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ABSTRACT. Plastic constitutive laws and frictional contact conditions induce strong nonlineari-
ties that one has to take into account in the numerical simulation of material forming processes.
In this work, we present a review of the different techniques which permit the asymptotic nu-
merical method (ANM) to be adapted to these nonlinearities. ANM needs regular relations
and quadratic equations if possible. Several examples show the effectiveness of the proposed
method.

RÉSUMÉ. Les lois de comportement plastique et les conditions de contact avec frottement représen-
tent des fortes non-linéarités qu’il faut prendre en compte dans la simulation numérique des
processus de mise en forme des matériaux. Nous présentons, dans ce travail, une revue des tech-
niques qui permettent d’adapter la méthode asymptotique numérique (MAN) à cette situation.
La MAN exige des relations régulières sous une forme quadratique de préférence. Plusieurs
exemples attestent de l’efficacité de la présente méthode.
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1. Introduction

In the present paper, we show how the asymptotic numerical method can be applied
to any kind of physical problems, especially those involving strong non linearities such
as unilateral contact, friction or plasticity.

It has been shown that this method is an efficient tool to solve smooth problems
such as non linear elasticity or Navier Stokes equations. The basic idea of the ANM
is first to choose a convenient framework to model the mechanical problem. This re-
quires regular functions with a moderate non linearity. A quadratic form written as
follows is prefered [COC 94] :

R(U, λ) = L(U) + Q(U, U)− λF = 0 [1]

where R is the so-called residual vector, L(.) and Q(., .) are linear and quadratic
operators, F is a given vector and λ is a scalar parameter. For geometrically non linear
elasticity, the unknown vector U includes both the displacement field and the stress
one. In this case, equation (1) involves the equilibrium condition and the constitutive
relation. Next, the selected variables (U , λ) of the proposed problem are expanded
into power series with respect to a scalar path parameter "a" :

U(a) − U0 =

n
∑

i=1

aiUi λ(a) − λ0 =

n
∑

i=1

aiλi [2]

This transforms the starting non linear problem (1) into a recurrent sequence of linear
ones admitting the same tangent operator. These linear problems can be written, for a
given order "p", as follows :

Lt(Up) = λpF + F nl
p [3]

where Lt(.) = L(.) + 2Q(U0, .), is the tangent operator defined at the starting point
(U0, λ0). These linear problems require the computation of right hand side terms

F nl
p = −

p−1
∑

r=1
Q(Ur, Up−r) which involve a simple sum combining the previous com-

puted solutions. Only a simple sum is computed because the governing equations are
chosen in a quadratic form. Consequently, computation time of F nl

p is relatively mod-
erate. Reference [ZAH 99] shows that time to compute about 20 terms of the series is
equivalent to the one needed to evaluate and decompose the tangent stiffness matrix
for a structure with 104 degrees of freedom. To improve the validity range of the so-
lution, the polynomial approximation (2) is replaced by rational fractions named Padé
approximants :

U(a) − U0 =

n−1
∑

i=1

fi(a)aiUi λ(a) − λ0 =

n−1
∑

i=1

fi(a)aiλi [4]

where fi(a) are rational fractions with the same denominator [NAJ 98] [BRA 97].
This reduces significantly the number of steps to obtain the solution branch.
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This technique has been applied with success to non linear shell structures [AZR 93]
[ZAH 99] and Navier-Stokes equations [HAD 95] [TRI 96] [CAD 97].

This paper aims to discuss how to solve non smooth problems using ANM. An
analytical solution branch of such problems is not possible if the governing equations
are not expressed in an analytical form. So, in order to apply the perturbation tech-
nique, the non smooth functions are replaced by smooth ones. Furthermore, it is not
straightforward to get the recurrence formulae to compute the series when the prob-
lem is not written in a simple form. Two ideas have been proposed to transform a
function in a convenient form so as to apply the perturbation technique : this consists
in introducing differential expressions and additional variables to set the problem into
the quadratic form aforementioned. In this case the unknown U holds new variables in
addition to the displacement and the stress fields. In what follows, this methodology
will be applied to several non smooth problems concerning contact mechanics, fric-
tion, plasticity and viscoplasticity. Results of the proposed algorithm will be compared
with that obtained with the classical iterative techniques.

2. Basic treatment of strong nonlinearities

2.1. Main ideas

In this section, the methodology to adapt non smooth functions to ANM is summa-
rized. We present then the key points for contact, plasticity, viscoplasticity and friction.
The methodology follows three main ideas : regularization, differential relations and
additional variables.

First, let us assume that the non linear problem exhibits a function such as y = |x|.
To apply a perturbation technique, one has to replace this function by a regular one.
A possible way is to introduce the following relation : y = (x2 + η2)1/2, where η de-
notes a small regularization parameter. This parameter is chosen to represent correctly
the non smooth function. Figure (1) shows possible regularizations of the proposed
function.

The second idea consists in introducing differential relations. Let us consider a
function in the form y = xα with α a non integer constant. In the ANM framework,
this relation is replaced by this differential one : xdy − αydx = 0 which allows one
to deduce simple recurrence formulae with the perturbation technique (see reference
[POT 97]).

The last idea consists in introducing additional variables to set the non linear prob-
lem into a quadratic form well adapted to ANM. In this manner a function such as
F = u3 is replaced by :

{

F = uv
v = u2
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This adds a new variable v which has to be stored but allows to minimize the
computation time and to make easier the computation of the series.
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Figure 1. Regularization of the function y = |x| ; a small value of η permits a good
approximation of the non smooth function

2.2. Treatment of unilateral contact

Contact problem is of great importance in industrial applications. This concerns
metal forming, drilling, crash... Numerical studies concern specially the contact ge-
ometry, the contact laws and the algorithms able to include these requirements in the
formulation [ALA 91] [SIM 92] [WRI 95].

We propose in this study to show how the contact conditions can be dealt with
in the ANM framework. A simple test is presented considering the frictionless con-
tact between a rigid straight line and a cantilever beam as shown in figure (2). As

δ

F

Figure 2. Cantilever beam undergoing into contact with a rigid straight line
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the contact is considered without friction, one can write the contact conditions in the
following form :















Rc = R
c.n

Rch = 0
Rc ≥ 0
h ≥ 0

[5]

where R
c, h and n denote respectively the contact force vector, the current clearance

and the normal vector to the rigid surface. These contact relations are not analytic,
so they are not adapted to the ANM algorithm. For this reason, these relations are
replaced by a smooth one as follows :

R
ch = ηc(δ − h)n [6]

where δ is the initial clearance and ηc is a regularization parameter. In fact, the reg-
ularised law (6) can be seen as the result of the application of the penalty technique
to (5). Figure (3) shows the influence of the regularization parameter on the contact
response. Small values of ηc allow a good estimation of the contact force. But if a
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Figure 3. Contact regularization with different values of ηc

more general shape of the rigid surface is considered, this induces a different gap δ for
each contact node. To get a uniform regularization in this case, a procedure has been
proposed that defines ηc at each contact point as a function of the local initial clear-
ance and of two given numbers : a typical contact force Rd and a typical clearance hd

[ELH 98a]. At each contact point, ηc is given by :

ηc(x) = Rdhd/(δ(x) − hd) [7]
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where x denotes the position of the considered contact point.
The contact law (6) does not allow any interpenetration. Abichou [ABI 01] has pro-
posed another soft contact law expressed as follows :

{

(Rc/k + h)Rc = ηc(δ − h)
R

c = Rc
n

[8]

where k is a parameter defining the stiffness of the contact surface. For a large value
of k, the contact law (8) tends to the harder contact relation (6). Figure (4) pictures the
proposed contact relation (8) for different values of k and ηc.
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Figure 4. Soft contact law with different values of k and ηc

2.3. Treatment of perfect deformation plasticity

Industrial processes involve non linear material behaviour. To deal with numerical
metal forming within ANM, it is necessary to adapt the constitutive laws used in such
cases. In this section, a constitutive law based on an elastic-perfectly plastic behaviour
is considered. The uniaxial relations can be written as follows :

ε =
σ

E
if |σ| < σy

[9]

ε =
σ

E
+ εp if |σ| = σy
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where ε, σ, εp, E and σy denote respectively the strain, the stress, the plastic deforma-
tion, the Young’s modulus and the yield stress. This stress-strain relation is singular at
the yield limit. Then it can be replaced by an hyperbolic relation [BRA 95] :

E ε = σ +
ηp σ2

y

σ2
y − σ2

σ [10]

Note that this hyperbolic relation involves two branches (see figure 5). The first
branch corresponds to a stress which is below the yield stress σy and never passes
over it. For small values of the regularization parameter ηp, this first branch is close
to the elastic-perfectly plastic law (9) and therefore it is physically admissible. In the
second case, σ is greater than σy which is not acceptable.

To set this law in a quadratic framework, it is sufficient to introduce two new

variables : ζ =
ηp σ2

y

σ2
y − κ

and κ = σ2. The constitutive law is then described by the

following equations :






E ε = σ + ζ σ
ζ (σ2

y − κ) = ηp σ2
y

κ = σ2
[11]

σ 
/ σ

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.01 -0.005 0 0.005 0.01

ε

Inadmissible curves

η = 0.1

η = 0.01

η = 1.

Admissible curves

p

p

p
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2.4. Treatment of viscoplasticity

We present here another source of nonlinearities. It concerns the material be-
haviour in hot metal forming processes. A viscoplastic law based on the Norton-Hoff
model is considered :

σ′ =
2

3
k(α + ε̄)nD̄m−1

D
′ [12]

The parameters k, α, n and m describe the material properties. σ′ denotes the devia-
toric part of the Cauchy stress, D

′ is the deviatoric strain rate tensor and D̄ denotes
the equivalent strain rate defined by the following relation :

D̄2 =
2

3
D

′ : D′ [13]

ε̄ represents the cumulated plastic strain given by :

dε̄

dt
= D̄ [14]

Equation (12) is not adapted to a direct expansion into power series because it ex-
hibits the same difficulties as those encountered in contact or plasticity problems. So,
to adapt the viscoplastic law to the ANM framework, we apply the three procedures
that have been described before. First, we introduce additional variables C, H, Q :



















σ′ = CD
′

C =
2

3
kHQ

H = (α + ε̄)n

Q = D̄m−1

[15]

The second step consists in introducing differential relations for the equations with
power terms. This transforms equations (15 c) and (15 d) into :

{

(α + ε̄) dH = n H dε̄
D̄ dQ = (m − 1) Q dD̄

[16]

The last step concerns the regularization procedure. In order to avoid a singularity
for a zero strain rate, the equivalent strain rate is slightly modified as follows :

D̄2 =
2

3
D

′ : D′ + (ηvp
vc

Lc
)2 [17]

where ηvp denotes a regularization adimensional parameter, vc and Lc represent re-
spectively a velocity and a length which are characteristic of the studied problem.
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2.5. Treatment of the friction law

In metal forming processes, the contact between sheet and tool always involves
friction phenomena which are not negligible in many situations. When contact oc-
curs, a contact force appears. It can be decomposed into a normal component and a
tangential one :

R
c = R

c
n + R

c
t [18]

The normal component Rc
n is given by the following relations as it has been presented

in section (2.2) :
{

Rc
n = R

c.n
Rc

n = ηc(δ − h)/h
[19]

For the friction law, we consider the one proposed by Chenot [CHE 93] which
takes into account both the contact pressure and the slip velocity. The tangential reac-
tion is then expressed in the following form :

R
c
t = −µ | Rc

n || vt |
q−1

vt [20]

where µ is the friction coefficient, vt is the tangential slip velocity and q is the sensi-
tivity coefficient to slip velocity. For q = 0, the Coulomb friction law is recovered.

To adapt the friction law to the ANM framework, we use the following relations :



































R
c
t = −µ | Rc

n | vq

vn = (v − v0). n

vt = v − v0 − vn n

S = vt.vt + (ωvc)
2

P = S(q−1)/2 ⇒ SdP =
q − 1

2
PdS

vq = Pvt

[21]

Once more, we have introduced a regularization parameter ω to avoid the singu-
larity obtained for vt = 0. (vc is a typical velocity of the problem).

2.6. Bibliographical comments

Over the last decade, problems involving strong non linearities have become one
of the most challenging problems for the ANM. The main difficulty was to find a
technique to adapt equations involving different nonlinearities and to optimize the
algorithm. A first attempt to solve problems involving plasticity is due to Yokoo
et al. [YOK 76]. Braikat has proposed some techniques for non linear constitutive
laws [BRA 95]. Potier-Ferry et al. have introduced differential relations to set func-
tions with power terms into more convenient forms for the perturbation technique
[POT 97]. Inspired by this idea, many contributions have been then proposed : for
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plasticity [BRA 97] [ZAH 98] [IMA 01] [MAL 99], hyperelasticity [GAL 00], vis-
coplasticity [DES 97] [BRU 99], contact mechanics [ELH 98b] [AGG 03], fluid me-
chanics [CAD 01]. Contributions of the ANM coupling several non linearities can be
found in [BRU 99] [ABI 02].

3. Computational techniques

3.1. How to compute the series ?

In section 2, we have shown how to adapt strongly non linear relations to the ANM
framework. The transformations lead to additional variables and then to new equa-
tions. When these relations are well established, it is easy to apply the perturbation
technique. Let us describe the procedure to follow for the plasticity problem discussed
in section (2.3). By considering the system (11) and expanding into power series the
variables (ε, σ, ζ, κ) in the neighbourhood of a known solution (ε0, σ0, ζ0, κ0), one ob-
tains a sequence of linear problems.
For order 1 :







E ε1 = σ1 + ζ0 σ1 + ζ1 σ0

ζ1(σ
2
y − κ0) − ζ0 κ1 = 0

κ1 = 2 σ0 σ1

[22]

For order n :






























E εn = (1 + ζ0)σn + ζnσ0 +
n−1
∑

i=1

ζiσn−i

ζn(σ2
y − κ0) − ζ0κn −

n−1
∑

i=1

ζiκn−i = 0

κn = 2σ0σn +
n−1
∑

i=1

σiσn−i

[23]

Order 1 permits to compute the tangent modulus. By substituting (22b) and (22c) into
(22a), one obtains the following relation :

σ1 = Dtε1 [24]

where Dt is identified to the tangent modulus : Dt = E/(1 + ζ0 +
2 ζ0 σ0

σ2
y − κ0

).

For order n ≥ 2, one substitutes (23b) and (23c) into (23a), to obtain the following
relation :

E εn = (1+ζ0+
2ζ0σ0

σ2
y − κ0

)σn+
σ0

σ2
y − κ0

(

ζ0

n−1
∑

i=1

σiσn−i +

n−1
∑

i=1

κiζn−i

)

+

n−1
∑

i=1

ζiσn−i

[25]
which can be written as follows :

σn = Dtεn + σnl
n [26]
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where σnl
n is a stress depending on the terms computed at the previous orders :

σnl
n = −

1

1 + ζ0 +
2 ζ0 σ0

σ2
y − κ0

[
σ0

σ2
y − κ0

(

ζ0

n−1
∑

i=1

σi σn−i +

n−1
∑

i=1

κi ζn−i

)

+

n−1
∑

i=1

ζi σn−i]

[27]

Last, ζn and κn are computed from equations (23b and 23c). The appendix details
the computational procedure for a nonlinear law involving non integer power coeffi-
cient.

It is easy to implement this procedure in the case of a variational formulation of
a three dimensional problem. By considering small displacements, the equilibrium
equation can be written in the following form :

∫

Ω

tσ : δε dv − λPe(δu) = 0 [28]

The perturbation technique leads to a set of linear problems. At order 1, the tangent
problem is given by :

∫

Ω

tσ1 : δε dv = λ1Pe(δu) [29]

By considering the three dimensional version of equation (24), one obtains the
following classical linear problem :

∫

Ω

tε1 : Dt : δε dv = λ1Pe(δu) [30]

For order n, one obtains :
∫

Ω

tεn : Dt : δε dv = λnPe(δu) −

∫

Ω

tσnl
n : δε dv [31]

These linear problems are solved using the finite element method. Only the displace-
ment field has to be discretized :

{εn} = [B]{qn}
e [32]

where [B] is the strain-displacement matrix and {qn}
e is the nodal displacement vec-

tor of the element ’e’. Hence the discretized problem can be set in the following form :

[KT ]{qn} = λn{F}+

NbElt
∧

e=1

{F nl
n }e [33]

where
∧

is the standard assembly operator, NbElt is the element number of the dis-
cretized structure, {F} is the applied loading and [KT ] is the tangent stiffness matrix :

[KT ] =

NbElt
∧

e=1

(
∫

Ωe

t[B][Dt][B] dv

)

[34]
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Of course, this tangent matrix is exactly the same as in a classical Newton algorithm.
The only new quantity within ANM is the right hand side {F nl

n }e, that looks like a
residual vector. With the present model, it is only a function of the quantity {σnl

n } that
is the 3D extension of (27) :

{F nl
n }e = −

∫

Ωe

t[B]{σnl
n } dv [35]

Note that, for the proposed problem, the variables to be stored are the nodal dis-
placement vector q, the stress tensor σ and the additional variables ζ and κ at each
integration point : U = (q, σ, ζ, κ).

3.2. Computational strategies

Since the series are computed following the procedure detailed in section (3.1),
the polynomial representation is replaced by Padé approximants (4) to improve the
validity range of the solution. The path following technique has been presented in
[ELH 00]. The maximal value of the path parameter ’a’ is defined as follows :

δ1 '
‖un(amax) − un−1(amax)‖

‖un(amax) − u0‖
[36]

The main parameters to compute a solution branch are the truncation order ’n’ and
the control parameter ’δ1’. The optimal truncation order lies generally in the range 10-
20 for problems involving a moderate number of degrees of freedom (d.o.f. ≤ 104).
The choice of the value of the parameter ’δ1’ is not obvious. This defines various
computational strategies : one can choose a very small value of ’δ1’ to obtain the
solution without corrections but this strategy may induce a large number of steps.
Larger values of ’δ1’ require correction phases.

One can correct the solution using the classical Newton Raphson scheme as in
[DES 97] or by performing a high order corrector algorithm recently proposed based
on ANM and homotopy transformations [MAL 00] [LAH 02]. In the last case, we
have implemented an algorithm with a strategy based on the matrix of correction to
use the same triangulated matrix for the prediction and the correction. In this proce-
dure referred as strategy 2 in [LAH 02], the consistent tangent matrix to compute the
series (33) is replaced by the one of the previous correction phase. When the residual
is greater than δ2 = 10−2 one corrects the solution to obtain a weaker residual with an
acceptable tolerance δ3 = 10−4. Let us present a scheme of the proposed algorithm :

a : Compute the prediction curve by Padé approximants with a truncation order
n = Npred. Except at the first step, the tangent operator used for the prediction is the
one already decomposed for the correction phase of the previous step,

b : Define the end step of the prediction curve by formula (36). The step length
"amax" depends on the control parameter "δ1" and the truncation order "Npred",
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c : Compute the residual R(amax).

If ‖R(amax)‖ ≤ δ2‖λ(amax)F‖,

then compute the next step (go to "a")

else perform the corrections,

d : Compute the corrections with a truncation order n = Ncorr.
If Ncorr = 1, the classical modified Newton algorithm is used,
else an homotopy transformation allows us to perform the corrections with a high
order and Padé approximants to obtain : ‖R‖ ≤ δ3‖λF‖. In this case, generally only
one iteration is needed.

Next go to "a".

To improve the reliability, we reduce the step length when the residual is too bad
until it becomes smaller than 10−1. Next a correction phase can start. For contact
problems, the step length is also reduced when a penetration occurs.

4. Numerical applications

This section is devoted to numerical simulations of non linear problems involving
different non linearities. Numerical results are compared to those obtained with the
classical iterative algorithms. The first test concerns a simple traction of a plate to
show the ability of ANM to correctly represent the non linear constitutive law based on
the elastic perfectly plastic behaviour. The second test concerns the unilateral contact
problem between a cantilever beam and a plane rigid surface. The last test deals with
the hemispherical deep drawing coupling large displacements, viscoplasticity, contact
and friction.

4.1. Simple traction of a plate

Let us consider a rectangular plate submitted to an uniaxial loading. The geometry
is defined by a length L = 10, a width l = 1 and a thickness h = 1. The proposed
problem involves small displacements but a non linear constitutive law. The elastic-
perfectly plastic behaviour is considered with the following material data : E = 105,
ν = 0.3, σy = 200.

The stress-strain relation is regularized and then replaced by the formula (10). The
regularization parameter ηp is of great importance. Figure (6) shows the influence of
this parameter on the load/displacement response. To describe correctly the material
behaviour, one must choose ηp ≤ 10−1.
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The parameter δ1 which defines the step length has to be chosen carefully. Large
values of δ1 allow one to increase the step length. But in this case a non valid solution
path corresponding to a stress which passes over the yield stress σy can be followed.
To obtain a displacement of 5% of the plate length, one needs only 9 steps using series
with n = 15, δ1 = 10−3 and ηp = 10−2. The residual remains very small, less than
10−5, so no correction is needed.

Note that with the classical iterative techniques, for each prediction or correction
phase, the non linear constitutive equation must be solved at each integration point
to compute the stress field corresponding to the displacement increment. In the ANM
context, this non linear equation is strictly taken into account throughout the com-
putation procedure. More complicated tests can be found in [ZAH 98] with various
constitutive laws.

The proposed test shows the applicability of the ANM procedure to non linear
constitutive laws. The unloading is not taken into account but it will be presented
soon.
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4.2. Unilateral contact

This example deals with the frictionless contact between a cantilever beam and
a plane rigid surface. The structure is discretized with classical four nodes elements
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considering a plane stress state. Boundary conditions as well as material and geomet-
rical data are given in figure (7). The initial clearance is the same for all the contact
nodes and is equal to 2 mm. The parameter ηc introduced in section (2.2) is chosen
equal to 10−3 allowing a consistent force distribution on the interaction line. Results
of our study are compared with those of the industrial code Abaqus. This code uses
the Lagrange multipliers procedure coupled with the Newton-Raphson algorithm. This
example has already been discussed within ANM framework by Elhage [ELH 98b].

The proposed problem is solved using a high order prediction-correction algo-
rithm. This associates the classical ANM with a high order corrector as proposed in
[LAH 02] [AGG 03]. Two techniques of discretization have been used. In the first one,
the contact force is condensed and the final linear problems (as in equation (33)) are
set in terms of the nodal displacement only as in [ELH 98b]. This method is referred
as "ANM + penalty" in table 1. The second technique consists in combining the per-
turbed lagrangian method with the ANM : the contact force is also discretized. It is
referred as "ANM + perturbed lagrangian" in table 1. The latter will permit us to avoid
an ill conditioning of the tangent matrix which is the typical drawback of the penalty
method. Details of this calculation will be explained in a next contribution.

Figure (8) shows the vertical displacement of the node ’A’ versus the loading :
ANM results are in good agreement with those of Abaqus. For the prediction correc-
tion algorithm, we use a strategy based on the matrix of correction : indeed, the matrix
computed for the correction phase is also used to predict the next step (strategy 2 of
[LAH 02]). This allows us to perfom the computation with only one matrix decom-
position per step. Because a high order is used for the correction, only one iteration
is generally needed to get a small residual. The same truncation order of the series is
chosen for the prediction and the correction (n = 15).

The computation results of the two ANM methods are reported in table (1). For
different values of the parameter δ1 which controls the size of the step length, the table
gives the number of steps, the total number of the iterations and the number of matrix
decompositions to obtain the whole solution path. Clearly, the robustness of the ANM
is proved since the convergence is achieved whatever the considered procedure and
the parameter δ1 are. The solution branch can be obtained by decomposing only 20
tangent stiffness matrices when Abaqus needs 128 decompositions.

When the penalty method is used, no corrections are required for very small values
of δ1 (10−7 or 10−6). In this case the classical process of the asymptotic numerical
method is performed requiring at least 30 matrix decompositions. The algorithm still
works for very large values of δ1 (10−2 or 10−1) but a correction is needed for about
each step. The optimum results are obtained for δ1 ≥ 10−4 : 20 to 22 matrix decom-
positions are sufficient.

By discretizing also the contact force, one obtains about the same results but with-
out corrections for a wide range of values of δ1 (δ1 ≤ 10−4). For larger values of
this parameter, the algorithm needs less correction than the one based on the penalty
technique.
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Figure 7. Contact between an elastic beam and a rigid line
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Figure 8. Vertical displacement of the node A

4.3. Hemispherical deep drawing

The last test deals with the hemispherical deep drawing of a circular sheet (radius,
ρ = 50 mm ; thickness, e = 1 mm). This problem combines several non linearities
concerning the geometry, the contact conditions with friction and the viscoplastic law.
The material rheology is given by : k = 180.0 MPa sm, α = 10−4, m = 0.8 and
n = 0.2. The symmetry conditions allow us to model only a section of the sheet as it is
shown in figure (9). It is discretized with 50 four nodes quadrilateral elements. To take
into account the material incompressibility, a mixed formulation is considered using
the velocity and the pressure as two independant variables. Four Gauss integration
points are used for the velocity and only one for the pressure. An updated lagrangian
scheme is adopted for this problem. For the simulation, the tool which radius is 25 mm
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ANM+Penalty ANM+perturbed lagrangian
δ1 NbStep NbCorr NbDec NbStep NbCorr NbDec

10−7 37 0 37 37 0 37
10−6 30 0 30 30 0 30
10−5 25 4 26 25 0 25
10−4 20 16 21 21 0 21
10−3 21 16 22 23 7 24
10−2 19 19 20 19 7 20
10−1 20 19 21 21 9 22

Table 1. Contact between a cantilever beam and a rigid line, influence of the param-
eter δ1. NbStep : number of steps, NbCorr : total number of corrections, NbDec :
number of matrix decompositions

is moved in the vertical direction until the displacement of the sheet center reaches 25
mm. The non linearities of the proposed problem involve different regularizations.
In [BRU 99] the sensitivity of each regularization parameter has been studied. Note
that the regularization parameter ηc of the contact conditions depends on the initial
clearance δ (see section 2.2). Brunelot [BRU 99] has studied the influence of the tool
velocity on the contact regularization. For two different values of this velocity ~V0, one
can obtain very different distributions of the contact force. To avoid this drawback, the
contact regularization parameter has been modified according to the tool velocity.

Let us present now a comparative study using the Coulomb friction law with ν =
0.3 and q = 0. The tool velocity is V0 = 0.1 mm s−1. The contact regularization is
defined by (hd, Rd) = (0.05, 20).

For the comparison, three algorithms are proposed : the first one is based on the
ANM procedure with Padé approximants and a truncation order n = 15. For this
application, the corrections have been performed at each step end with a truncation
order equal to one. The second algorithm is based on the Newton Raphson iterative
technique. Different step lengths ′dt′ are used in order to improve the convergence.
The last algorithm is implemented in the industrial code Abaqus, it is based on the
Newton Raphson technique coupled to the Lagrange multipliers procedure to take
into account the contact conditions with Coulomb friction. This latter algorithm uses
an updated lagrangian formulation with adaptive step lengths.

Results of the study are reported on the table (2). Several computations have been
performed with Abaqus and the best results are given on the table. Newton-Raphson
algorithms require 422 or 468 decompositions of the tangent stiffness matrix to obtain
the whole solution branch. The ANM algorithm is much more efficient : since it uses
a high order prediction, only 24 steps are needed to obtain the same solution branch.
Considering the time consuming for the right hand side F nl, the computation time
of one step is equivalent to the one of two matrix decompositions. For this reason,
24 steps need a computation time corresponding to about 48 matrix decompositions
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[ZAH 99]. Furthermore, the ANM procedure is naturally adaptive, so the algorithm is
easy to be handled by the user.

Vo

Figure 9. Deep drawing : sketch of the problem

number of steps number of decompositions
[Bru99] dt=10.-5.-2.5 38 1559

Newton Raphson dt=5.-2.5 53 422
dt=2.5-1.25 104 622

Newton Raphson (Abaqus) 102 468
A.N.M. Padé, n=15 24 25

Table 2. Results of the deep drawing computation

5. Concluding remarks

Problems with strong nonlinearities have been presented in this paper in the frame-
work of the asymptotic numerical method. The efficiency and the reliability of the
ANM to solve problems involving plasticity, contact, friction and viscoplasticity are
proved.

Three main ideas permits to adapt these nonlinearities to the ANM : a regular-
isation procedure, the introduction of differential relations and the addition of new
variables. This requires more memory to store the variables but allows a significant
reduction of time consuming. More robust algorithms are obtained by associating a
high order corrector to the high order predictor : the number of steps is reduced sig-
nificantly but one has to be careful not to follow a bad solution path because of the
hyperbolic form of some regularization relations.
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Contributions [ABI 02] and [BRU 99] have presented applications combining var-
ious non linearities to simulate benchmarks in metal forming processes, especially for
problems with larger sizes.

Despite some recent efforts [IMA 01], the efficiency of ANM for plasticity with
unloading has not been yet established. This point is crucial in view of practical ap-
plications. In our opinion, there is no fundamental difficulty to implement realistic
plasticity models in the ANM framework.
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7. Appendix

In this section we aim to explain the how differential relation discussed in section
(2.1) makes easy the application of the perturbation technique in the case of nonlin-
ear functions with power coefficients. Let us consider a non linear constitutive law
inspired by the Romberg Osgood relation which can be written for a one-dimensional
model as follows :

Eε = σ + α

(

σ

σy

)β

σ [37]

where σ and ε denote the stress field and the mechanical strain. E, σy , α and β are
material constants.
To apply the perturbation technique in a simple way, one first introduces two variables
ζ and κ :

ζ =
σ

σy
κ = α ζβ [38]

Since the parameter β is not an integer, the application of the perturbation technique
is not obvious. To obtain a simple form easy to implement in the ANM framework,
one proposes the following differential relation :

ζ dκ = β κ dζ [39]

In this manner, the starting problem (37) is now presented as follows :










E ε = σ + κ σ

ζ =
σ

σy

ζ dκ = β κ dζ

[40]

The variables (ε, σ, ζ, κ) are expanded into power series which gives for order 1
the following system :











E ε1 = σ1 + κ0 σ1 + κ1 σ0

ζ1 =
σ1

σy

ζ0 κ1 = β κ0 ζ1

[41]

Note that equation (41c) is deduced from order 0. By substituting (41b) and (41c) into
(41a), one obtains the tangent modulus :

σ1 =
E

1 + κ0(1 + β)
ε1 [42]
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For order p, the linear problem deduced from (40) can be written as follows :






























E εp = σp + κ0 σp +
p−1
∑

i=1

κi σp−1

ζp =
σp

σy

p κp ζ0 +
p−1
∑

i=1

i κi ζp−1 = β

(

p ζp κ0 +
p−1
∑

i=1

i ζi κp−1

)

[43]

and then the constitutive relation is given in this form :

σp =
E

1 + κ0(1 + β)
εp + σnl

p [44]

It is clear that the differential relation allows us to obtain a simple recurrence for-
mula and to avoid the difficulties arising from the power coefficient β.


