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ABSTRAT. In this paper we present a combination of the asymptotic numerical continuation
procedure with a preconditioned GMRES-solver as applied to the fourth-order non linear von
Kéarman problem. Using a mixed equal order finite element discretization, we show how our
“matrix free"approach allows for an efficient determination of the non-trivial branch of the
bifurcation diagram. We also show that, using a steplength estimation of Gervais and Sadiky
[GER 04], one can limit himself to a third order prediction without loosing too much in the
number of continuation steps.

RESUMEDans ce travail, nous proposons I'application de deux nouvelles combinaisons de I'ap-
proche asymptotiqgue-numeérique et d’un résoluteur itératif du type GMRES préconditionné, a
la résolution du modéle du quatrieme ordre de von Karman. L'utilisation d’'une méthode mixte
de degré deux pour toutes les variables et d'un résoluteur sans matrice tangente permettent de
calculer efficacement les branches non triviales du diagramme de bifurcation. En plus, nous
montrons que la méthode prédicteur d’ordre trois proposée récemment par Gervais et Sadiky
[GER 04] est tres compétitive.

KEyworDsMixed finite element, Newton-GMRES, ANM, Padé approximation.
MOTS-CLES éléments finis mixtes, Newton-GMRES, MAN, approximation de Padé.
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1. Introduction

In this paper, we present and compare two continuation methods for the computa-
tion of branches of non-trivial equilibria of a von Karman plate. The first one is based
on the Asymptotic Numerical Method (ANM) while the other is a predictor-corrector
continuation method based on a third order predictor. In both cases, we propose a
strategy for the steplength selection and we avoid the construction of the tangent ma-
trices through the use of an appropriately preconditioned GMRES iterative solver.

Consider a thin flat rectangular plate
Q=A{(z,9) [0<z<L,0<y <1},

subjected to a uniform compression applied in the normal direction to the vertical part
of the boundary.

Figure 1. The physical setting
Let u denotes the vertical displacement of the median plane of the plate and
Dou = Uy 4. [1]

In view of studying large displacements, we shall assumeuhsithe first com-
ponent of the solution of the von Karman equations

A%y = [u
A%¢p = —

7¢] - )\DQU
[, u]

(2]
whereA? is the bilaplacian anfl, .] is the Poisson bracket defined by

[, V] = Ug g Uy, + Uy yVz.0 — 2Ug Vs y- [3]

The unknowng is the Airy stress potential and is a measure of the applied
compression. We consider a clamped plate which means that the system [2] is supple-
mented with the following boundary conditions:

u = u, = 00noQ,;
¢ = ¢, = 00NN
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(here the subscript denotes the derivative in the direction normal to the boundary).
For other boundary conditions we refer the reader to [HOL 84].

In the sequel, we shall propose a mixed formulation of the von Karman equations
which yields a problem of the form:

F(z,\) := Lz + Q(x,z) + A\L1x =0 (4]

(z,\) € X x RwhereX andH are Hilbert spaced, andL; : X — H are linear
operators and) : X x X — H is a bilinear operator.

As such, the problem can be viewed as a quadratic problem which is augmented by
some arclength equation and the solutiefs), A(s)) describes a curve in the;, \)
space called the bifurcation diagram. To determine it, one takes advantage of the ana-
Iyticity of (z(s), A(s)) with respect to the parameteto represent it as a power series,
the coefficient of which are obtained recursively by solving linear problems in a fash-
ion very similar to that of the classical Frobenius approach to the solution of ODE. For
the method to be operational, one has to solve some intrinsically related problems con-
cerning the radius of convergence and the relationship between the number of terms
in the summation and theinterval in which the resulting polynomial approximation
gives a satisfactory result.

These questions will be addressed in the following sections which we shall now
briefly sketch. In section two we provide some details on the ANM and discuss the
steplength selection. In section three, we present the associated mixed formulation
and its finite element discretization. Section four is devoted to the description of the
solution algorithm while, in section five, we introduce a new third order predictor with
which one can describe the diagram almost as efficiently as with the ANM. Finally,
the paper is concluded in section five where we present and discuss in details some
typical numerical results.

2. The Analytic Numerical Method and the problem of steplength selection
2.1. A brief sketch of the ANM

Let (xg, Ao) be a regular point of [4], that is to say a point where the Fréchet
derivative of F', with respect tar, is invertible. In a neighbourhood of that point the
solution curve is at leagt!. Given(V,§) € X xR a unittangent vector to the solution
path at(z(, \g) chosen according to the desired orientation, we choose to parametrize
the solution path with a pseudo-arclength parametafined by

s=(V,x—x0)x + (A — Ao) [5]

Other choices of parametrization are possible and, in fact, desirable because they
can lead to a larger range of validity (cf. [SAD 00] ,[GER 02]). Let us consider the
augmented system
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_ Bz, ) _
G(x’)\’s)_<(V,x—xo)x—i-é()\—/\o)—s)_o' [6]

Since(xo, Ao) is a regular point of [4], the poiritro, Ao, 0) is a regular point of [6]
and it follows from the Implicit Function Theorem that there is an analytic function
s — (z(s), A(s)) defined in an open interval containiigsuch that(z(0), A(0)) =
(z0,No) and F(z(s), A(s)) = 0. The asymptotic technique consists in expanding
(z(s), A(s)) in power series

oo

(2(s): A(8)) = D (i, M)’ (7]

=0

To determine the series coefficients, we substitute it in [6]. An application of the
identity principle leads to the following cascade of linear equations to be satisfied by
the (3;‘¢7 )\i):

—Order 1

Lxy 4+ XLz + Q(xo,21) + Q(x1,20) = —AiLixg 8]
(V,xl)X+§A1 = 1.

— Orderp > 2.

Lz, + XoLizp + Q(zo, zp) + Q(zp, x0) = —ApLa1zo
=Y MLz + Qi Tpi)) [9]
(‘/7 mp)X + 5/\1) = 0

Computing the coefficientér;, \;), up to orderN , we obtain a polynomial ap-
proximation
N .
(Tnz(s), TnA(s)) = Z(xz, Aqi)s® [10]

=0

of the solution path througf, Ag). In the next section we deal with the task
of obtaining a stepsize* such that this approximation is sufficiently accurate for
s € [—s*,s*]. When such a stepsize has been chosen, we use the value given by
the polynomial approximation at one of the end points (selected according to the de-
sired orientation of the path following) as a new starting point and proceed in the like
manner.
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2.2. Steplength Selection

Given a tolerance, the goal is to find a steplengti such that

(T (s), TN A(s)) = (2(s), A(s))[loo < € foOr[s] < 5™ [11]

Of course, we must hawe < p the radius of convergence of [7] which is typically
finite.

Let us first derive an estimation of For this, leta, b[ be the maximal interval of
existence of the solutiofx:(s), A(s)). If —oco < a, whens — a™,

(CC(S), )‘(S)’ S) - (w07'707 a)

a singular point of7 , that is to say a point whei@(wy, 7o, a) = 0 while

D, »G(wo, 70, a) is not invertible. The same result holdstaf b < oo, [ALL 90].
Let g = aif |a] = min (Ja|,b) andmy = b otherwise. We assume that the following
hypothesis is valid.

Hypothesis: On the circular boundarg’ = {z € C | |z| = p} of the convergence
disk, the only singularities are real.

For all the problems with a quadratic nonlinearity that we have considered, it was
a valid assumption. So, assuming that it holds we have one of the following cases:
a or b is the only singularity or, « andb are the only singularities o@' (in which
casela| = b). In any case, the radius of convergencepis= |7o|. Then, under
generic assumptions, it can be shown (cf. [GER 02], [SAD 00]) thét), \(s)) is
not analytic atry and that, in a neighborhood &f, it can be written in the following
form:

k-1 ‘
(@(5), M) = Y ails) (s — 7o) * [12]

=0

wherek > 2 is an integeray, ..., a,_1 are analytic ak = 0 ands = 7 with
ao(10) = (wo,70) anday (7o) is a non-zero tangent vector to the solution path at
(wo,70). Furthermore the tangent vector(at(0), A(0)) is orthogonal tax; (1), SO
the singularityry corresponds to the first point encountered on the solution path where
this orthogonal relation is satisfied [GER 02, equation (3.5)].:Ldte the index of a
non-zero component ef; (75) and write thei,-component ofz(s), A(s)) as

P(s) =Y al(s) (s — )" [13]
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Using a classical result of Darboux, Hunter and Guerrieri ((HUN 80]) have shown
that the Taylor coefficient®; of P(s) ats = 0 satisfy:

Pi_1 =0("?) [14]

wherer = —1 is called, in complex analysis, the order of the singularity.

Neglecting theD () term, two copies of this relation give:

1 ~ . P; (i P;_1
& iU [15]

14 ~ ]P7il’7'0—]+1

Remark. These relations are exact for functions of the fqum- 7o)~ but are
only asymptotic for functions such as [13]. So, it may happen that a jayequired
to obtain a good estimation of the radius of convergence. In such a case, the ratio

P;_ . . . . .

JTl (Caucly test) will sometimes give a good approximationrgfand the second
J

relation of [15] will give an artificial value of’ near 1.

We use [15] and two components of [7] to compute two approximations of the
radius of convergence = ||, retaining the smallest one.

From the relations [15] we deduce [GER 02] that

1(z(s), A(s)) = (Twa(s), TN A(s)) [l o < An(5) [16]

whereAn(s) ~ [[(zn, AN)[|oo|s|™ 1= andr = || < 1. Thus [11] is satisfied
if
[(zn, AN) oo |8 72 < e for |s| < s*. Some simple algebra yields

s* = T|7o] [17]

with 7 the unique root in0, 1] of
Q) = |(xn, An) oo |0V rN T e — &

3. A mixed formulation of the von Karméan equations

In order to apply the ANM to system [2], we must first put it in the form [4]. To
this end, we shall follow the presentation given in [GER 97] and [DOS 03] which we



Matrix-freecontinuation 147

summarize here. For this we shall assume from now on, that the(plsta convex
polygon. The formulation is based on two simple principles. The first consists in a
factorization of the bilaplacian through the introduction of the tensor unknowns

2
_ O ji=12
- 1=1,2"
8:102-8%- ’

&via:ﬁj ¢

1,2

s

1,2

I8!

(u)

(¢)

I8!

and the second in an orthogonal decomposition of the hessians into

g=g"+tr(9)L,

wheregd is known as the deviatoric part of the tensor. To be more precise, we
introduce some notations.

Instead of using tensor notation, we shall identify the devigf’orvith a vector in
the following way

_ 8171 8172 _ 1 1 0
g£= (51,2 52,2) = 3(s11 4 522) (O 1)

. (é(sm — 52,2) 51,2 )

51,2 —5(s11 — 522)

= (%wagd)v wherew = s11 + 522, 0% = (%(81,1 — 52.2),51,2)-

[18]
With this identification, we have the following identity
o — (zwla)
T~ (gwLz%) [19]
g7 = jww—2g%-1°

Now let 6, be the pull-back of the boundary condition function as defined in
[CIA 80] and which corresponds to the tetyu in the system, we set

1,0%0, 0%

926,
3

A0 = Ae()y SO = ( 2 - ayg )7 axay)

If the functional spaces are

V:Hé(Q)v X:Hl(Q)a E:XQa
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using the(., .)o notation for thel?-inner product, we can define otix X, X xV,
and(X x X) x V, the continuous forms

m(w,z) = (w, 2)o, w,z € X
b(z,u) = (Vz,Vu)o, zeX,ueV
a(ws) = (380 (3%)) uecViseX
ca(u,s) = % ((%,%Z)()+(%,%)()) veV,seX
to((w,gd),v) = %(AO w,v)o — 2(So ~gd,v)0 gleTveV
q((w, g%, (w,7%),v) = 3(ww,v)o—2(c?-z%v)e veV,

(w,0?), (w,7%) € X x %.
[20]

Thevon Karman nonlinear system can then be decomposed in the following man-
ner: we seek a solutiofu, w, c?, ¢,w, 7%, \) of the following nonlinear variational
problem

m(cd, z) +ci1(z,u) = 0, Vze X
m(cd, 2) +ca(z,u) = 0, Vze X
m(w, z) + b(z,u) = 0, Vze X
m(rf,z) +ai(z,9) = 0,  VzeX
m(r§,z) + ea(z,9) = 0,  VzeX
m(w,z) +b(z,¢) = 0, Vze X
b(w,v) + Ato((w, 0%),v) — q((w,0?), (w,7%),v) = —(f,v)o YweEV
b(w,v) + ¢((w,a%), (w,c?),v) = 0 Yo eV
[21]

The first six variational equations are nothing but the expression of the relationship
between the component of the auxiliary variables and the principal unknowns, the
displacement: or the Airy stresss as the case may be, while the last two equations
are the variational form of [2]. That [21] is a correct variational representation of [2],
is fully justified in [GER 97].
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Now, if one uses the samB, conforming finite element approximation for the
various spaces, approximations which will differ only by boundary conditions, one is
led to a finite-dimensional non linear system of the following form:

MS, +CiU=0

MSy; +CU =0

MT +Ci1®=0
M1+ Co® =0
MW +BU =0

BW + XN (TuW + T1.81 + T282) + Qu(W, Q) + Q1(51, T1) + Q2(52,T2) = —F
MQ+ B'® =0

BQ — (Qu(W, W) + Q1(51, 51) + Q2(52,52)) =0
[22]
where(U, W, Sy, Sa, ®, 2, 71, 72) is the vector of nodal-values whereas the matri-
cesM, Cy, Cy, B, Ty, Ty, T> and the bilinear operato@,,, Q1, Q- are defined in
the usual way in terms of the local bases of the various finite element spaces.

In view of simplifying the system, we eliminate the deviatoric variables. This leads
us to the following system

MW +BU = 0
(B + AT, )W = AU + Q(W,U), (2, ®)) = —F
[23]
MQ+B® = 0
BQ—-Q((W,U),(W,U)) = 0
where
T, = TlM_lCl + TQM_lcQ

QIW,U), (2,9)) Qu(W,Q) + Q1(M~'C U, M~ C1®) [24]

+Q2(M7102U, M7102®)

Finally, if we defineZ = (W, U, Q, ®)! and
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M Bt 0 0 0 0 0 0
B 0 0 0 T, -Ts 0 0
L=l o mB|l"m=lo o 0ol
0 0 B 0 0 0 0 0
0
| QUW,U),(Q,®))
QZ(Z7Z)_ 0 )

we see that, wherf = 0, [22] is indeed a problem of the form [4] to which one
can apply the ANM according to [8] and [9], which, in this particular case reads as
follows. Forp =1,2,...,

(MW, + B'U,) =0
(B + MTw)W, — XNoTsUp+
Q((Wo, Us), (2, ®p)) + Q((Wp, Up), (20, Do) )+
Ap(TwWo = TulUp) = = 0=} \j(TuWp—j — ToUp—)

—Q((W;,U;), (p—j, Pp—j))

[25]

MQ, + B'®, =0
B, = 2Q((Wo, Uo), (W, Up)) = 2521 QUW;, Us), (W Up—5))
V- Zy+6X,=d,

with d,, = 1 for p = 1 and0 otherwise.

4. Our resolution algorithm

In order to present our resolution algorithm in a simple manner, we introduce some
further notations. Let us set

w Q M Bt 0 0
() =)= (5 T)r-(n &)
and denote by) x and@y the matrices associated with the linear operators

Q((Woy,Up),.) andQ(., (R, Po)) respectively. The system [25] which defines the
succeeding terms of our power series can be written as
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K+MT'+Qy Qx TXp Xp G,
—2Qx K 0 Y, | =|H, . [26]
Vx Vy 0 Ap dp

Eliminating theY,, unknown, we are led to

_ Gp - QXK_al

o ( dp—VyK_al ) ’
[27]

This is the system to which we shall apply a preconditioned GMRES algorithm.
According to [DOS 03], the preconditioner

K 0
0 1)’
can be successfully used along the various branches. Typically, convergence will
be very fast even with a Krylov subspace of small dimension (we generallylised

Krylov vectors). However, it should be observed that the cost of evaluating one resid-
ual

K+)\0T+Qy+2QXK_1QX TX, Xp
Vx +2VyK_1QX 1) )\p

K 0\ ' [(K+XT+Qy +20xK~'Qx TXo)\ (X,
0 1 VX-I-QVYK_lQX o Ap

_ Gp — QxK_al
dp — Vy K~ H,
is not small. The computation can be summarized in the following way:

Let X = (U,W) and X be given,TX,,2Vy K 'Qx,G, — QxK'H,,dp —
Vy K~ H,, being computed once and for all,

1) computec? = (M~1CL U, M~1CyU) = (51, S2); this requires two resolu-
tions with the matrix\/;

2) Compute/\oTX =X (TwWO +T157 + TQSQ);

3) computeQy X,

Qv X = Qu(W, Qo) + Q1(51,T1,0) + Q2(S2, T2,0)

4) computeY = K 'QxX = (®,9Q); this requires one resolution with thg
matrix;

5) computer? = (M~1C,®, M~1Cy®) = (71, T3); this requires two resolutions
with the matrixM;
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6) computeQ xY
QxY = Quw(Wo, Q) + Q1(51,0, 1) + Q2(S2,0, 72)

7) compute the first component of the residil and K —' R;, this requires one
more resolution with thél matrix.

8) compute the last component of the residual which requires one scalar product

Thus, each residual requires four linear resolutions with the matriand two
with K. Since they are symmetric, the matrices are factorized once and for all in the
form LDL! and each resolution roughly amounts to a matrix-vector product.

5. A continuation procedure using a third order predictor

From now on, we shall stick to the notation of the last section and denote the state
variable byZ instead ofr.

When the nonlinearity of the problem

F(Z,\) =0 [28]

is not quadratic, the computation of high order Taylor coefficients is more com-
plex even though it can still be performed in many situations (see [ZAH 04]). As an
alternative, we present here a predictor-corrector continuation method based on the
third order predictor provided by the degree 3 Taylor polynomial. This can be seen as
a low order ANM, but with such a low degree expansion a correction is compulsory
at each continuation step.

Let (Zy, A\o) be a regular point of [28]. As in section 1 we have a solution
(Z(s), A(s)) with (Z(0), A(0)) = (Zo, Ao). Starting at this point we want to obtain
another pointZ(s*), A(s*)) on the solution path with a steplengthas large as pos-
sible. To this end, we compute the third degree Taylor expansioofatZ (s), A(s)):

3
(TsZ(s), TsA(s)) = Y ' (Zi, M) [29]
1=0
The computation of the coefficientZ;, \;) is done as previously described and
requires the resolution of three linear systéms

1. the superscripb denotes the evaluation &%y, A\o) and(V, §) is again a unit tangent vector
at (Z(), )\(]).
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5.0.0.1. Ordep =1

DyF°. 7, = A\ D\F° (30]
V,Z1)v +6\ = 1
5.0.0.2. Ordep = 2,3:
0 _ 0 s
DzF°. 7, = —\DyF* - F; (31]
(V,Z)y +6), = 0
with F7, p = 2, 3 given by
2F; = D%F°-Z} + 2\ D\DzF°-Z, + \iD3F°
6F; = D3F°-Z} +3\D\DZF°-Z? +6D%F" - Z,Z5 +3\ID3D4F" - 7,

+6M\ DADZF° - Zy + 6 oaDxD 7z F° - Zy + N3DSF° 4+ 6\ Ao D3 FY.

These coefficients being computed, we choose as predictor the point

(Zprs Mpr) = (T3Z(s™), T5(s™)). [32]

Then, we apply our GMRES-Newton type corrector to obtain the target point
(Z(s*), A(s*)) which is then used as a new starting point. Quite clearly, if the non-
linearity is quadratic the above systems coincide with those obtained in the previous
sections for the first four coefficients.

The crucial difficulty lies in the selection of a steplength as large as possible but
such that [32] is close enough to the target poifits*), A\(s*)) to have convergence
of the correction method. This selection proceeds in two steps.

5.0.0.3. Step 1

We computes] by requiring that the sup-norm of the difference between the third
and second orders Taylor polynomials is less or equal to the prescribed tolerance
Thus we get

. 1/3
R L — 33
s (u(zg,Ag)noo) 133]
5.0.0.4. Step 2

We seek a second steplength in general larger thag]. Letn + 1 be the size
of the (Z, \) unknown. We denote bZ]’?,j =0,...,3, thek-component of thg-th
coefficient and look for am + 1 vector of steplengths. For aly= 1,...,n + 1,
there are two cases to be considered.
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e Let's assumeZ} # 0 and consider thé2, 1)-Padé approximation

ok + Bis + s?

h(s) = 14 0gs

defined by

dPhF dP

0)=—2%0),p=0,1,2,3.
dsp dsp ()?p b b b
These relations lead to

k2
Z5s

hk: :Zk Zk
(s) ot 1S+1+5k8

k . .
whered;, = —Zi. We will determines; ,, such that
1 :

3
hk(s) — Z ZFst

=0

<efor0<s<s5, [34]

at least approximately. We see easily that

h* f zbsi = 105 35
(S) - 7 - 1 +(5k$ [ ]
1=0

whereh% is the fourth order coefficient of the Taylor expansion/df(s) at
s = 0. This coefficient is given by

(25)*
zk

hly =

We approximate the absolute value of the right-hand side of [35}by*| (this
approximation is better if;, > 0). If 5, # 0, then with this approximation, [34]

holds if
) o\ /4
32,k = |h7£’17‘ .

If 5, = 0, thenZ} = 0 and [34] holds for every, in which case we put
83 p = 0.

e Let us assumé&k = 0. If Z% £ 0, h*(s) does not exist and we set

. N
S5 =\|—=0
k= [z

analogicallyto the determination of;. If Z¥ = 0, then we havei*(s) =
Zy + Z1s and so [34] holds for every and we set; ;, = oo.
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Havings; , for eachk € {1,...,n + 1} we set
sy =min{sy,; k=1,...,n+1}
and we take as optimal steplength
s* = max(s], s3). [36]
This predictor-corrector method has been applied successfully in [SAD 00],

[GER 04] to reputedly difficult nonlinear test problems. In the next section we present
results of its application to the von Karméan problem.

6. Numerical results
For our numerical tests we consider a rectangular glate {(z,y) | 0 < z <
2,0 <y <1}

The computational mesh is constitutedSef triangles obtained by dividingn?
equal squares of siZex h into the four equal right triangles defined by the diagonals.

Figure 2. The mesh

Before presenting our results, a few technical points need to be clarified once and
for all.

— As to the discretization, we have used@ conforming finite element approx-
imation of degree 2 for all the variables, on a mesh of ize 1. It is not our goal
here to discuss that discretization and the interested reader can consult [DOS 03].

— Each resolution of a tangent system, be it for the computation of a power series
coefficient or for a Newton-correction step, is performed with a preconditioned GM-
RES, for which we used Krylov subspaces of dimension 46 and a stopping criterion
based on the reduction of the residual of a fadtr®. This very severe choice was
made to maintain the influence of the solution procedure on the overall behavior of
the algorithms to a minimum.

— For the computation of the approximation of the tangent vector we have used
two distinct approaches. In the first case we simply used a secant approximation

_ U(/\() + A)\) — U()\O)

1
AA ’ 5_17 (Va(s)ﬁi(‘/v(s)v

v V.0l
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with A = 0.1 or 0.012. In the ANM, this approximation was used only at the first
stage of the continuation procedure, but, starting from the second step, the tangent
vector was computed by directly differentiating the power series and by evaluating the
result at the value of the computed steplenght.

— For the sake of comparison, we repeated the computation of the first non trivial
branch of the bifurcation diagram correspondingfto= 0 starting from the value
A = 80 andu > 0 at the center of the plate.

— Of course we first had to compute the solution corresponding to that state of the
plate. To this end, we first performed a continuation along the perturbed diagram by
putting f = 1 and starting withu = 0 and a small\. When the value\ = 80 was
reached, we sef = 0 and corrected the solution with our Newton-GMRES corrector
thus falling back on the unperturbed diagram.

To obtain a 2D representation of the diagram, we could have chosen different char-
acteristics of the solution. Here we have selected the maximal deflection of the plate,
which on the first branch always occurs at the center. Before discussing the behaviour
of our two continuation procedures, there is one more point which deserves a thorough
discussion, that of the scalar product selected in the pseudo-arclength equation [5].

6.1. Estimation of the radius of convergence and the order of the singularity

Our estimation of the singularity, of the series [7] is based on the use of the
A-component and th&-component of [7] for which the indek corresponds to the
displacement at the central node.

In all the computations, we have used the weighted norm and scalar product defined
by

[(u, @, NI = [ul3 + [8]3 + cAZ.

wherec is a parameter which plays a major role in the computation, preventing a
bad scaling of the.--component of the tangent vectors. To illustrate this, we study its
influence on the behavior of the estimations of the optimal steplerigthe radius of
convergence and the order of the singularity.

Our numerical results were obtained for~ 80.0, using Taylor polynomials of
degrees 10 and 20.

It can be seen in Table 1 that, for= 1, the singularity parameterand the radius
of convergence do not seem to converge whereas the optimal stejs too small

2. This approach is admittedly costly since the computation(af + A)\) requires 4-5 Newton
corrections. The way around this lazy method is well documented [KEL 77] and we shall count
this calculation as one resolution step
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n =10 n =20
A Usq A Usq
1.5098| 9.9787 || 0.18804| 1.4126
1.5098| 9.9195 || 0.18804| 1.4126
8.6163| -9.1555|| -18.005 | -19.512

hS)

*

»

X

Table 1.Estimations o&*, p, v withc = 1

for the cost of the computation (= 20), which results in too slow a progress of the
continuation process.

n =10 n =20
A Ui, A Ui
33.635 | 32.957 33.926 | 33.991
13.032 | 12.995 21.145 | 21.149
-0.62042| -0.76463|| -0.50644| -0.46234

hS)

»
*

X

Table 2. Estimation ofs*, p, v with ¢ = 10

The situation changes radically if we select 10 (Table 2). The singularity pa-
rameter stabilizes around%, while the radius of convergence and the optimal step
increase noticeably. With this value, we can proceed with the continuation without
any convergence problems. However, if we further increatgethe valuec = 100,
the situation changes again.

n =10 n = 20
A Usq A Uy,
28.616 28.577 28.596 28.590
14.374 14.370 20.425 20.425
-0.48793| -0.50765|| -0.49560| -0.50293

AS)

*

»

X

Table 3. Estimation ofs*, p, v with ¢ = 100

Indeed, even if the singularity parameteis well approximated and the predicted
optimal step is of the same order aséce 10, the radius of convergence is smaller. To
shed some light on this apparently contradictory behavior, we propose the following
heuristic explanation.

Let us first recall that the radius of convergencef the series is defined geo-
metrically by the condition that, at = p, the tangent vector to the solution curve
is orthogonal to the tangent vectorsat= 0 (see [GER 02, equation (3.5)]). Let us
denote the latter by, V') and the former by, 7). In our weighted inner product,
that condition is written as
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cpud + (V, W) =0,

whatever the choice of the scalar product for theomponent.

Next, let us, for the sake of explanation, assume that we are in the following simple
situation: X = IR (that is the state unknown is a simple scalar), the solution curve is
as the one in figure §(0), z(0)) is in the upper half-plane ar(d, V) is in the first
quadrant. Then, the above equation can be written as

Q.K‘ o

In our geometrically simple situation, it is clear that, a small tangent vector slope
|%\ meansa largep and conversely. Thus the smaller- 0, the bigger the conver-
gence radius. This is well illustrated in our numerical example by the results obtained
for ¢ = 10 andc = 100, but apparently contradicted by those corresponding-tol.
However a closer look at the latter reveals that evermfer 20 the values are not
converged and one should first wonder why. Welk; is small, thenp >> 1 is big
which, in turn, implies that the coefficient3; in [14] tend to zero very fast (at least
like o((p — €)~7) for anye > 0) and this appears to create numerical difficulties with
the resolution of the system of asymptotic equations [15]. However, we have no clue
as to the exact nature of those difficulties.

In conclusion, the choice of the weighted inner product is important in the sense
that the components of the tangent vectors should be equilibrated. In this paper, the
correct equilibrium was determined by trial and error and we fixéal the value of
c = 50.

6.2. Continuation based on the ANM

We now evaluate the performance of the continuation procedure based on the
ANM with the steplength control described in Section 2.2. We have used a tolerance
e = 10~° and have not corrected the resulting approximations.

The results that are presented were obtained with series truncated atotelérs
and20. Figure 3 shows the projection in tlig, u;, )- plane of the solution path where
the markers are the continuation points.

Quite clearly, the value of the selected steplength depends in a crucial way on the
truncation order. To clarify this, we present a graphical comparison (see figure 4) of
the steplength values obtained with= 10 andn = 20.

In order to evaluate the precision of the prediction and to justify the absence of
correction, we have computed the local error at each continuation points. For this,
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Truncation order= 10

Truncation order= 20

Figure 3. Bifurcation diagrams with different steplength selection

ngth

stepler

gih

steplen:

1 2 3 4 5 6 7 8 1 15 2
tep step

Truncation order= 10 Truncation order= 20

Figure 4. Steplength evaluation at each continuation stage

we computed the distance with respect to fthe|  norm between the solution ob-
tained with the ANM and the one given by the Newton method using the convergence
criterion:

||(Zu Az) B (Zi—h Ai—l)

Hoo -7
<107°.
H(Ziv >‘i)||oo

|F(Zi, A\i)|loo < 107 and

[37]

which is rather stringent. This led us to figure 5.

Figure 5 clearly illustrates that the approximation of the state varidhikemore
accurate than that of the parametemainly around the critical point. This figure also
illustrates that the local error has the same order of magnitude as the chosen tolerance.
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x 10~ x10°

w
error
error
N

0 2 4 6 8 10 2 3 4 5 6
step step

Truncation order= 10 Truncation order= 20
Figure 5. Prediction error onu and \.

We conclude this section with a comparison between the steplenght selection ap-
proach used in this work and the one based on the formula

1

6|U1h|2 w1
= ’ 38
5Co <|Un7h|2 138]

whichwas proposed by Cochelin (JCOC 94]). Figure 6 illustrates the bifurcation
diagram and the computed steplength. In both cases it is apparent that continuation
based on formula [38] requires more work in the neighborhood of the critical point.

ngth

stepler

step

Bifurcationdiagram withn = 10 Steplength computation

Figure 6. Results obtained with formula [38]

3. |- |, denotes thé7* Sobolev semi-norm.
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6.3. Continuation with a third order predictor method

In this last section we present a brief survey of the results obtained with the third
order predictor developed in section 5.

Proceeding as for the ANM, we present in figure 7, the results obtained with two
different tolerances, namely= 10-2 and10~!. As expected an increase ofesults
in a biggers* and one may wonder how far one can go. We have made a test with
e = 1.0 but the resulting step is too big and the method fails to converge at the second
stage. The limit on epsilon is most certainly problem dependent and, in absence of
further theoretical informations, it should be determined empirically.

0.8 °
0.6 o

0.4 °

0.2

0ie
—-0.21

-0.4 °
0.6
—-0.84 3

e=10"2
Figure 7. Continuation with a small value of the tolerance

0.8 o
0.6 R

0.41
021 %5 785 79 795 g0 805 g1
01¢g
0.2 1
0.4
—0.6
-0.8 °

—15 o

e=10""1

Figure 8. Continuation with a higher value of the tolerance

The reader may notice that, at each step, there corresponds two markers. The first
of them identifies the corrected solution, while the immediate next one identifies the
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||Z;D_Z(:H90

‘/\p_/\c|

0.161761661905793E-0

10.389192732808397E-0

24

0.147410478079684E-0

10.423539887775348E-0

D 4

0.771873682796720E-0

20.896187108978097E-0

B 4

0.128629714302662E-0

10.157921069597933E-0

0 4

0.128629714302662E-0

10.157921069597933E-0

2 4

0.108588529003555E-0

10.305735175516020E-0

2 4

N O O B WO

0.115127196732274E-0

10.299153726206214E-0

2 4

Table 4. Correction size for the third order predictor

extra solution computed for the determination of the tandéntn order to validate

the steplength computation, we have, at each step, computéd the norm of the
correction in the case= 10~!. The results are presented in table 4 whésend ),
stands for the predicted valugg, and . for the corrected ones whil¥¥, denotes the
number of Newton-correction steps. These results show that we are well within the
prescribed tolerance and also that, contrary to the ANM, the variaisienore easily
approximated than the variahte

Table 4 also allows for a cost comparison with the ANM. Indeed, as noted at the
beginning of this section, each resolution of a tangent system amounts to a similar
application of our iterative solution procedure. Thus it seems fair to compare the two
approaches on the basis of the number of such resolutions.

Let us use this basis to compare the results obtained with the ANM, with a trunca-
tion order of N = 20, with that of the third order predictor with= 10~2. According
to figures 3 and 7 it takes 5 steps of the ANM and 12 steps of the third order predictor.
In the first case, forgetting about the initialization, the computation of the coefficients
requires 20 resolutions per step for a total of 100 resolutions. In the second case, at
each step the initialization requires one resolution for the computation of the tangent
vector, the computation of the coefficients takes 3 resolutions and, similarly to what
happens in table 4, the final step requires 4 Newton corrections. The number of reso-
lutions per step is thus 8, hence, for twelve steps, the total is 96 which is comparable.
It should be noted that we can neglect the initialisation step in the ANM approach
because we can recover the next tangent vector from the power series. If we had used
the ANM with n = 10, the number of steps would have been 12 for a total of 120
resolutions which is even worse.
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Moreover, one should note that, if the goal is to move from the state80 v > 0
to A = 80,u < 0 as fast as possible, then the ANM with= 20 should be compared
to the third-order predictor with = 10~!. Since in this last case, the number of
steps is only 6, we see that the total count is only 48 and that the third order predictor
is a clear winner. Since this predictor can also be used for non quadratic non linear
problems we feel that it exhibits many qualities as a general purpose tool.

7. Conclusion

In this paper we have shown how to adapt the ANM to the resolution of the cubic
von Karman problem via an iterative solver. This solver is characterized by the fact
that each iteration is rather costly, requiring the resolution of 4 linear systems involv-
ing two different matrices but also by the fact that the preconditioner can be kept fixed,
hence these matrices are assembled and factorized only once. These two aspects com-
bine to give an efficient algorithm. However, in view of the size of the problem, the
control of the number of steps remains crucial. Consequently, in the first part of the
paper, we focused on the question of the numerical determination of the steplength
and of the radius of convergence. Comparing various approaches to steplength selec-
tion, we have shown that the one proposed in [GER 02] is more efficient, in term of
the number of steps, than the one presented in [COC 94] and this, without requiring
too much extra work.

Since we are working with an augmented system, where the supplementary equa-
tion is defining the arclength parameter with respect to which the series development
is performed, the question of the choice of the scalar product to be used in that sup-
plementary equation raised itself. We have shown experimentally that it is advisable
to introduce a weight in the bifurcation parameter term of the inner product, in order
to equilibrate the tangent vector components.

Finally we have compared the classical ANM approach to a new predictor-corrector
recently developed in [GER 04]. Our simulations show that this predictor-corrector is
extremely competitive for two reasons. First, it only requires the computation of the
first four Taylor coefficients. However, contrary to the ANM, here a correction step
is essential. Secondly, it allows for the use of a rather large steplength even if it is
generally smaller than the one obtained for the ANM with a large truncation order.
A cost comparison showed that if the precision requirements are stringent, the two
approaches are comparable but that, if they are slightly relaxed, than the third order
approach is a clear winner.
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