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ABSTRACT. In this paper we present a combination of the asymptotic numerical continuation
procedure with a preconditioned GMRES-solver as applied to the fourth-order non linear von
Kármán problem. Using a mixed equal order finite element discretization, we show how our
“matrix free”approach allows for an efficient determination of the non-trivial branch of the
bifurcation diagram. We also show that, using a steplength estimation of Gervais and Sadiky
[GER 04], one can limit himself to a third order prediction without loosing too much in the
number of continuation steps.

RÉSUMÉ.Dans ce travail, nous proposons l’application de deux nouvelles combinaisons de l’ap-
proche asymptotique-numérique et d’un résoluteur itératif du type GMRES préconditionné, à
la résolution du modèle du quatrième ordre de von Kármán. L’utilisation d’une méthode mixte
de degré deux pour toutes les variables et d’un résoluteur sans matrice tangente permettent de
calculer efficacement les branches non triviales du diagramme de bifurcation. En plus, nous
montrons que la méthode prédicteur d’ordre trois proposée récemment par Gervais et Sadiky
[GER 04] est très compétitive.
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1. Introduction

In this paper, we present and compare two continuation methods for the computa-
tion of branches of non-trivial equilibria of a von Kármán plate. The first one is based
on the Asymptotic Numerical Method (ANM) while the other is a predictor-corrector
continuation method based on a third order predictor. In both cases, we propose a
strategy for the steplength selection and we avoid the construction of the tangent ma-
trices through the use of an appropriately preconditioned GMRES iterative solver.

Consider a thin flat rectangular plate

Ω = {(x, y) | 0 ≤ x ≤ `, 0 ≤ y ≤ 1},

subjected to a uniform compression applied in the normal direction to the vertical part
of the boundary.

Figure 1.The physical setting

Let u denotes the vertical displacement of the median plane of the plate and

D2u = ux,x. [1]

In view of studying large displacements, we shall assume thatu is the first com-
ponent of the solution of the von Kármán equations

{
∆2u = [u, φ]− λD2u
∆2φ = −[u, u] [2]

where∆2 is the bilaplacian and[., .] is the Poisson bracket defined by

[u, v] = ux,xvy,y + uy,yvx,x − 2ux,yvx,y. [3]

The unknownφ is the Airy stress potential andλ is a measure of the applied
compression. We consider a clamped plate which means that the system [2] is supple-
mented with the following boundary conditions:

u = un = 0 on∂Ω;

φ = φn = 0 on∂Ω
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(here the subscriptn denotes the derivative in the direction normal to the boundary).
For other boundary conditions we refer the reader to [HOL 84].

In the sequel, we shall propose a mixed formulation of the von Kármán equations
which yields a problem of the form:

F (x, λ) := Lx + Q(x, x) + λL1x = 0 [4]

(x, λ) ∈ X × R whereX andH are Hilbert spaces,L andL1 : X → H are linear
operators andQ : X ×X → H is a bilinear operator.

As such, the problem can be viewed as a quadratic problem which is augmented by
some arclength equation and the solution(x(s), λ(s)) describes a curve in the(x, λ)
space called the bifurcation diagram. To determine it, one takes advantage of the ana-
lyticity of (x(s), λ(s)) with respect to the parameters to represent it as a power series,
the coefficient of which are obtained recursively by solving linear problems in a fash-
ion very similar to that of the classical Frobenius approach to the solution of ODE. For
the method to be operational, one has to solve some intrinsically related problems con-
cerning the radius of convergence and the relationship between the number of terms
in the summation and thes-interval in which the resulting polynomial approximation
gives a satisfactory result.

These questions will be addressed in the following sections which we shall now
briefly sketch. In section two we provide some details on the ANM and discuss the
steplength selection. In section three, we present the associated mixed formulation
and its finite element discretization. Section four is devoted to the description of the
solution algorithm while, in section five, we introduce a new third order predictor with
which one can describe the diagram almost as efficiently as with the ANM. Finally,
the paper is concluded in section five where we present and discuss in details some
typical numerical results.

2. The Analytic Numerical Method and the problem of steplength selection

2.1. A brief sketch of the ANM

Let (x0, λ0) be a regular point of [4], that is to say a point where the Fréchet
derivative ofF , with respect tox, is invertible. In a neighbourhood of that point the
solution curve is at leastC1. Given(V, δ) ∈ X×R a unit tangent vector to the solution
path at(x0, λ0) chosen according to the desired orientation, we choose to parametrize
the solution path with a pseudo-arclength parameters defined by

s = (V, x− x0)X + δ(λ− λ0) [5]

Other choices of parametrization are possible and, in fact, desirable because they
can lead to a larger range of validity (cf. [SAD 00] ,[GER 02]). Let us consider the
augmented system
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G(x, λ, s) =
(

F (x, λ)
(V, x− x0)X + δ(λ− λ0)− s

)
= 0. [6]

Since(x0, λ0) is a regular point of [4], the point(x0, λ0, 0) is a regular point of [6]
and it follows from the Implicit Function Theorem that there is an analytic function
s 7→ (x(s), λ(s)) defined in an open interval containing0 such that(x(0), λ(0)) =
(x0, λ0) andF (x(s), λ(s)) ≡ 0. The asymptotic technique consists in expanding
(x(s), λ(s)) in power series

(x(s), λ(s)) =
∞∑

i=0

(xi, λi)si [7]

To determine the series coefficients, we substitute it in [6]. An application of the
identity principle leads to the following cascade of linear equations to be satisfied by
the(xi, λi):

– Order 1

Lx1 + λ0L1x1 + Q(x0, x1) + Q(x1, x0) = −λ1L1x0

(V, x1)X + δλ1 = 1.
[8]

– Orderp ≥ 2.

Lxp + λ0L1xp + Q(x0, xp) + Q(xp, x0) = −λpL1x0

−∑p−1
i=1 (λiL1xp−i + Q(xi, xp−i))

(V, xp)X + δλp = 0

[9]

Computing the coefficients(xi, λi), up to orderN , we obtain a polynomial ap-
proximation

(TNx(s), TNλ(s)) =
N∑

i=0

(xi, λi)si [10]

of the solution path through(x0, λ0). In the next section we deal with the task
of obtaining a stepsizes∗ such that this approximation is sufficiently accurate for
s ∈ [−s∗, s∗]. When such a stepsize has been chosen, we use the value given by
the polynomial approximation at one of the end points (selected according to the de-
sired orientation of the path following) as a new starting point and proceed in the like
manner.
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2.2. Steplength Selection

Given a toleranceε, the goal is to find a steplengths∗ such that

‖((TNx(s), TNλ(s))− (x(s), λ(s))‖∞ ≤ ε for |s| < s∗. [11]

Of course, we must haves∗ < ρ the radius of convergence of [7] which is typically
finite.

Let us first derive an estimation ofρ. For this, let]a, b[ be the maximal interval of
existence of the solution(x(s), λ(s)). If −∞ < a, whens → a+,

(x(s), λ(s), s) → (ω0, γ0, a)

a singular point ofG , that is to say a point whereG(ω0, γ0, a) = 0 while
Dx,λG(ω0, γ0, a) is not invertible. The same result holds atb if b < ∞, [ALL 90].
Let τ0 = a if |a| = min (|a|, b) andτ0 = b otherwise. We assume that the following
hypothesis is valid.

Hypothesis: On the circular boundaryC = {z ∈ C | |z| = ρ} of the convergence
disk, the only singularities are real.

For all the problems with a quadratic nonlinearity that we have considered, it was
a valid assumption. So, assuming that it holds we have one of the following cases:
a or b is the only singularity onC, a andb are the only singularities onC (in which
case|a| = b). In any case, the radius of convergence isρ = |τ0|. Then, under
generic assumptions, it can be shown (cf. [GER 02], [SAD 00]) that(x(s), λ(s)) is
not analytic atτ0 and that, in a neighborhood ofτ0, it can be written in the following
form:

(x(s), λ(s)) =
k−1∑

i=0

αi(s) (s− τ0)
i
k [12]

wherek ≥ 2 is an integer,α0, ..., αk−1 are analytic ats = 0 ands = τ0 with
α0(τ0) = (ω0, γ0) andα1(τ0) is a non-zero tangent vector to the solution path at
(ω0, γ0). Furthermore the tangent vector at(x(0), λ(0)) is orthogonal toα1(τ0), so
the singularityτ0 corresponds to the first point encountered on the solution path where
this orthogonal relation is satisfied [GER 02, equation (3.5)]. Leti0 be the index of a
non-zero component ofα1(τ0) and write thei0-component of(x(s), λ(s)) as

P (s) =
k−1∑

i=0

αi0
i (s) (s− τ0)

i/k [13]
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Using a classical result of Darboux, Hunter and Guerrieri ([HUN 80]) have shown
that the Taylor coefficientsPj of P (s) ats = 0 satisfy:

Pjτ0 − (j + ν − 1)
j

Pj−1 = O(jν−3) [14]

whereν = − 1
k is called, in complex analysis, the order of the singularity.

Neglecting theO() term, two copies of this relation give:

1
τ0

≈ j
Pj

Pj−1
− (j − 1)Pj−1

Pj−2

ν ≈ j
Pj

Pj−1
τ0 − j + 1.

[15]

Remark. These relations are exact for functions of the form(s − τ0)−ν but are
only asymptotic for functions such as [13]. So, it may happen that a largej is required
to obtain a good estimation of the radius of convergence. In such a case, the ratio
Pj−1

Pj
(Cauchy test) will sometimes give a good approximation ofτ0 and the second

relation of [15] will give an artificial value ofν near 1.

We use [15] and two components of [7] to compute two approximations of the
radius of convergenceρ = |τ0|, retaining the smallest one.

From the relations [15] we deduce [GER 02] that

‖(x(s), λ(s))− (TNx(s), TNλ(s))‖∞ ≤ AN (s) [16]

whereAN (s) ' ‖(xN , λN )‖∞|s|N r
1−r andr = | s

τ0
| < 1. Thus [11] is satisfied

if
‖(xN , λN )‖∞|s|N r

1−r ≤ ε for |s| < s∗. Some simple algebra yields

s∗ = r|τ0| [17]

with r theunique root in[0, 1] of

Q(r) = ‖(xN , λN )‖∞|τ0|NrN+1 + εr − ε.

3. A mixed formulation of the von Kármán equations

In order to apply the ANM to system [2], we must first put it in the form [4]. To
this end, we shall follow the presentation given in [GER 97] and [DOS 03] which we
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summarize here. For this we shall assume from now on, that the plateΩ is a convex
polygon. The formulation is based on two simple principles. The first consists in a
factorization of the bilaplacian through the introduction of the tensor unknowns

σ(u) = (
∂2u

∂xi∂xj
)j=1,2
i=1,2 , σ(φ) = (

∂2φ

∂xi∂xj
)j=1,2
i=1,2

and the second in an orthogonal decomposition of the hessians into

σ = σd + tr (σ)I,

whereσd is known as the deviatoric part of the tensor. To be more precise, we
introduce some notations.

Instead of using tensor notation, we shall identify the deviatorσd with a vector in
the following way

σ =
(

s1,1 s1,2

s1,2 s2,2

)
= 1

2 (s1,1 + s2,2)
(

1 0
0 1

)

+
(

1
2 (s1,1 − s2,2) s1,2

s1,2 − 1
2 (s1,1 − s2,2)

)

7→ ( 1
2 w, σd), wherew = s1,1 + s2,2, σd = ( 1

2 (s1,1 − s2,2), s1,2).
[18]

With this identification, we have the following identity

σ 7→ ( 1
2wI, σd)

τ 7→ ( 1
2ωI, τd)

[σ, τ ] = 1
2w ω − 2 σd · τd

[19]

Now let θ0 be the pull-back of the boundary condition function as defined in
[CIA 80] and which corresponds to the termD2u in the system, we set

∆0 = ∆θ0, S0 = (
1
2
(
∂2θ0

∂x2
− ∂2θ0

∂y2
),

∂2θ0

∂x∂y
).

If the functional spaces are

V = H1
0 (Ω), X = H1(Ω), Σ = X2,
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using the(., .)0 notation for theL2-inner product, we can define onX×X, X×V ,
and(X × Σ)× V , the continuous forms

m(w, z) = (w, z)0, w, z ∈ X

b(z, u) = (∇z,∇u)0, z ∈ X, u ∈ V

c1(u, s) = 1
2

(
(∂u

∂x , ∂s
∂x )0 − (∂u

∂y , ∂s
∂y )0

)
u ∈ V, s ∈ X

c2(u, s) = 1
2

(
(∂u

∂x , ∂s
∂y )0 + (∂u

∂y , ∂s
∂x )0

)
u ∈ V, s ∈ X

t0((w, σd), v) = 1
2 (∆0 w, v)0 − 2(S0 · σd, v)0 σd ∈ Σd, v ∈ V

q((w, σd), (ω, τd), v) = 1
2 (w ω, v)0 − 2(σd · τd, v)0 v ∈ V,

(w, σd), (ω, τd) ∈ X × Σ.
[20]

Thevon Kármán nonlinear system can then be decomposed in the following man-
ner: we seek a solution(u,w, σd, φ, ω, τd, λ) of the following nonlinear variational
problem

m(σd
1, z) + c1(z, u) = 0, ∀z ∈ X

m(σd
2, z) + c2(z, u) = 0, ∀z ∈ X

m(w, z) + b(z, u) = 0, ∀z ∈ X

m(τd
1, z) + c1(z, φ) = 0, ∀z ∈ X

m(τd
2, z) + c2(z, φ) = 0, ∀z ∈ X

m(ω, z) + b(z, φ) = 0, ∀z ∈ X

b(w, v) + λt0((w, σd), v)− q((w, σd), (ω, τd), v) = −(f, v)0 ∀v ∈ V

b(ω, v) + q((w, σd), (w, σd), v) = 0 ∀v ∈ V
[21]

The first six variational equations are nothing but the expression of the relationship
between the component of the auxiliary variables and the principal unknowns, the
displacementu or the Airy stressφ as the case may be, while the last two equations
are the variational form of [2]. That [21] is a correct variational representation of [2],
is fully justified in [GER 97].
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Now, if one uses the sameP2 conforming finite element approximation for the
various spaces, approximations which will differ only by boundary conditions, one is
led to a finite-dimensional non linear system of the following form:

MS1 + C1U = 0

MS2 + C2U = 0

MT1 + C1Φ = 0

MT2 + C2Φ = 0

MW + BtU = 0

BW + λ (TwW + T1S1 + T2S2) + Qw(W,Ω) + Q1(S1, T1) + Q2(S2, T2) = −F

MΩ + BtΦ = 0

BΩ− (Qw(W,W ) + Q1(S1, S1) + Q2(S2, S2)) = 0
[22]

where(U,W,S1, S2,Φ,Ω, T1, T2) is the vector of nodal-values whereas the matri-
cesM , C1, C2, B, Tw, T1, T2 and the bilinear operatorsQw, Q1, Q2 are defined in
the usual way in terms of the local bases of the various finite element spaces.

In view of simplifying the system, we eliminate the deviatoric variables. This leads
us to the following system

MW + BtU = 0

(B + λTw)W − λTsU + Q((W,U), (Ω,Φ)) = −F

MΩ + BtΦ = 0

BΩ−Q((W,U), (W,U)) = 0

[23]

where

Ts = T1M
−1C1 + T2M

−1C2

Q((W,U), (Ω,Φ)) = Qw(W,Ω) + Q1(M−1C1U,M−1C1Φ)

+Q2(M−1C2U,M−1C2Φ)

[24]

Finally, if we defineZ = (W,U,Ω, Φ)t and
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L =




M Bt 0 0
B 0 0 0
0 0 M Bt

0 0 B 0


 , L1 =




0 0 0 0
Tw −Ts 0 0
0 0 0 0
0 0 0 0


 ,

QZ(Z, Z) =




0
Q((W,U), (Ω,Φ))

0
−Q((W,U), (W,U))


 ,

we see that, whenf = 0, [22] is indeed a problem of the form [4] to which one
can apply the ANM according to [8] and [9], which, in this particular case reads as
follows. Forp = 1, 2, . . . ,∞

(MWp + BtUp) = 0

(B + λ0Tw)Wp − λ0TsUp+

Q((W0, U0), (Ωp,Φp)) + Q((Wp, Up), (Ω0,Φ0))+

λp(TwW0 − TsU0) = −∑p−1
j=1 λj(TwWp−j − TsUp−j)

−Q((Wj , Uj), (Ωp−j ,Φp−j))

MΩp + BtΦp = 0

BΩp − 2Q((W0, U0), (Wp, Up)) =
∑p−1

j=1 Q((Wj , Uj), (Wp−j , Up−j))

V · Zp + δ λp = dp

[25]

with dp = 1 for p = 1 and0 otherwise.

4. Our resolution algorithm

In order to present our resolution algorithm in a simple manner, we introduce some
further notations. Let us set

X =
(

W
U

)
, Y =

(
Ω
Φ

)
,K =

(
M Bt

B 0

)
, T =

(
0 0

Tw −Ts

)
,

and denote byQX andQY the matrices associated with the linear operators
Q((W0, U0), .) andQ(., (Ω0, Φ0)) respectively. The system [25] which defines the
succeeding terms of our power series can be written as
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


K + λ0T + QY QX TX0

−2QX K 0
VX VY δ







Xp

Yp

λp


 =




Gp

Hp

dp


 . [26]

Eliminating theYp unknown, we are led to

(
K + λ0T + QY + 2QXK−1QX TX0

VX + 2VY K−1QX δ

)(
Xp

λp

)
=

(
Gp −QXK−1Hp

dp − VY K−1Hp

)
.

[27]

This is the system to which we shall apply a preconditioned GMRES algorithm.
According to [DOS 03], the preconditioner

(
K 0
0 1

)
,

can be successfully used along the various branches. Typically, convergence will
be very fast even with a Krylov subspace of small dimension (we generally used15
Krylov vectors). However, it should be observed that the cost of evaluating one resid-
ual

(
K 0
0 1

)−1 ((
K + λ0T + QY + 2QXK−1QX TX0

VX + 2VY K−1QX δ

)(
Xp

λp

)

−
(

Gp −QXK−1Hp

dp − VY K−1Hp

))

is not small. The computation can be summarized in the following way:

Let X = (U,W ) andλ be given,TX0, 2VY K−1QX , Gp − QXK−1Hp, dP −
VY K−1Hp being computed once and for all,

1) computeσd = (M−1C1U,M−1C2U) = (S1, S2); this requires two resolu-
tions with the matrixM ;

2) computeλ0TX = λ0 (TwW0 + T1S1 + T2S2);
3) computeQY X,

QY X = Qw(W,Ω0) + Q1(S1, T1,0) + Q2(S2, T2,0)

4) computeY = K−1QXX = (Φ,Ω); this requires one resolution with theK
matrix;

5) computeτd = (M−1C1Φ,M−1C2Φ) = (T1, T2); this requires two resolutions
with the matrixM ;
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6) computeQXY

QXY = Qw(W0, Ω) + Q1(S1,0, T1) + Q2(S2,0, T2)

7) compute the first component of the residualR1 andK−1R1, this requires one
more resolution with theK matrix.

8) compute the last component of the residual which requires one scalar product

Thus, each residual requires four linear resolutions with the matrixM and two
with K. Since they are symmetric, the matrices are factorized once and for all in the
form LDLt and each resolution roughly amounts to a matrix-vector product.

5. A continuation procedure using a third order predictor

From now on, we shall stick to the notation of the last section and denote the state
variable byZ instead ofx.

When the nonlinearity of the problem

F (Z, λ) = 0 [28]

is not quadratic, the computation of high order Taylor coefficients is more com-
plex even though it can still be performed in many situations (see [ZAH 04]). As an
alternative, we present here a predictor-corrector continuation method based on the
third order predictor provided by the degree 3 Taylor polynomial. This can be seen as
a low order ANM, but with such a low degree expansion a correction is compulsory
at each continuation step.

Let (Z0, λ0) be a regular point of [28]. As in section 1 we have a solution
(Z(s), λ(s)) with (Z(0), λ(0)) = (Z0, λ0). Starting at this point we want to obtain
another point(Z(s∗), λ(s∗)) on the solution path with a steplengths∗ as large as pos-
sible. To this end, we compute the third degree Taylor expansion at0 of (Z(s), λ(s)):

(T3Z(s), T3λ(s)) =
3∑

i=0

si(Zi, λi) [29]

The computation of the coefficients(Zi, λi) is done as previously described and
requires the resolution of three linear systems1.

1. the superscript0 denotes the evaluation at(Z0, λ0) and(V, δ) is again a unit tangent vector
at (Z0, λ0).
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5.0.0.1. Orderp = 1

DZF 0 · Z1 = −λ1DλF 0

(V, Z1)V + δλ1 = 1 [30]

5.0.0.2. Orderp = 2, 3:

DZF 0 · Zp = −λpDλF 0 − F s
p

(V, Zp)V + δλp = 0 [31]

with F s
p , p = 2, 3 given by

2F s
2 = D2

ZF 0 · Z2
1 + 2λ1DλDZF 0 · Z1 + λ2

1D
2
λF 0

6F s
3 = D3

ZF 0 · Z3
1 + 3λ1DλD2

ZF 0 · Z2
1 + 6D2

ZF 0 · Z1Z2 + 3λ2
1D

2
λDZF 0 · Z1

+6λ1DλDZF 0 · Z2 + 6λ2DλDZF 0 · Z1 + λ3
1D

3
λF 0 + 6λ1λ2D

2
λF 0.

These coefficients being computed, we choose as predictor the point

(Zpr, λpr) = (T3Z(s∗), T3λ(s∗)). [32]

Then, we apply our GMRES-Newton type corrector to obtain the target point
(Z(s∗), λ(s∗)) which is then used as a new starting point. Quite clearly, if the non-
linearity is quadratic the above systems coincide with those obtained in the previous
sections for the first four coefficients.

The crucial difficulty lies in the selection of a steplengths∗, as large as possible but
such that [32] is close enough to the target point(Z(s∗), λ(s∗)) to have convergence
of the correction method. This selection proceeds in two steps.

5.0.0.3. Step 1

We computes∗1 by requiring that the sup-norm of the difference between the third
and second orders Taylor polynomials is less or equal to the prescribed toleranceε.
Thus we get

s∗1 =
(

ε

‖(Z3, λ3)‖∞

)1/3

[33]

5.0.0.4. Step 2

We seek a second steplengths∗2, in general larger thans∗1. Let n + 1 be the size
of the(Z, λ) unknown. We denote byZk

j , j = 0, . . . , 3, thek-component of thej-th
coefficient and look for ann + 1 vector of steplengths. For anyk = 1, . . . , n + 1,
there are two cases to be considered.
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• Let’s assumeZk
2 6= 0 and consider the(2, 1)-Padé approximation

hk(s) =
αk + βks + γks2

1 + δks

defined by
dphk

dsp
(0) =

dp

dsp
Zk(0), p = 0, 1, 2, 3.

These relations lead to

hk(s) = Zk
0 + Zk

1 s +
Zk

2 s2

1 + δks

whereδk = −Zk
3

Zk
2

. We will determines∗2,k such that

∣∣∣∣∣h
k(s)−

3∑

i=0

Zk
i si

∣∣∣∣∣ ≤ ε for 0 ≤ s ≤ s∗2,k [34]

at least approximately. We see easily that

hk(s)−
3∑

i=0

Zk
i si =

hk
4s4

1 + δks
[35]

wherehk
4 is the fourth order coefficient of the Taylor expansion ofhk(s) at

s = 0. This coefficient is given by

hk
4 =

(Zk
3 )2

Zk
2

.

We approximate the absolute value of the right-hand side of [35] by|hk
4s4| (this

approximation is better ifδk ≥ 0). If δk 6= 0, then with this approximation, [34]
holds if

s∗2,k =
(

ε

|hk
4 |

)1/4

.

If δk = 0, thenZk
3 = 0 and [34] holds for everys, in which case we put

s∗2,k = ∞.

• Let us assumeZk
2 = 0. If Zk

3 6= 0, hk(s) does not exist and we set

s∗2,k =
(

ε

|Zk
3 |

)1/3

analogicallyto the determination ofs∗1. If Zk
3 = 0, then we havehk(s) =

Z0 + Z1s and so [34] holds for everys and we sets∗2,k = ∞.
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Havings∗2,k for eachk ∈ {1, . . . , n + 1} we set

s∗2 = min{s∗2,k ; k = 1, . . . , n + 1}
and we take as optimal steplength

s∗ = max(s∗1, s
∗
2). [36]

This predictor-corrector method has been applied successfully in [SAD 00],
[GER 04] to reputedly difficult nonlinear test problems. In the next section we present
results of its application to the von Kármán problem.

6. Numerical results

For our numerical tests we consider a rectangular plateΩ = {(x, y) | 0 ≤ x ≤
2, 0 ≤ y ≤ 1}

The computational mesh is constituted of8n2 triangles obtained by dividing2n2

equal squares of sizeh×h into the four equal right triangles defined by the diagonals.

 
 

 

Figure 2.The mesh

Before presenting our results, a few technical points need to be clarified once and
for all.

– As to the discretization, we have used aC0 conforming finite element approx-
imation of degree 2 for all the variables, on a mesh of sizeh = 1

5 . It is not our goal
here to discuss that discretization and the interested reader can consult [DOS 03].

– Each resolution of a tangent system, be it for the computation of a power series
coefficient or for a Newton-correction step, is performed with a preconditioned GM-
RES, for which we used Krylov subspaces of dimension 46 and a stopping criterion
based on the reduction of the residual of a factor10−8. This very severe choice was
made to maintain the influence of the solution procedure on the overall behavior of
the algorithms to a minimum.

– For the computation of the approximation of the tangent vector we have used
two distinct approaches. In the first case we simply used a secant approximation

V =
u(λ0 + ∆λ)− u(λ0)

∆λ
, δ = 1, (V, δ) → 1

||(V, δ)|| (V, δ),
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with ∆ = 0.1 or 0.012. In the ANM, this approximation was used only at the first
stage of the continuation procedure, but, starting from the second step, the tangent
vector was computed by directly differentiating the power series and by evaluating the
result at the values of the computed steplenght.

– For the sake of comparison, we repeated the computation of the first non trivial
branch of the bifurcation diagram corresponding tof = 0 starting from the value
λ = 80 andu > 0 at the center of the plate.

– Of course we first had to compute the solution corresponding to that state of the
plate. To this end, we first performed a continuation along the perturbed diagram by
puttingf = 1 and starting withu = 0 and a smallλ. When the valueλ = 80 was
reached, we setf = 0 and corrected the solution with our Newton-GMRES corrector
thus falling back on the unperturbed diagram.

To obtain a 2D representation of the diagram, we could have chosen different char-
acteristics of the solution. Here we have selected the maximal deflection of the plate,
which on the first branch always occurs at the center. Before discussing the behaviour
of our two continuation procedures, there is one more point which deserves a thorough
discussion, that of the scalar product selected in the pseudo-arclength equation [5].

6.1. Estimation of the radius of convergence and the order of the singularity

Our estimation of the singularityτ0 of the series [7] is based on the use of the
λ-component and thei0-component of [7] for which the indexi0 corresponds to the
displacement at the central node.

In all the computations, we have used the weighted norm and scalar product defined
by

‖(u, φ, λ)‖2 = |u|22 + |φ|22 + cλ2.

wherec is a parameter which plays a major role in the computation, preventing a
bad scaling of theλ-component of the tangent vectors. To illustrate this, we study its
influence on the behavior of the estimations of the optimal steplengths∗, the radius of
convergenceρ and the orderν of the singularity.

Our numerical results were obtained forλ ≈ 80.0, using Taylor polynomials of
degrees 10 and 20.

It can be seen in Table 1 that, forc = 1, the singularity parameterν and the radius
of convergenceρ do not seem to converge whereas the optimal steps∗ is too small

2. This approach is admittedly costly since the computation ofu(λ0+∆λ) requires 4-5 Newton
corrections. The way around this lazy method is well documented [KEL 77] and we shall count
this calculation as one resolution step
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n = 10 n = 20
λ ui0 λ ui0

ρ 1.5098 9.9787 0.18804 1.4126
s∗ 1.5098 9.9195 0.18804 1.4126
ν 8.6163 -9.1555 -18.005 -19.512

Table 1.Estimations ofs∗, ρ, ν with c = 1

for the cost of the computation (n= 20), which results in too slow a progress of the
continuation process.

n = 10 n = 20
λ ui0 λ ui0

ρ 33.635 32.957 33.926 33.991
s∗ 13.032 12.995 21.145 21.149
ν -0.62042 -0.76463 -0.50644 -0.46234

Table 2.Estimation ofs∗, ρ, ν with c = 10

The situation changes radically if we selectc = 10 (Table 2). The singularity pa-
rameterν stabilizes around− 1

2 , while the radius of convergence and the optimal step
increase noticeably. With this value, we can proceed with the continuation without
any convergence problems. However, if we further increasec to the valuec = 100,
the situation changes again.

n = 10 n = 20
λ ui0 λ ui0

ρ 28.616 28.577 28.596 28.590
s∗ 14.374 14.370 20.425 20.425
ν -0.48793 -0.50765 -0.49560 -0.50293

Table 3.Estimation ofs∗, ρ, ν with c = 100

Indeed, even if the singularity parameterν is well approximated and the predicted
optimal step is of the same order as forc = 10, the radius of convergence is smaller. To
shed some light on this apparently contradictory behavior, we propose the following
heuristic explanation.

Let us first recall that the radius of convergenceρ of the series is defined geo-
metrically by the condition that, ats = ρ, the tangent vector to the solution curve
is orthogonal to the tangent vector ats = 0 (see [GER 02, equation (3.5)]). Let us
denote the latter by(δ, V ) and the former by(µ,W ). In our weighted inner product,
that condition is written as
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cµδ + (V,W ) = 0,

whatever the choice of the scalar product for theV component.

Next, let us, for the sake of explanation, assume that we are in the following simple
situation:X = IR (that is the state unknown is a simple scalar), the solution curve is
as the one in figure 6,(λ(0), x(0)) is in the upper half-plane and(δ, V ) is in the first
quadrant. Then, the above equation can be written as

W

µ
= − c

V
δ

.

In our geometrically simple situation, it is clear that, a small tangent vector slope
|Wµ | meansa largeρ and conversely. Thus the smallerc > 0, the bigger the conver-
gence radius. This is well illustrated in our numerical example by the results obtained
for c = 10 andc = 100, but apparently contradicted by those corresponding toc = 1.
However a closer look at the latter reveals that even forn = 20 the values are not
converged and one should first wonder why. Well, ifc is small, thenρ >> 1 is big
which, in turn, implies that the coefficientsPj in [14] tend to zero very fast (at least
like o((ρ− ε)−j) for anyε > 0) and this appears to create numerical difficulties with
the resolution of the system of asymptotic equations [15]. However, we have no clue
as to the exact nature of those difficulties.

In conclusion, the choice of the weighted inner product is important in the sense
that the components of the tangent vectors should be equilibrated. In this paper, the
correct equilibrium was determined by trial and error and we fixedc to the value of
c = 50.

6.2. Continuation based on the ANM

We now evaluate the performance of the continuation procedure based on the
ANM with the steplength control described in Section 2.2. We have used a tolerance
ε = 10−5 and have not corrected the resulting approximations.

The results that are presented were obtained with series truncated at ordersn = 10
and20. Figure 3 shows the projection in the(λ, ui0)- plane of the solution path where
the markers are the continuation points.

Quite clearly, the value of the selected steplength depends in a crucial way on the
truncation order. To clarify this, we present a graphical comparison (see figure 4) of
the steplength values obtained withn = 10 andn = 20.

In order to evaluate the precision of the prediction and to justify the absence of
correction, we have computed the local error at each continuation points. For this,
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Figure 3. Bifurcation diagrams with different steplength selection
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Figure 4. Steplength evaluation at each continuation stage

we computed the distance with respect to the|| · ||∞ norm between the solution ob-
tained with the ANM and the one given by the Newton method using the convergence
criterion:

‖F (Zi, λi)‖∞ ≤ 10−10 and
‖(Zi, λi)− (Zi−1, λi−1)‖∞

‖(Zi, λi)‖∞ ≤ 10−7. [37]

which is rather stringent. This led us to figure 5.

Figure 5 clearly illustrates that the approximation of the state variableZ is more
accurate than that of the parameterλ, mainly around the critical point. This figure also
illustrates that the local error has the same order of magnitude as the chosen tolerance.
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Figure 5. Prediction error onu andλ.

We conclude this section with a comparison between the steplenght selection ap-
proach used in this work and the one based on the formula3

s∗Co =
(

ε|U1,h|2
|Un,h|2

) 1
n−1

[38]

which was proposed by Cochelin ([COC 94]). Figure 6 illustrates the bifurcation
diagram and the computed steplength. In both cases it is apparent that continuation
based on formula [38] requires more work in the neighborhood of the critical point.
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Figure 6. Results obtained with formula [38]

3. | · |2 denotes theH2 Sobolev semi-norm.
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6.3. Continuation with a third order predictor method

In this last section we present a brief survey of the results obtained with the third
order predictor developed in section 5.

Proceeding as for the ANM, we present in figure 7, the results obtained with two
different tolerances, namelyε = 10−2 and10−1. As expected an increase ofε results
in a biggers∗ and one may wonder how far one can go. We have made a test with
ε = 1.0 but the resulting step is too big and the method fails to converge at the second
stage. The limit on epsilon is most certainly problem dependent and, in absence of
further theoretical informations, it should be determined empirically.

–0.8

–0.6

–0.4

–0.2
0

0.2

0.4

0.6

0.8

78 78.5 79 79.5 80 80.5

ε = 10−2

Figure 7. Continuation with a small value of the tolerance
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Figure 8. Continuation with a higher value of the tolerance

The reader may notice that, at each step, there corresponds two markers. The first
of them identifies the corrected solution, while the immediate next one identifies the



162 REEF - 13/2004. Méthodes asymptotiques numériques

||Zp − Zc||∞ |λp − λc| Nc

1 0.161761661905793E-010.389192732808397E-02 4

2 0.147410478079684E-010.423539887775348E-02 4

3 0.771873682796720E-020.896187108978097E-03 4

4 0.128629714302662E-010.157921069597933E-02 4

5 0.128629714302662E-010.157921069597933E-02 4

6 0.108588529003555E-010.305735175516020E-02 4

7 0.115127196732274E-010.299153726206214E-02 4

Table 4.Correction size for the third order predictor

extra solution computed for the determination of the tangentV . In order to validate
the steplength computation, we have, at each step, computed the|| · ||∞ norm of the
correction in the caseε = 10−1. The results are presented in table 4 whereZp andλp

stands for the predicted values,Zc andλc for the corrected ones whileNc denotes the
number of Newton-correction steps. These results show that we are well within the
prescribed tolerance and also that, contrary to the ANM, the variableλ is more easily
approximated than the variableZ.

Table 4 also allows for a cost comparison with the ANM. Indeed, as noted at the
beginning of this section, each resolution of a tangent system amounts to a similar
application of our iterative solution procedure. Thus it seems fair to compare the two
approaches on the basis of the number of such resolutions.

Let us use this basis to compare the results obtained with the ANM, with a trunca-
tion order ofN = 20, with that of the third order predictor withε = 10−2. According
to figures 3 and 7 it takes 5 steps of the ANM and 12 steps of the third order predictor.
In the first case, forgetting about the initialization, the computation of the coefficients
requires 20 resolutions per step for a total of 100 resolutions. In the second case, at
each step the initialization requires one resolution for the computation of the tangent
vector, the computation of the coefficients takes 3 resolutions and, similarly to what
happens in table 4, the final step requires 4 Newton corrections. The number of reso-
lutions per step is thus 8, hence, for twelve steps, the total is 96 which is comparable.
It should be noted that we can neglect the initialisation step in the ANM approach
because we can recover the next tangent vector from the power series. If we had used
the ANM with n = 10, the number of steps would have been 12 for a total of 120
resolutions which is even worse.



Matrix-freecontinuation 163

Moreover, one should note that, if the goal is to move from the stateλ = 80 u > 0
to λ = 80, u < 0 as fast as possible, then the ANM withn = 20 should be compared
to the third-order predictor withε = 10−1. Since in this last case, the number of
steps is only 6, we see that the total count is only 48 and that the third order predictor
is a clear winner. Since this predictor can also be used for non quadratic non linear
problems we feel that it exhibits many qualities as a general purpose tool.

7. Conclusion

In this paper we have shown how to adapt the ANM to the resolution of the cubic
von Kármán problem via an iterative solver. This solver is characterized by the fact
that each iteration is rather costly, requiring the resolution of 4 linear systems involv-
ing two different matrices but also by the fact that the preconditioner can be kept fixed,
hence these matrices are assembled and factorized only once. These two aspects com-
bine to give an efficient algorithm. However, in view of the size of the problem, the
control of the number of steps remains crucial. Consequently, in the first part of the
paper, we focused on the question of the numerical determination of the steplength
and of the radius of convergence. Comparing various approaches to steplength selec-
tion, we have shown that the one proposed in [GER 02] is more efficient, in term of
the number of steps, than the one presented in [COC 94] and this, without requiring
too much extra work.

Since we are working with an augmented system, where the supplementary equa-
tion is defining the arclength parameter with respect to which the series development
is performed, the question of the choice of the scalar product to be used in that sup-
plementary equation raised itself. We have shown experimentally that it is advisable
to introduce a weight in the bifurcation parameter term of the inner product, in order
to equilibrate the tangent vector components.

Finally we have compared the classical ANM approach to a new predictor-corrector
recently developed in [GER 04]. Our simulations show that this predictor-corrector is
extremely competitive for two reasons. First, it only requires the computation of the
first four Taylor coefficients. However, contrary to the ANM, here a correction step
is essential. Secondly, it allows for the use of a rather large steplength even if it is
generally smaller than the one obtained for the ANM with a large truncation order.
A cost comparison showed that if the precision requirements are stringent, the two
approaches are comparable but that, if they are slightly relaxed, than the third order
approach is a clear winner.
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