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ABSTRACT.In this paper, we present and discuss some techniques to define vectorial Padé ap-
proximants and quadratic approximants in the Asymptotic Numerical Method (ANM). For this
purpose we have to orthonormalize the basis generated by the ANM. We shall discuss the in-
fluence of the orthonormalization procedure. We give some numerical comparisons of these
techniques on non-linear elastic shells problems.

RÉSUMÉ.Dans cet article, nous présentons et discutons quelques techniques pour définir des ap-
proximants de Padé vectoriels et des approximants quadratiques dans la Méthode Asymptotique
Numérique (MAN). La définition de ces approximants passe par une orthonormalisation de la
base générée par la MAN. Nous discuterons l’influence de la procédure d’orthonormalisation.
Des comparaisons numériques de ces techniques seront illustrées sur des problèmes de coques
élastiques non linéaires.
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1. Introduction

The vectorial Padé approximants were introduced in the Asymptotic Numerical
Method (ANM) to improve the domain of validity of vectorial series (the polynomial)
representation [COC 94a]. In the ANM, the polynomial representation of the solution
path(U, λ) of a non-linear problem:

R(U, λ) = 0 [1]

is a parametric representation in the form of integro-power series of vectors [DAM 90],
[COC 94b]:

U(a) ≃ Upol(p)(a) = U0 + aU1 + a2U2 + · · · + apUp [2]

wherep is an arbitrary order of truncature,U0 is a given solution of the non-linear
problem [1] anda is a path parameter (displacement parameter, load parameter or
arc-length parameter). By introducing [2] in [1], the vectors fields(Ui)1≤i≤p are the
solutions of a recurrent sequence of linear problems, with a single tangent operatorLt

to be inverted:
R0 + aR1 + a2R2 + · · · = 0 [3]

Ri = 0 ⇐⇒ LtUi = Fnl
i [4]

These linear problems [4], whereFnl
i are the right hand sides which depend on the

previously computed vectorsUi, are generally solved by the finite element method.
Of course, the domain of validity of the representation [2] is limited by the radius of
convergence of the series. So the range of validity defines one step of the solution
path. To obtain the entire solution path, a continuation procedure consists to repeat
the ANM from the last point of the domain of validity to the previous step [COC 94a],
[COC 94c], [COC 94b].

In order to extend the domain of validity of the representation [2] and to reduce
the number of steps needed to obtain the entire solution path, in [COC 94a], a rational
approximation, called Padé approximant [PAD 92], [VAN 84], [BRE 94], [BAK 96],
has been used.

By definition ( [PAD 92], [BAK 96] ), the scalar Padé approximantf [L, M ](a) of
a scalar series,f(a) =

∑

fkak, is a rational fraction:

f [L, M ](a) =
A0 + A1a + · · · + ALaL

1 + B1a + · · · + BMaM
[5]

having the same(L + M) first coefficients of Mac-Laurin expansion as the scalar
functionf(a). These ordinary Padé approximants [5] are defined as a solution of the
linear equation:

−A(a) + B(a)f [L, M ](a) = 0 [6]

where the polynomialsA andB have respectively the degreesL andM and satisfy
the relation:

−A(a) + B(a)f(a) = O(aL+M+1) [7]
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There are other techniques to improve the series, as the quadratic approximants
[SHA 74]:

f [L, M, N ](a) =
−B(a) ±

√

B2(a) − A(a)C(a)

C(a)
[8]

which are a generalization of Padé approximants. Quadratic approximantsf [L, M, N ]
of a seriesf are defined as a solution of the quadratic equation:

A(a) + 2B(a)f [L, M, N ](a) + C(a)f2[L, M, N ](a) = 0 [9]

where the polynomialsA, B andC have respectively the degreesL, M andN and
satisfy the relation :

A(a) + 2B(a)f(a) + C(a)f2(a) = O(aL+M+N+2) [10]

In [COC 94a], the representation [2] has been rewritten in an orthonormal basis
built up from the basis(Ui) generated by the ANM and a strategy to use vectorial
Padé approximants has been applied. This have been used in various fields [AZR 92],
[TRI 96], [DEB 97]. But this strategy had the disadvantage to generate a great num-
ber of poles inside the domain of validity. An alternative, presented in [BRA 97],
[NAJ 98], is to use vectorial Padé approximants with a common denominator, called
simultaneous Padé approximants [BRE 94], [BAK 96].

Many applications in structural mechanics (for instance non-linear elasticity and
contact), [COC 94b], [BRA 95], [NAJ 96], [BRA 97], [NAJ 98], [ELH 98], [ZAH 98],
see more references in the ANM articles of this special issue, have established that vec-
torial Padé approximants with a common denominator can reduce the number of poles
and permit to obtain more regular solutions. By using this rational representation in
a continuation procedure, the number of steps to obtain the entire solution path has
been reduced [ELH 00]. The vectorial Padé approximants have also been considered
to accelerate the convergence of high order iterative algorithms for linear [CAD 01]
or non-linear [DAM 99], [MAL 99], [LAH 02], [JAMA 02] problems.

The aim of this paper is to discuss some techniques to define vectorial Padé ap-
proximants and vectorial quadratic approximants in the the framework of the ANM
and to show that their utilisation can improve clearly the vectorial polynomial repre-
sentation.

In the second part, we remind the basis of the classical rational representation using
the Padé approximants with a common denominator and we propose an improvement
using all the vectors generated by the ANM. In this part, we propose also another
method to built up a basis from the ordinary basis generated by the ANM which per-
mits to define new vectorial Padé approximants without orthonormalizing the whole
basis(Ui). All the approximations are applied on some examples from non-linear
elastic shells which are presented and analysed in the third part. In the fourth part, we
discuss the influence of the Gram-Schmidt algorithms and the scalar product [JAM 03]
on the quality of the solution. In the last part we propose some techniques to define
vectorial quadratic approximants in the ANM [JAM 01], [JAM 02].
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2. Rational representations

2.1. The classical rational representation used in the ANM

In order to define scalar Padé approximant [5], we first orthonormalize the basis
U1, ..., Up. The Gram-Schmidt procedure is the most known method in linear algebra,
to compute an orthonormal basisU∗

1 , · · · , U∗
p from the space generated by the vectors

U1, · · · , Up in the following manner:

α1,1U
∗
1 = U1

αi,iU
∗
i = Ui −

∑i−1
j=1 αi,jU

∗
j

< U∗
i , U∗

j > = δi,j (i, j = 1, · · · , p).

[11]

The Gram-Schmidt procedure permits also the computation of the scalar coefficients
αi,j called Gram-Schmidt coefficients. If we rewrite the representation [2] in the
orthonormal basis(U∗

i ), we obtain exactly:

Upol(p)(a) = U0 + af1(a)U∗
1 + a2f2(a)U∗

2 + · · · + apfp(a)U∗
p [12]

wheref i are scalar series defined by:f i(a) =
∑p−i

k=0 αi+k,ia
k. In a previous work

[COC 94b], the scalar seriesf i has been replaced by some scalar Padé approximants
f i[Li, M i] but this technique generated a lot of poles inside the domain of validity.

To avoid this drawback, rational fractions with a common polynomial, called also
simultaneous Padé approximants [BRE 94], [BAK 96], have been introduced. Within
the classical rational representation used in the ANM , the polynomial representation
[12] is truncated at the orderq = p − 1, and then the scalar seriesf i are replaced by
rational fractionsf i[p− i−1, p−1] = Ai

B
having the same denominatorB [NAJ 98].

After some rearrangement, the following vectorial Padé representation [NAJ 98] of
the solution is obtained:

Upad(p)(a) = U0 + a
∆p−2

∆p−1
U1 + · · · + ap−2 ∆1

∆p−1
Up−2 + ap−1 1

∆p−1
Up−1 [13]

where∆i are polynomials defined by:

∆i(a) = 1 + B1a + B2a
2 + · · · + Bia

i [14]

Thep − 1 coefficients(Bi)
p−1
i=1 of the polynomial∆i ( B = ∆p−1 ) are computed

from the following relations:

Bi = − 1

αp−i,p−i

(αp,p−i +

i−1
∑

k=1

Bkαp−k,p−i) [15]

For problems depending on a parameterλ, as path following in structural mechan-
ics (for instance in non-linear elasticity problems or contact problems,λ represents a
load parameter), the polynomial representation of the parameterλ:

λ(a) ≃ λpol(p) = λ0 + aλ1 + · · · + ap−1λp−1 + apλp [16]
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is also replaced by a Padé approximantλ[p− 1, p− 1] = Aλ

B
having the same denom-

inatorB as the Padé approximantsf i[p − i − 1, p − 1]. After some rearrangement a
rational representation analogous to [13] is obtained:

λpad(p)(a) = λ0 + a
∆p−2

∆p−1
λ1 + · · · + ap−2 ∆1

∆p−1
λp−2 + ap−1 1

∆p−1
λp−1 [17]

2.2. An improvement of this classical rational representation

To get the rational representation [13], [17], the polynomial representation [12]
has been truncated at the orderq = p − 1 before using Padé approximants. So,
the last termapfpU∗

p in [12] was not used in the previous rational representation.
Now, we propose to avoid this truncation and to keep all the vectors in the polynomial
representation [12].

We approximate the firstp − 1 polynomialsf i by the Padé approximantsf i[p −
i − 1, p − 1] = Ai

B
for i = 1, · · · , p − 1 as it was done in the previous part. The last

polynomialfp is approximated by the Padé approximantfp[0, p − 1] =
Ap

B
(Ap =

αp,p) and the parameterλ is approximated by the rational fractionλ[p, p − 1] = Aλ

B
.

If we return to the basisUi, we obtain after some rearrangement, [JAM 02], a new
vectorial Padé representation:

Unpad(p)(a) = U0 + a
∆p−1

∆p−1

U1 + · · · + ap−1 ∆1

∆p−1

Up−1 + ap 1
∆p−1

Up

λnpad(p)(a) = λ0 + a
∆p−1

∆p−1

λ1 + · · · + ap−2 ∆1

∆p−1

λp−1 + ap 1
∆p−1

λp

[18]

As compared with the classical vectorial Padé representation [13], [17], the frac-
tions ∆i

∆p−1

are shifted in the new rational representation [18] one degree forward and
the last vectorUp appears in the representation [18].

2.3. Another method to define Padé approximants in the ANM

Previously the Gram-Schmidt orthonormalization procedure has been used to rewr-
ite the polynomial representation [2] in an orthonormal basis in order to obtain scalar
series that we replace by a Padé approximation. To minimize the number of vectors
to be orthonormalized, another manner, [JAM 02] , to built up a new basis(Wi) from
the vectorsUi is proposed with the following procedure:































for i = 1, · · · , l
Wi = Ui

for i = l + 1, · · · , p
Wi = Ui −

∑i−1
k=1 αi

kWk

< Wi, Uj >= 0 for j = 1, · · · , i − 1

[19]
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wherel is an integer(1 ≤ l ≤ p) from which the two bases differ andαi
k are scalar

coefficients. In [19], only thep − l last vectors are orthonormalized. We can rewrite
this new basis(Wi) as(U1, · · · , Ul, Wl+1, Wl+2, · · · , Wp). With the procedure [19],
the vectorsWi (l + 1 ≤ i ≤ p) are orthogonal to the vectors(Uj) (1 ≤ j ≤ i − 1).

From [19], we obtain fori = l + 1, · · · , p:







for j = 1, · · · , i − 1

< Ui, Uj >=
∑l

k=1 αi
k < Uk, Uj > +

∑i−1
k=l+1 αi

k < Wk, Uj >

[20]

At each orderi ≥ l+1, the coefficientsαi
k are solutions of the following linear system:







< U1, W1 > ... < U1, Wi−1 >
...

...
...

< Ui−1, W1 > ... < Ui−1, Wi−1 >













αi
1
...

αi
i−1






=







< U1, Ui >
...

< Ui−1, Ui >







[21]

Let us remark that the resolution of this linear system [21], necessitates only the
knowledge of the vectorsWi at previous ordersk ≤ i − 1. Particularly at the order
i = l + 1, the matrix of the linear system [21] depends only on the vectors(Uk)l

k=1.
So we can compute the coefficientsαi

k and the vectorsWi recurrently from the order
i = l + 1. If we introduce the notations

for i = 1, · · · , l :

αi
k =

{

0 if k = 1, · · · , i − 1
1 if k = i

for i = l + 1, · · · , p :
αi

i = 1,

[22]

the vectors(Ui)
p
i=1 can be written in the new basis(Wi)

p
i=1 as follows:

Ui =

i
∑

k=1

αi
kWk [23]

and the polynomial representation [2] can be written in the new basis under the form:

Upol(p)(a) = U0 + ag1(a)W1 + a2g2(a)W2 + ... + apgp(a)Wp

= U0 +
∑l

i=1 aigi(a)Ui +
∑p

i=l+1 aigi(a)Wi

[24]

where the component functionsgi are scalar series defined by:

gi(a) =

p−i
∑

k=0

αk+i
i ak [25]
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The representation [24] may be truncated at an orderq. To obtain rational rep-
resentations, one replaces the scalar seriesgi by Padé approximants with a common
denominatorgi[Li, M ] = Ai

B
. The polynomialsAi andB are respectively of degrees

Li andM and satisfy (Ki = Li + M ):

Bgi(a) − Ai(a) = O(aKi+1) [26]

From the relation [26], a linear system permits to compute the coefficientsAi
k andBk.

for i = 1, · · · , q :






∑j

k=0 Bkgi
j−k − Ai

j = 0 for j = 0, · · · , Li

∑j
k=0Bkgi

j−k = 0 for j = Li + 1, · · · , Ki

[27]

Let us notice that we must haveM =
∑q

i=1

(

Ki −Li
)

to obtain a linear system with

the same number of rows and columns. The parameterλ is also approximated by a
rational fractionAλ

B
whereAλ is a polynomial of degreeLλ satisfying:

Bλ(a) − Aλ(a) = O(aLλ+1) [28]

So a new family of vectorial Padé approximants is obtained:

Urat(p)(a) = U0 +
∑q

i=1 aigi[Li, M ](a)Wi

λrat(p)(a) = λ[Lλ, M ](a)
[29]

The rational representation [29] is defined by the choice of the numberl, which
defines the range from which we construct the new basis, by the order of troncatureq
and by the degrees(Ki)q

i=1, (Li)q
i=1 andLλ.

2.4. Continuation procedure

The representations [2], [16] or [13], [17] or [18] or [29] permit to compute only
a part of the solution path. To obtain the entire solution path, Cochelin [COC 94c]
proposed a continuation procedure for the vectorial series representation [2] based on
the following criterion:

amaxs = (ǫpol

||U1||
||Up||

)
1

p−1 [30]

which gives an evaluation of the domain of validity of the polynomial representation.
Once the determination of the domain of validity is done, by the computation of the
radius of validityamaxs for a fixed toleranceǫpol, the vectorial series representation
[2] can be applied in a continuation procedure to obtain the entire solution path step
by step.
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To introduce the vectorial Padé representation [13], [17] in a continuation algo-
rithm, Elhage et al. [ELH 00] proposed another criterion defined by:

||Upad(p)(amaxp) − Upad(p−1)(amaxp)||
||Upad(p)(amaxp) − U0||

= ǫpad [31]

which gives an evaluation of the radius of validityamaxp of the rational representation
[13], [17] for a fixed toleranceǫpad, by using a dichotomy process.

We shall use the same criterion [31] to introduce the two proposed vectorial Padé
representations [18] and [29] in a continuation process.

3. Numerical results and discussion

3.1. Definition of the tests and of the Padé approximants

The numerical robustness of the approximations obtained by the vectorial series
representation and by the different vectorial Padé representations is discussed on the
basis of tests emanating from non-linear elastic thin shell analysis.

L

L

R

Θ

λ P
Hinged Free

rd E=3102.75 Mpa
R=2540 mm    L=254 mm
Θ=0.1  
ν=0.3  P=1000 N

h

Pλ

L

L=200 mm

h=1 mm

t=79.5 mm

ν=0.3

R=100 mm R
s=80 mm

A

t

s

P=981 N/mm
2

h

E=71122.5 N/mm

Figure 1. (a) Cylindrical roof loaded in its center, (b) Cut out cylinder with a com-
pression load

The first example is a cylindrical roof hinged along two opposite sides and submit-
ted to a concentrated forceλP at the central point (figure 1-a). By assuming symmetry
conditions, only one quarter of the shell is discretized with200 triangularDKT 18 el-
ements for a total number of degrees of freedom equal to726. The analysis is carried
out with two differents values of the thickness:h1 = 12.7mm andh2 = 6.35mm.

The second example is a cylinder with two diametrically opposite cut out loaded
by a uniform compressionλP (figure 1-b). For symmetry reasons, one eight of the
structure is discretized with1608 triangularDKT 18 elements. The total number of
degrees of freedom is5190.

On these figures, the approximations are labelled:



Vectorial Padé approximants 41

– pol if we use the vectorial series representation [2], [16],

– pad if we use the usual vectorial Padé representation [13], [17],

– npad if we use the improved vectorial Padé representation [18]

– rat if we use the new representation [29] and if the series [24] is truncated at the
orderq = p − 1

– nrat if we use [29] and if the series [24] is truncated at the orderq = p.

The quality of one ANM step is evaluated from load-deflection curves and residual-
deflection curves and the main criterion is the step length. These curves are reported
on figures 2, 3, 4, 5, 6.

For the orthonormalization of the basis, the modified Gram-Schmidt algorithm,
presented in the fourth part, has been used.

To analyse the quality of the new rational representation [29], we shall test different
values of the numberl ( l is the number of vectors that are not orthonormalized) and
two sorts of choices for the degreesKi, Li, Lλ according to the order of truncatureq
of the series [24]:















q = p − 1
Ki = p − i i = 1, · · · , q
Li = p − i − 1 i = 1, · · · , q
Lλ = p − 1

[32]















q = p
Ki = p − i i = 1, · · · , q
Li = p − i − 1 i = 1, · · · , p − 1, Lp = 0
Lλ = p

[33]

The approximations corresponding to the choicesl = p − 5, p − 4, p − 2 and
p − 1 are respectively labelledrat1, rat2, rat3 andrat4 for the degrees in [32] and
respectively labellednrat1, nrat2, nrat3 andnrat4 for the degrees in [33].

3.2. Single step analysis

We compare the different vectorial Padé approximations in the case of the cylin-
drical roof (h1 = 12.7) at orderp = 6 on the figure 2 and at orderp = 20 on the
figure 6. For the cut out cylinder, the approximations at orderp = 8 are compared
on the figure 3. For the cylindrical roof withh2 = 6.35, the approximations at order
p = 12 are compared on the figure 4 and the approximations at orderp = 18 are
compared on the figure 5. The reference curves (labelledref ) have been obtained by
the Newton-Raphson method.

If the range of validity (r.o.v) of each approximation is defined by assigning a max-
imal value of the norm of the residual vector, the r.o.v of the polynomial representation
(pol), except for the case at orderp = 6, is lower than the one of all vectorial Padé
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Figure 2. (a) Load-displacement and (b) residual curves for the cylindrical roof:
h1 = 12.7, orderp = 6
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Figure 3. (a) Load-displacement and (b) residual curves for the cut out cylinder: Or-
derp = 8
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approximations. For all these approximations a large order of truncature increases the
r.o.v.

The largest r.o.v is always obtained by the use of the new vectorial Padé approxi-
mant (npad, nrat) i.e. when we keep the last term in the series [12].
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Figure 5. (a) Load-displacement and (b) residual curves for the cylindrical roof:
h2 = 6.35, orderp = 18
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Figure 6. (a) Load-displacement and (b) residual curves for the cylindrical roof:
h1 = 12.7, orderp = 20

One can observe from figure 2 that for small orders (p = 6), the r.o.v of the poly-
nomial representation (pol) is larger than the one of the vectorial Padé approximants
(pad, rat), i.e. no convergence acceleration, while the r.o.v of the new vectorial Padé
approximants (npad, nrat) seems larger. Thus for a small order of truncature it is
interesting to keep the last term in the series [12] to define Padé approximants.

In the case of the vectorial Padé approximants (rat, nrat) [29], one can see from
the figures ( 2, 3, 4, 5, 6 ) that, for each example and for each order, there is no influ-
ence of the parameterl (the number of vectors that are not orthonormalized). Indeed
these figures show that the curvesrat1, 2, 3, 4 (respectivelynrat1, 2, 3, 4) coincide
for each example and for each order. For instance, in the case of an order of truncature
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p = 20, the curverat1 in the figure 6 has been obtained by orthonormalizing only the
last 5 vectors. Hence it seems very interesting to use this representation in order to
avoid a large number of vectors orthonormalization.

3.3. Multi-step analysis

We consider now two numerical examples in order to discuss the continuation al-
gorithm based on vectorial Padé approximations. In this comparison, the total number
of steps is the measure of the efficiency of the algorithms.

In the many numerical experimentations that have been done [JAM 02], the contin-
uation algorithm based on vectorial Padé approximants is more attractive than the one
based on the vectorial series representation. The use of vectorial Padé approximations
decreases considerably the number of steps.
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Figure 7. (a) Load-displacement and (b) residual curves for the cylindrical roof:
h2 = 6.35, orderp = 20, ǫpol = ǫpad = 10−8
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Figure 8. (a) Load-displacement and (b) residual curves for the cut out cylinder: Or-
derp = 20, ǫpol = 10−8 = ǫpad = 10−8
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For the following tests, the accuracy parameters, in criterion [30], [31] , are chosen
asǫpol = ǫpad = 10−8 and we consider the truncation orderp = 20.

In the case of the cylindrical roof with a thicknessh2 = 6.35, figure 7, the number
of steps to get the solution until a deflectionω = 16.85 is reduced from11 with
the series (pol) to 6 with the classical vectorial Padé approximants (pad). Thus the
number of steps is reduced by a factor of two.

For the cut out cylinder, figure 8, the number of steps to get the solution until a
radial displacementr = 11.8 is reduced from17 with the series (pol) to 10 with the
classical vectorial Padé approximants (pad).
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Figure 9. Load-displacement and residual curves for the cylindrical roof withh1 =
12.7: Order p = 8, ǫpol = 10−6, ǫpad = 10−6, ǫnpad = 10−5. Comparison of two
Padé approximants in a continuation process.

For the chosen accuracy parameters, the residual remains almost constant along
the solution path except for the first step, see figure 7-b for the cylindrical roof and
figure 8-b for the cut out cylinder. The residual remains small along the solution path:
it is lower than10−6 for the cylindrical roof and it is lower than10−4 for the cut out
cylinder. So the continuation algorithm provides a satisfactory solution without any
corrections for the chosen accuracy parameters.

We consider now two numerical examples in order to discuss the continuation
algorithm based on the usual vectorial Padé representationpad [13], [17], and the
improved vectorial Padé representationnpad [18] whith a small truncation order.

For the first test: cylindrical roof with a thicknessh2 = 12.7 (see figure 9), the ac-
curacy parameters are chosen asǫpol = ǫpad = 10−6, ǫnpad = 10−5 and we consider
the truncation orderp = 8. These values ofǫpad andǫnpad have been chosen to yield
about the same residual curve.

The number of steps to get the solution untilw = 24 is equal to8 with the usual
vectorial Padé representationpad and only equal to7 to get the solution untilw = 25
with the improved vectorial Padé approximants (npad), see figure 9-a. From figure
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9-b, one checks that, for the chosen accuracy parameters, the residual remains small
and the same for the two approximations.

For the second test: cylindrical roof with a thicknessh2 = 6.35 (see figure 10),
the accuracy parameters, in criterion [30], [31], are chosen asǫpol = 10−7, ǫpad =
4.10−7, ǫnpad = 2.10−7 and we consider the truncation orderp = 12. In this test
13 steps permit to obtain the solution untilw = 21 with the usual vectorial Padé
representationpad and untilw = 25 with the improved vectorial Padé approximants
npad (see figure 10-a). The residual (figure 10-b) remains small and the same for the
two approximations.
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Figure 10. Load-displacement and residual curves for the cylindrical roof withh2 =
6.35: Order p = 12, ǫpol = 10−7, ǫpad = 4.10−7, ǫnpad = 2.10−7

4. Influence of the Gram-Schmidt orthonormalization and the scalar product

4.1. Gram-Schmidt orthonormalization procedures

Let us recall that a process of orthonormalization is a numerical instability source
[LIN 00]. There are numerical instabilities in the computation of the Gram-Schmidt
coefficientsαi,j and the latter can change all the coefficientsBi. So we must be able
to compute accurately the coefficientsαi,j . This point has been discussed in [NAJ 96],
[CHA 97], [NAJ 98], [JAM 02], in the case of an elastic beam subjected to a bending
force. The comparison between the exact coefficients of Gram-Schmidt procedure
using a symbolic software (MAPLE) and those obtained by finite elements shows that
numerical errors are accumulated and that the new vectorsU∗

i are completely false
beyond a certain order.

Results in [CHA 97] clearly show the influence of the orthonormalization with-
out establishing if instabilities are due to the orthonormalization or something else as
the calculation of the vectors themselves. One can also note that these instabilities
do not prevent a better solution quality than the series nor a good evaluation of the
smallest pole, that is assimilated to the radius of convergence [ELH 00]. But one has
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also observed, especially in iterative algorithms, that the residual-order curves had a
bizarre behaviour at large orders, that let suppose a harmful numerical instability effect
[MAL 99], [MAL 00]. Is one able to reduce them while only changing the technique
of orthonormalization or the scalar product?

The classical Gram-Schmidt algorithm (CGS) is summarized in the first column of
the table 1. We have observed in many tests that, using this algorithm, the new vectors
U∗

i are completely false beyond a small order [NAJ 96], [NAJ 98]. It is known that
the modified Gram-Schmidt algorithm (MGS), which is summarized in the second
column of the table 1, provides a better stability.

The accuracy of the classical Gram-Schmidt algorithm can be vastly improved by
applying it iteratively. This so-called iterated Gram-Schmidt procedure has been used
in [HOF 89]. This algorithm (IGS), which is an iterative version of the classical one,
is presented in the third column of the table 1. Let us notice that with one iteration
of IGS, for each vector, we get back the CGS algorithm. An important part of the
algorithm is the stopping criterion||U∗k

i || > β||U∗k−1
i || which depends on an arbi-

trary parameterβ. In [HOF 89], [JAM 02], it has been shown that the IGS algorithm
converges within two iterations withβ ≈ 0.5.

CGS MGS IGS

for i=1,· · ·,p do for i = 1, · · · , p do for i = 1, · · · , p do
for j=1,· · ·,i-1 qi = Ui U∗0

i = Ui, α0
i,j = 0

αi,j =< Ui, U
∗
j > for j=1,· · ·,i-1 for k = 1, 2, · · · do

enddo αi,j =< qi, U
∗
j > for j = 1, · · · , i − 1 do

qi = Ui −
∑i−1

j=1 αi,jU
∗
j qi = qi − αi,jU

∗
j γk

i,j =< U∗k−1
i , U∗

j >

U∗
i = qi/||qi|| enddo αk

i,j = αk−1
i,j + γk

i,j

enddo U∗
i = qi/||qi|| enddo

enddo U∗k
i = U∗k−1

i − ∑i−1
j=1 γk

i,jU
∗
j

if ( ||U∗k
i || > β||U∗k−1

i ||) then
stop
endif
enddo
U∗

i = U∗k
i /||U∗k

i ||
for j = 1, · · · , i − 1 do
αi,j = αi,j

k

senddo
enddo

Table 1. The classical (CGS), modified (MGS) and iterated (IGS) Gram-Schmidt al-
gorithms
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4.2. Comparison of the three Gram-Schmidt orthonormalizations

In this section, we chooseβ = 0.5 for the iterated Gram-Schmidt (IGS) algorithm.
To analyse the quality of the Gram-Schmidt algorithms (CGS, MGS and IGS), we
consider the criterionep defined by:

ep = ||QT
p Qp − Ip|| [34]

where the matrixQp is (U∗
1 , · · · , U∗

p−1), Ip is the identity matrix. In this section the
scalar product used, for the three Gram-Schmidt algorithms, is the ordinary scalar
product defined by< U, V >ORD=

∑N

k=1 UkVk whereU = (Uk)N
k=1 andV =

(Vk)N
k=1.
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Figure 11. Precisionep versus the order p

Let us recall that theoretically(< U∗
i , U∗

j >)1≤i,j≤p = Ip. Therefore, the preci-
sionep analyses the quality of the orthonormalization of the basis (U∗

i ).

In figure 11, we represent the decimal logarithm of the precisionep versus the order
of truncature p. The curves (CGS1, MGS1, IGS1) and (CGS2, MGS2, IGS2) corre-
spond to the cylindrical roof respectively with the thicknessh1 = 12.7 andh2 = 6.35
and (CGS3, MGS3, IGS3) correspond to the cut out cylinder [JAM 02], [JAM 03].

We observe in these tests (figure 11) that the better accuracy is obtained using the
IGS algorithm and that the CGS algorithm is the least accurate. The behavior of the
criterion [34] shows that the algorithm IGS is stable until the order p=40 while the
CGS and MGS algorithms loose their precision at respectively the ordersp ≃ 15 and
p ≃ 30.
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4.3. Influence of the scalar product

Let us notice that the vectors and the coefficients generated by Gram-Schmidt
procedure depend on the choice of the scalar product.

In this section we analyse the influence of the scalar product on the residual curve
of the classical rational representation at order30 and order60 in the case of the
cylindrical roof (h2 = 12.7). We use for this analysis two sorts of scalar product: the
ordinary scalar product (noted< ., . >ORD) and the mass scalar product defined by
< U, V >MAS= UT MV whereM is the mass matrix.

The figure 12 give the influence of the choice of the scalar product (ORD for ordi-
nary scalar product and MAS for mass scalar product) and the choice of the orthonor-
malization algorithm (CGS, MGS, IGS) on the classical vectorial representation of
one ANM step at orders30 and60.
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Figure 12.Residual curves for the cylindrical roof withh1 = 12.7: (a) orderp = 30,
(b) orderp = 60

One can see from this figure that if the IGS algorithm is used, the same result is
obtained for the two scalar products. The same behaviour is obtained when we use
the CGS algorithm. Hence there is no influence of the scalar product on these two
orthonormaliszation algorithms IGS and CGS. Let us notice that the accuracy of the
solution with IGS is better than the one with CGS. These results are not surprising
because the algorithm IGS is an iterative version of the classical one CGS.

The figure 12 shows clearly that, when we use the MGS algorithm (usually used
in the ANM), the residual curves change with the choice of the scalar product. Indeed
when we choose the ordinary scalar product, the residual curves obtained by using the
MGS algorithm coincide with those obtained by using the IGS algorithms and when
we choose the mass scalar product, the residual curves obtained by the MGS algorithm
coincide with those obtained by the CGS algorithm.

The Gram-Schmidt algorithms have been tested in the ANM continuation with a
large truncation orderp = 28, by using the ordinary scalar product (figure 13-a) and
the mass scalar product (figure 13-b).
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Figure 13. Load-displacement curves for the cylindrical roof withh1 = 12.7 at the
orderp = 28

One can see from the figure 13-a that if we use the ordinary scalar product, two
ANM steps coupled with IGS are slightly better than two ANM steps coupled with
MGS.

And from the figure 13-b, one can see that if we use the mass scalar product, two
ANM steps coupled with IGS are slightly equivalent to three ANM steps coupled with
MGS.

Thus for large order it seems more intersting to use IGS algorithm for orthonor-
malizing the basis.

5. Quadratic representation

The second and the third parts show us that one can improve clearly the domain
of validity of the polynomial representation by using Padé approximants. Can the
domain of validity of the rational representation be still improved by using another
approximants?

To define quadratic approximants [SHA 74] in the Asymptotic Numerical Method,
one can apply the same technique of orthonormalization, previously considered in
the section 2 for Padé approximants, and replace the components functionsf i by
quadratic approximantsf i[Li, M i, N i]. This work has been published in [JAM 01]
and an example of plate shows that good approximations are obtained with the quadratic
representation but with a lot of poles in the domain of validity.

To avoid the apparition of poles, we consider quadratic approximants having two
polynomials in common. The idea, [JAM 01], [JAM 02], is to replace the seriesf i by

quadratic approximantsf i[Li, M, N ] =
−B±

√
B2−AiC

C
having the two polynomials

B and C in common and solutions of the quadratic equations:

Cf i[Li, M, N ]2 + 2Bf i[Li, M, N ] + Ai = 0 [35]



Vectorial Padé approximants 51

The polynomials(Ai), B andC have respectively for degrees(Li), M andN and
satisfy the relation:

C(f i)2 + 2Bf i + Ai = O(aKi+1) [36]

where(Ki) are arbitrary integers. To compute the coefficients of polynomials(Ai),
B andC, linear equations are deduced by identification:

for i = 1, · · · , q
{

for j = 0, · · · , Li

∑j

k=0Ckδi
j−k + 2

∑j

k=0Bkf i
j−k + Aj = 0

[37]

{

for j = Li + 1, · · · , Ki

∑j
k=0Ckδi

j−k + 2
∑j

k=0Bkf i
j−k = 0

[38]

where the coefficientsf i
k andδi

k are respectively the coefficients of the seriesf i and
(f i)2:

f i(a) =
∑p−i

k=0 f i
kak =

∑p−i

k=0 αi
i,k+ia

k,

(f i)2(a) =
∑p−i

k=0 δi
kak with δi

j =
∑j

k=0 f i
kf i

j−k

The degreesKi are chosen such that
∑q

i=1(K
i − Li) = M + N + 1. The linear

equations [38] permit to construct a linear system which defines the coefficients(Bk)
and(Ck) with a normalization condition on one coefficient of the polynomialsB or
C, for instanceC0 = 1 . So the coefficientsAi

k can be computed from relations [37].

For the quadratic approximation of the load parameterλ, the parameterλ∗(a) =
λ(a)−λ0

a
is replaced by a quadratic approximantλ∗[Lλ∗

, M, N ] having the same poly-
nomials B and C. So only the coefficients of the polynomialAλ∗

have to be computed
by the relation:

{

For j = 0, · · · , Lλ∗

Aλ∗

j =
∑j

k=0 Ckδλ∗

j−k + 2
∑j

k=0Bkλ∗
j−k

[39]

After having computed all the coefficients of polynomials(Ai), Aλ∗

, B andC,
the sign± has to be chosen in the quadratic approximation. The algorithm proposed
in the table 2 is a method to choose the sign±. The aim of this algorithm is to obtain
the solution which has the best Mac-Laurin development.

Then the vectorial quadratic representation of the solution is defined by:

{

[Uquad(p)(a)] = [U0] +
∑q

i=1 aif i[Li, M, N ](a)[U∗
i ]

λquad(p)(a) = λ0 + aλ∗[Lλ∗

, M, N ](a)
[40]
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On figure 14, the quadratic representation [40] (labelledapq) has been compared to
the polynomial representation (labelledpol) and to the classical rational representation
(labelledpad) by considering the following choice of degrees :































q = p
Ki = p − i for i = 1, · · · , q
Li = p − i − 2 for i = 1, · · · , 14
Li = p − i for i = 15, · · · , p
M = 29 − p, N = p − 2

Lλ∗

= p − 1

[41]

We note on the load-displacement curves (figure 14), that the prediction of the
solution by the quadratic representationapq is better than the polynomial representa-
tion pol. But the better prediction seems to be the rational representationpad for this
choice and this example.

1• Compute the polynomial developpement of
√

W i (W i = B2 − AiC)

⇓

2• If there isβ = ±1 such thatCf i + B + β
√

W i = 0 then choose the sign of−β

⇓

3• Else compute the numbersd+1 andd−1 from the relation

Cf + B ±
√

W = O(ad±1)

• If d+1 ≤ d−1, choose the sign+.

• Else choose the sign−.

Table 2. Algorithm of the choice of the sign± for quadratic approximants

In [JAM 02], a lot of choice of quadratic approximations has been considered for
all the tests presented in this paper but we have not found yet a good strategy, except
for the example of a plate loaded in its center (figure 15). For this example we have
done the following choice (labelledapq).































q = p
Ki = p − i for i = 1, · · · , q
Li = p − i − 6 for i = 1, · · · , LM = E(2p−1

6 )
Li = p − i for i = LM + 1, · · · , p
M = p − 1, N = LM ∗ 6 − p

Lλ∗

= p − 1

[42]
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Figure 14. (a) Load-displacement and (b) residual curves for the cut out cylinder at
the orderp = 20
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Figure 15. Load-displacement curves for the plate problem at the orderp = 28

repr. pol pad apq
Step 1 w = 1.0269 w = 1.2522 w = 3.06571
Step 2 w = 2.1089 w = 2.7581 w = 13.7847

Table 3. Deflection w for each step of continuation for the plate problem: Order p=26

The results for this choice are plotted on figure 15. The figure 15-a shows that a
spectacular improvement is obtained with the quadratic representation. The reference
curve is recovered up to a deflection4 whereas the polynomial and rational represen-
tations concide with the reference curve until a deflection respectively of about1.4
and2. On the figure 15-b, the quadratic representation shows a better precision than
the representationspol andpad. For a maximal precision of10−4, we get a deflec-
tion of about2.3 by using the quadratic representation (apq) and only a deflection of
about1.2 and0.9 by using respectively the rational (pad) and the polynomial (pol)
representations.
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For the same example, the choice [42] has been considered in ANM continuation
process. The results are presented in table 3. This table show clearly that the ra-
tional representation is improved by quadratic approximants. If we use the vectorial
quadratic representation, one multiplies by three the range of validity obtained by the
polynomial representation and by two the range of validity obtained by the classical
rational representation. Two steps with the quadratic representation, multiply by5 the
range of validity obtained by two steps with the rational representation.

6. Conclusion

In this paper,3 sorts of vectorial Padé approximants have been defined to increase
the range of validity of the vectorial series approximation in the Asymptotic Numerical
Method.

The numerical experimentation, on non-linear shell problems, has shown that these
vectorial Padé approximants extend the range of validity and reduce the number of
steps needed in the ANM path following technique. From these tests, one can con-
clude that, first, it is interesting to keep the last term in the series [12] particularly for
small order of truncature (the improved vectorial Padé representation [18]). Second,
it seems very interesting to use the new vectorial Padé representation [29] in order to
avoid a large number of vectors orthonormalization.

We also showed that the better results, especially for large orders, are always ob-
tained by the iterative version of the classical Gram-Shmidt algorithm (IGS) and, mor-
ever, the efficiency of the IGS algorithm does not depend on the scalar product.

In the last section, we have defined vectorial quadratic approximants in the ANM.
In a specific case, these approximants have been proved very effecient.
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