformation plasticity to micro-plasticity in the weaker γ phase

arising from the difference of specific volume between the phases. Magee (1966)
ascribes transformation plasticity (during martensitic transformations only) to
formation of martensite plates with some preferred orientation depending on the load
applied. The model used here is due to Leblond et al. (1989). Although it considers
only Greenwood-Johnson’s mechanism, it gives good results for most steels. In this

model, the “transformation plastic strain rate” (
tp
ijε� ) which must be added to the

classical plastic strain rate is of the form (assuming strain hardening to be of
isotropic type for simplicity):

αα
γσ

ε pps
VV

ijY

tp
ij

�� 


−= ln
/∆

���

(for a αγ →  transformation, as occurs during cooling). In this expression VV /∆

denotes  the relative difference of specific volume between the phases, 
Y
γσ  the yield

stress of austenite and ( ijs ) the stress deviator.

Just like for the metallurgical calculation, a multi-layer approach is used for the
mechanical calculation because of the sharp variations of the stresses and plastic
strains within the thickness. Membrane and bending generalized strains are thus
converted into usual 3D strains in each layer using the Mindlin-Reissner kinematic
assumption; a “plastic correction” based on equation [4] is then applied to the
“elastically calculated” 3D stresses; finally  integration of these corrected 3D stresses
over the thickness yields membrane and bending generalized stresses.

3. Assessment of the welding shell element

The first task is to critically assess the performances of the newly developed
“welding shell element”. This will be done by comparing the results of some
simulation using it with those of a standard 2D axisymmetric simulation and also
with experimental results, in the case of a heated disk.

The experimental procedure is described in detail in (Vincent, 2002) and
(Bergheau et al. 2004). The disk, of radius 160 mm and thickness 5 mm, is made of
16MND5 steel (French norm; this is equivalent to A508 in the American norm). The
thermal, metallurgical and mechanical properties of this steel are provided in
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(ASTM, 1991) (Waeckel, 1994). The upper face of the disk is illuminated by a CO2

laser beam. The heat input is chosen in such a way that the central part of the disk
reaches an austenitic state during heating without melting; this eliminates poorly
known phenomena like convection in the molten pool, which are of course present in
actual welding experiments but would hamper here “neat” comparison of
experimental and numerical results. The quantities measured include temperature,
residual stresses (determined through X-ray diffraction) and final deformed shape of
the disk.

The welding shell element has been implemented in, and the calculations
performed with, the commercial finite element code SYSWELD® (2002).

In the thermal simulation, the value of the heat flux absorbed by the upper face
has been determined by an inverse method so as to correctly reproduce the measured
temperature. The values of the convective and radiative heat transfer coefficients

governing losses are Hc = 15 W/(m²°C) and Hr(T) = ( )extext TTTT +


 + 22εσ  where

T  denotes absolute temperature, σ  (Stefan’s constant) = 5.67 10-8 W/(m2 K4) and
ε  (thermal emissivity) = 0.75. These transfer coefficients are artificially slightly
increased on the lower face in order to account for the extra cooling effect due to the
support.
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Figure 1. Temperature difference between the faces of the disk

Figure 1 shows the difference of temperature between the faces of the disk at 2
positions as a function of time, for the 2 simulations. (Showing experimental results
would be pointless since the heat flux density used in the simulations was adjusted so
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as to fit them). The agreement is quite acceptable, which shows that the assumption
of a quadratic through-the-thickness variation of temperature used in the thermal
shell element is reasonable. (This is because the geometry and heat input are both
quite simple; other, less simple geometries and/or heat inputs can give rise to more
complex distributions of temperature, as will be seen below).

The metallurgical simulation accounts for the austenitic transformation during
heating as well as ferritic, bainitic and martensitic transformations during cooling. It
also incorporates tempering effects which occur in that zone heated just below the
AC1 temperature. (These effects are simulated by considering fictitious
transformations from “as-quenched” structures to some “completely tempered” one).
Computed results (not shown for space reasons) are in close agreement with
experimental ones.

In the mechanical computation, all material properties are considered as
temperature-dependent except for Poisson’s ratio. Dependence of thermal strain,
yield limit and hardening slope upon the metallurgical phases is also accounted for,
as well as transformation plasticity. Strain hardening is assumed to be of isotropic
type. Two mechanical simulations are performed, with elastoplastic and
elastoviscoplastic options respectively.
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Figure 2. Radial stress as a function of distance from the centre of the disk

Figures 2 and 3 show the measured and computed radial and tangential stresses
on the upper face of the disk, as functions of distance from its centre. Both options
yield reasonable results. In spite of experimental errors, Figure 3 suggests that the
elastoviscoplastic option is better; as explained in (Bergheau et al., 2004) and
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(Vincent et al., 2003), this is because it duly accounts for the fact that the yield stress
is lower during cooling than during heating since the strain rate is much lower
(because the cooling rate is much lower than the heating rate), whereas the
elastoplastic option does not. With regard to the comparison between the shell and
2D axisymmetric simulations, one observes that the agreement is quite good, except
for the slight increase of the radial stress towards the edge of the HAZ, just before
the big drop, which can be observed in the 2D axisymmetric calculation (in both
options) but not in the shell simulation; see Figure 2. The probable explanation of
this slight discrepancy is that the refinement of the mesh in this zone is insufficient in
the shell simulation.
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Figure 3. Tangential stress as a function of distance from the centre of the disk

Figure 4 shows the measured and computed axial displacements of the centre of
the disk as a function of time. There is a large discrepancy here between results
obtained with the elastoplastic and elastoviscoplastic options, those corresponding to
the latter option being in much better agreement with experimental observations.
This illustrates the fact (already mentioned in Bergheau et al., 2004) that obtaining
good calculated residual distortions is much harder than obtaining good residual
stresses, because distortions are sensitive to tiny details of the material behaviour
which have little influence on stresses. One also observes that the difference between
results obtained with the 2D axisymmetric and shell simulations is small.

Finally Figure 5 compares axial displacements obtained (using shell elements and
an elastoplastic option) by using a “small displacement” hypothesis and a “large
displacement” one. Clearly, making a “small displacement” hypothesis results in
considerable underestimation of the axial displacement. This is an indication that
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distortions are primarily governed by geometrical nonlinearities arising from thermal
buckling (due to large thermal expansion at high temperatures, and also during the

αγ →  transformation during cooling). This means that they are more sensitive to
the average value of the temperature in the thickness of the disk than to its gradient,
which explains, to some extent, why the simple assumption of a quadratic through-
the-thickness temperature distribution suffices to obtain good distortions.
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4. Adaptive 3D/Shell approach

This method consists of mixing 3D and shell elements, use of 3D ones being
restricted to a small portion of the welding bead so as minimize the number of d.o.f.
This means that the block of solid elements must move with the source, which
implies transfer of quantities from shell to solid elements ahead of the source and
back from solid to shell elements behind it.

4.1. Shell and 3D meshes

Most of the structure is meshed with shell elements, using the element described
previously.  This shell mesh must be regular but need not be very refined. The block
of solid elements must begin just ahead of the heat source, and extend over a
sufficient distance behind it and be wide enough to entirely contain the HAZ at the
instant considered. The number of layers in the shell mesh governs the number of 3D
elements in the thickness of the block, because we want the vertical positions of the
nodes of the 3D elements to correspond to those of the layers. On the other hand,
there is no necessary correspondence of shell and 3D meshes in the shell plane; in
the example shown below, for instance, each shell element corresponds to 4 solid
elements in this plane (Figure 6).

Figure 6. Finite element mesh at successive instants

4.2. Generalities on transfer of values

Three types of transfer of quantities, corresponding to different zones, are
required for both Gaussian and nodal values (Figure 7). In the first zone, ahead of
the heat source, quantities must be transferred from shell to solid elements. In the
second zone, they must be transferred from 3D to 3D elements; since the mesh is
identical at successive instants in this zone, this operation only requires to correctly
change the node and Gauss point numbers. In the third zone, behind the source,
quantities must be transferred from 3D to shell elements.
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Figure 7. The 3 types of transfer

Figure 8. Transfer of Gaussian values from shell to 3D elements
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4.3. Transfer of Gaussian values

In the first zone, values (of proportions of phases, plastic strains, etc.) at each
Gauss point of the shell mesh are transferred to those Gauss points of the 3D block
located nearest to it in the thickness direction (Figure 8, top). Also, since 4 solid
elements correspond to one shell element in the shell plane, values at one Gauss
point of the shell mesh are transferred to all 4 Gauss points of the 2 adjacent 3D
elements (Figure 8, bottom).

In the third zone, opposite transfers are carried out. Values at the Gauss points of
the 3D mesh are averaged out over the 4 points located at the same vertical position
in each element, then over the 2 vertical positions adjacent to each layer, prior
transfer to Gauss points of layers of the shell mesh.

Transfer of stress values implies slight violation of equilibrium just after transfer,
but equilibrium is achieved again at the end of the iterative process of the next time-
step.

4.4. Transfer of nodal values

In the thermal analysis, transfer of nodal values is simple because the number of
d.o.f. is the same (1) for both meshes. For the transfer from shell to 3D nodes, shell
nodal temperatures cannot be used because they are calculated only on the mid-
surface of the shell. Therefore temperatures at the Gauss points of the shell mesh are
used. More specifically, the temperature at each Gauss point of each layer of the
shell mesh is transferred to the nearest  3D node; since there are 4 Gauss points in
the shell mesh located at the same, minimal distance from each 3D node, the
temperatures at these 4 Gauss points are averaged prior transfer to this node. Also,
this defines nodal temperatures only at certain, “primary” 3D nodes; other nodal
temperatures at “secondary” 3D nodes are then obtained through linear interpolation.
For the inverse transfer, only temperatures on the mid-surface of the shell need  be
transferred; the operation is straightforward since each shell node corresponds to
some 3D node.

In the mechanical analysis, the process is more complicated because there are 3
d.o.f. for each 3D node versus 6 for each shell node. For the transfer from shell to
solid elements, the displacements of 3D nodes are deduced from displacements and
rotations of shell nodes using the Mindlin-Reissner kinematic hypothesis. For the
inverse transfer, the displacements of shell nodes are obtained by averaging the
displacements of 3D nodes over the thickness. The rotation about the axis
perpendicular to the welding direction is also deduced from the displacements of 3D
nodes lying on the same normal to the shell plane, whereas the rotation about the
welding direction is deduced from the displacements of 3D nodes lying on the mid-
surface of the shell.
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5. Local/Global approach

Theoretical features of the “local/global” approach have been expounded in
detail in a previous paper (Souloumiac et al., 2002) and will only be briefly recalled
here. We consider only the simple case of deposition of a weld bead along the
middle axis of a rectangular plate.

The first, “local” step consists of thermal, metallurgical and mechanical
simulations performed on a “reduced” 3D geometry (Figure 9, left). In the
mechanical simulation, the boundary of the zone considered is assumed to be
traction-free. This means disregarding the “clamping effect” arising from the
stiffness of the rest of the structure.

Figure 9. Local and global geometries

The residual plastic strain field obtained in the local simulation is prescribed as
an “initial” strain in the global simulation (Figure 9, right) by means of welding
macro elements (WME). WME have an effect in this simulation through their
stiffness matrix and load vector, the calculation of which is sketched below.

In the present case, we use 3 types of WME, corresponding to 3 subdomains of
the local geometry (Figure 10). The first and third subdomains include the start- and
endpoints of the weld bead, corresponding to the beginning and end of the welding
process, while the second one represents the central part of the bead, corresponding
to the stationary stage of the process. They together include the entirety of the zone
where plastic strains are nonzero.
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Figure 10. Extraction of subdomains from the weld bead zone
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Figure 11. Welding macro element calculation and assembly

In the present stage of development of SYSWELD®, the updated Lagrangian
algorithm used to account for geometrical nonlinearities in shells does not allow to
include WME in the mesh. Thus simulations using WME must necessarily be
performed with a small displacement hypothesis. Also, since elements other than
WME are located far from the heat source, their behaviour is purely elastic. Thus
only one resolution of the global system of equations is needed to get global
distortions.

6. Numerical simulations

Simulations of welding of a thin plate have been performed to critically assess
the different methods proposed, using a full 3D simulation as a reference. The plate
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is a parallelepiped 136 mm long, 64 mm wide and 3 mm thick. The weld bead is 120
mm long. It is located on the middle axis of the plate so that only one half of the
structure need be meshed. The material is 16MND5 steel as before. Again, the
methods developed have been implemented in, and calculations performed with
SYSWELD® (2002).
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Figure 12. Finite element meshes : 3D, shell, 3D/shell, local mesh of local/global
method
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In the 3D simulations, the maximum temperature reached is 1760°C on the upper
face and 740°C on the lower face. The computed through-the-thickness temperature
distribution is almost identical for both 3D simulations with quadratic and linear
elements (Figure 13), and also for the adaptative 3D/shell and local/global
approaches (not shown in Figure 13). On the other hand, the through-the-thickness
temperature distribution obtained in the simulation using only shell elements is rather
inaccurate, the temperature difference between the faces of the shell amounting only
to 410°C versus 1020°C in the other simulations. This is due to the assumption of
quadratic distribution of temperature, which other simulations clearly show to be
inadequate in this case (see Figure 13).

Figure 13. Through-the-thickness distribution of temperature

All simulations predict that the region near the heat source is entirely transformed
into austenite upon heating, then into martensite upon cooling. The metallurgical
structure of the rest of the plate remains unaffected.

In the mechanical computation, again, all material properties except Poisson’s
ratio are considered as temperature- and phase-dependent, transformation plasticity
is accounted for and strain hardening is assumed to be of isotropic type.
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The adaptative 3D/shell method has not yet been tested for this example. Other
methods yield quite good results with regard to residual stresses and strains in the
HAZ. We focus here on far residual distortions. Figure 14 shows contours of iso in-
plane displacements. All 3 methods tested yield qualitatively similar results. The
results of the shell simulation are rather accurate for the lateral displacement, the
maximum error made with respect to the reference 3D simulation amounting to 8%.
However, this error amounts to 20% for the longitudinal displacement. The
local/global simulation yields somewhat less accurate results, the error made on both
components of the in-plane displacement being of the order of 20%. (Note that the
left portion of the geometry is omitted in the figure because it corresponds to the
WME).

     3D         Shell    Local/Global                                 3D         Shell   Local/Global

Figure 14. Final lateral and longitudinal displacements

Figure 15 shows contours of iso vertical displacement. The results of the shell
simulation are not too bad, considering the error made on the through-the thickness
temperature gradient. The explanation is tied to the fact that again, the vertical
displacement is essentially governed by thermal buckling, as will be detailed below;
thus it is more sensitive to the mean temperature in the thickness than to the
temperature gradient, and the mean temperature is of course better predicted than the
temperature gradient in the shell simulation. The error made by the local/global
approach essentially arises from the small displacement hypothesis, which is
inadequate to deal with buckling.
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                                            3D               Shell       Local/Global

Figure 15. Vertical displacement

Figure 16. Vertical displacement along the length side

Finally Figure 16 shows the distribution of the vertical displacement along the
lateral edge of the plate, for all 3 simulations plus an additional 3D one performed
with a small displacement hypothesis. The results of this last simulation are quite
bad, as compared to those of the 3D simulation fully accounting for large
displacements. This substantiates the statement made above that the vertical
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displacement is again governed by geometrical nonlinearities arising from thermal
buckling.

This example illustrates the capabilities and limits of the new methods proposed
to predict distortions of large welded structures. The advantages of these methods
are the limited size and relatively short CPU times of the simulations. This is
illustrated in Table 1.

3D Shell Local/Global

Number of nodes 12963 1826 8624 2

Number of elements 4424 1734 9576 2

Thermal analysis 1 4 h 44 min 1 h 07 min 44 min 2

Mechanical analysis 1 7 d 2 h 1 d 1 h 05min 14 h 59 min 2

Total time 1 7 d 6 h 44 min 1 d 2 h 12 min 15 h 54 min 3

1 Computed on a PC 800 MHz, 512 Mo, iterative solver

2 Local model only

3 The global system is computed in 11 min.

Table 1. Size and CPU times of the simulations

The advantages of simulations using only shell elements are particularly obvious
in this table. (Of course, CPU time, accuracy and memory required depend on the
number of layers in the metallurgical and mechanical computations). Also, such
simulations can account for effects due to large displacements. The key point
consists of adequate calibration of the thermal computation; in order to correctly
capture thermal and metallurgical phenomena, as functions of position within the
thickness, one should adjust the heat input and/or the heat transfer coefficients so as
to get a correct temperature gradient through the thickness. (This has not been done
here).

The local/global approach is computationally faster but 2 meshes are required.
Also, adequate choice of boundary conditions, in both the thermal and mechanical
local simulations, can be problematic since these conditions must incorporate the
effect of the rest of the structure in some way.

7. Conclusion

Three methods have been presented to predict residual distortions of large thin
structures due to welding. Simulations using only shell elements are well fit to some
cases. Their main drawback is the assumption of quadratic temperature within the
thickness. They are also unfit for such geometries as T-joints. The adaptative
3D/shell approach using a moving local 3D block within some general shell mesh
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has been developed to circumvent such problems and seems especially promising.
The local/global approach can be used to simulate all types of welding but the
geometry of the bead must be simple enough for the size of the local simulation to
remain reasonable. Also, it is prone to difficulties with regard to adequate choice of
boundary conditions.

The capabilities of these 3 methods have been illustrated in the case of welding
of a thin plate. In spite of its apparent simplicity, this problem involves complex
material behavior (transformation plasticity) and geometrical nonlinearities. In view
of these difficulties, the errors made (as estimated through comparison with some
reference fully 3D simulation) can be considered as acceptable.
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