
Revue européenne des éléments finis. Volume 12 – n° 7-8/2003, pages 933 to 962

Object-oriented programming
and multibody systems

Implementation of a dedicated finite element code

Valérie Kromer* — François Dufossé** — Michel Gueury*

* ERIN-ESSTIN, Université Henri Poincaré, Nancy 1
2, rue Jean Lamour
F-54519 Vandœuvre-lès-Nancy

{kromer, gueury}@esstin.uhp-nancy.fr

** SA VALUTEC, Université de Valenciennes
Le Mont Houy- C3T, BP 14
F-59314 Valenciennes cedex 9

Francois.Dufosse@univ-valenciennes.fr

ABSTRACT. This paper contains a description of the design of a finite element program
dedicated to multibody systems analysis that implements the concepts of object-oriented
programming. The principal feature of the mechanical formalism used in this work is to
provide a unified framework for both rigid and flexible bodies. We will show that the object-
oriented programming greatly simplifies the implementation of other formalisms concerning
polyarticulated systems, thus conferring high flexibility and adaptability to the developed
software.

RÉSUMÉ. Cet article décrit l’architecture orientée objet d’un code de calcul par éléments finis
dédié à l’analyse des systèmes multicorps. Le formalisme mécanique mis en œuvre est
caractérisé par le traitement unifié des segments rigides et flexibles. Il est montré que la
programmation orientée objet simplifie grandement l’introduction d’autres formalismes
relatifs aux systèmes polyarticulés, conférant ainsi une flexibilité et une adaptabilité accrues
au logiciel développé.

KEYWORDS: object-oriented programming, multibody systems, C++, finite element.

MOTS-CLÉS : programmation orientée objet, systèmes multicorps, C++, éléments finis.

934 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

1. Introduction

Object-oriented programming is currently seen as the most promising way of
designing a new application. It leads to better structured codes and facilitates the
development, the maintainability and the expandability of such codes. The object-
oriented programming was proposed as a general methodology for finite element
method implementation for the first time in (Miller, 1988). Over the past decade, it
has been successfully applied to various domains of interest in finite element
developments: constitutive law modeling (Besson et al., 1998), parallel finite
element applications (Breitkopf et al., 1998), coupled problems (Klapka et al.,
1998), nonlinear analysis (Dubois-Pèlerin et al., 1998), symbolic computation
(Eyheramendy, 2000), and finite element analysis program architecture (Mackie,
1991, Scholz, 1992, Remy et al., 1992, Besson et al., 1998), among others. The
recent article of Mackerle (Mackerle, 2000) gives a bibliography with more than
150 references covering the period 1996-1999.

However, little effort has been made to implement object-oriented programming
in multibody systems analysis. As a matter of fact, like many other engineering
applications, multibody systems analysis codes (ADAMS (Ryan, 1990), DADS
(Nikravesh, 1982)) are written in Fortran. Therefore, the main objective of this work
is to describe one approach to the design and implementation of a multibody
systems analysis code using an object-oriented architecture.

The principal features of object-oriented programming are summarized in the
second section of the paper, which also gives a state of the art of object-oriented
programming in numerical methods. Is is shown that the structure of multibody
systems present similarities with object-oriented concepts, and, consecutively lend
themselves very well to object-oriented programming techniques. The architecture
of the computational engine of the software is presented in the third part of the
paper, with the global description of the computational engine and the description of
the most important basic classes. Emphasis is placed on the adequacy between
object-oriented programming and the finite element method within a given
formalism and given hypotheses used for the treatment of multibody systems. It is
shown that object-oriented programming greatly simplifies the choice and the
implementation of other formalisms concerning polyarticulated systems, thus
conferring high flexibility and adaptability to the developed software. An example
of possible code extension is given to illustrate extensibility and reusability.

OO programming and multibody systems 935

2. Adequation between the object-oriented programming and multibody
systems analysis

2.1. Object-oriented programming in scientific programming

2.1.1. Object-oriented concepts

Procedural languages like C, Pascal and Fortran consider data as passive and
memory occupying elements, which can be manipulated only by functions and
procedures. In contrast, the object-oriented programming comes from the idea that
tools (methods) must be associated with the information (data or attributes) they
manage. The key concepts of object-oriented programming (abstraction,
encapsulation, inheritance, polymorphism) can be found in many computer journals
and language user guides. Thus we will only present briefly those concepts.

The abstraction of the data type is realized by the means of a class. A class
incorporates the definition of the structure as well as the operations on the abstract
data type. An object is an instance of the class, which means that it is the material
realisation of the abstract data type defined by the class.

The encapsulation designates the independent self-containment of classes and
their methods and attributes. The class members can be declared as public,
protected, or private. Usually, for safety reasons, the attributes are declared as
private and can be reached through public methods, defining the interface of the
objects. This full modularity both greatly enhances introducing modifications in the
development phase of the software, as well as performing on-going maintenance.

The inheritance concept is used to define object hierarchies. An object can have
many children (instances of a subclass) which inherit its data and member functions.
It can also have one or several parents (single or multiple inheritance). A subclass is
usually of a special type and has additional methods and attributes members relating
to it.

One of the most important characteristic of object-oriented languages is also the
possibility of defining abstract objects using virtual member functions. This
characteristic enables the same function to respond differently when performed on
objects from different classes. Abstract objects allow the writing of generic
algorithms and the easy extension of the existing code. This capability of object-
oriented applications to interpret the same request differently depending on the
object being processed is called polymorphism.

In addition to the previous object-oriented concepts, some other features can also
greatly ease programming. For example, some object-oriented languages allow the
overloading of functions and operators such as =, +, +=, <, etc. Moreover, they give
the ability to use the templates mechanism, which allows the definition of the
concepts (methods, algorithms) independently of the type of object being used. This
mechanism is widely used, for instance, to manipulate generic arrays. Templates

936 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

greatly ease and improve the use of objects while requesting few lines of code. They
not only increase legibility without losing efficiency, but also allow the methods to
be reused without considering how data are implemented.

2.1.2. Object-oriented languages

Fortran 77, C and Fortran 90 are clearly not object-oriented languages, although
it is sometimes possible to create structures that simulate the behavior of objects, by
storing function pointers in structures. However, those languages have limitations,
since, for example, they do not support inheritance or dynamic polymorphism.

The first object-oriented programming language, Smalltalk, was developed at the
Xerox Palo Alto Research Center in the beginning of the 1980s (Goldberg et al.,
1983). Although it is considered as a pure object-oriented language, it is not used for
real numerical applications because of efficiency reasons (Scholz, 1992). Other
languages with object representations are available, such as Ada 95, Pascal or Eiffel.
Java has recently been introduced (Arnold et al., 1998) as a platform independent
language. Despite its C++ like syntax, it supports neither multiple inheritance nor
templates nor operator overloading. We selected C++, which seems to be, currently,
the language providing numerical efficiency, portability, flexibility and is easy to
use.

���������	�
 ��
��� ���

��

�����������

���	
������

���
�������

���
	�����

Table 1. Association, aggregation, composition and inheritance relationships

Supplie Client

Train Wagon

Human body Member

Ferrari F16

Transportation means

Car ShipPlane

Renault Clio

OO programming and multibody systems 937

2.1.3. Object-oriented methodologies

As the complexity of the softwares increases, it becomes necessary to employ
good analysis tools. Since the 1990s, new techniques in modeling and analysis have
been brought by object-oriented programming. These are HOOD (Lai, 1991),
BOOCH (Booch, 1993), OMT (Rumbaugh, 1991), among others. Today, UML
(Unified Modeling Language) (Rumbaugh et al., 1999) appears to be the technique
which is most commonly used. UML fuses the concepts introduced by the
previously mentioned techniques, which results in a standardized modeling
language, with a set of symbols and rules describing the relationships between the
symbols. As an example, Table 1 illustrates the association, aggregation,
composition and inheritance relationships, which will be used in this article. UML is
used in section 3 of this article.

2.2. Object-oriented programming and multibody systems

Little effort has been made to implement object-oriented programming in
multibody systems analysis. However, if we examine the structure of multibody
systems, we come to the conclusion that they present similarities with object-
oriented concepts, and consecutively lend themselves very well to object-oriented
programming techniques (Kunz, 1998, Tisell et al., 2000).

For instance, at its highest level of abstraction, the architecture of a multibody
system can be thought of as consisting of four basic objects: bodies, constraints
between bodies, loads and motions.

Encapsulation is an ideal concept for multibody systems, as its implementation
concentrates the attributes and methods associated with an object such that access is
permitted only through well-defined interfaces. This full modularity both greatly
enhances introducing modifications in the development phase of the software, as
well as performing on-going maintenance.

One can illustrate the polymorphism concept by considering an arbitrary
constraint connecting two (or more) arbitrary bodies. The implementation details of
the specific bodies and joints involved in the connection are hidden by abstraction in
the joint and body objects. Through polymorphism, it is possible to describe any
constraint between two bodies without regard to joint type (revolute joint,
translational joint, among others) and body type (rigid, flexible).

The application of object-oriented programming to multibody systems analysis is
still a relatively unexplored area, although there has been some work on the topic. In
1993, Otter (Otter et al., 1993) presented a Dymola class library for the symbolic
generation of the equations of motion of rigid multibody systems in tree-structure.
For closed-loops, it is necessary to use specific types of joints that “cut” the loops
into a tree-structure. In 1998, Kunz (Kunz, 1998) described a multibody systems
analysis computer program designed according to object-oriented principles, with

938 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

the purpose of integrating flexible and generic bodies into the architecture in a
unified manner. This integration is performed by transforming the equations of
motion into minimum coordinate set form using the velocity transformation. No
indication is given on the treatment of the flexible bodies, which seem to have been
always assumed to be linear elastic. For the treatment of closed-loops, the solution
proposed is of the same kind as the method used by Otter: one of the joints in the
loop is cut, thus reducing the closed-loop to an open-loop. It becomes necessary to
distinguish dependent and independent coordinates resulting from the cut, in order
to obtain equations of motion in the same form as the open-loop equations of
motion. More recently, Tisell (Tisell et al., 2000) presented a Mechamos prototype
of a multibody system analysis tool, based on an object-relational database
management system. The analysis is based on symbolic formulation of Kane’s
equations of motion, for multibody systems consisting of rigid bodies only. In this
work, the authors insist on the fact that multibody systems analysis is only taken as
an example of one activity among the whole range of engineering activities that
takes place within the entire engineering information system which should support
the complete engineering process during the entire life-cycle of a product. Indeed,
the actual purpose of the authors is not the description of a multibody systems
analysis tool based on object-oriented principles, but rather to show how database
technology is a key technology for solving the problem of managing engineering
data in an engineering information system environment.

The original work presented in this paper is aimed at describing the object-
oriented architecture of a multibody systems analysis code, which is able to integrate
flexible and rigid bodies in a unified framework, and to deal with both open-loop
and closed-loop systems in a systematic way, without the need of an artificial cut of
one of the joints. Moreover, the flexible bodies are not supposed to support only
small displacements and small strains, but can undergo large rotations and large
strains (Dufossé et al., 2000, Dufossé, 2001). The computational model of the
software has been developed in Borland C++ Builder. It consists of an arbitrary
collection of rigid and flexible bodies, connected together by a variety of joints,
loaded by concentrated or distributed forces and moments, that can be subjected to
specified or constrained motions. As mentioned in section 2.1.2, the computational
engine is written in C++ ANSI, independently of the computational model and the
compiler.

In this paper, we will only focus on the computational engine of the software.
Although the current architecture is based on given hypotheses and formalism,
which will be presented in the next section, its originality lies within the fact that it
has been conceived in order to provide a flexible and extensive set of objects that
facilitate multibody systems analysis and which can be adapted to meet future
developments.

OO programming and multibody systems 939

3. Computational engine architecture

3.1. Global description of the computational engine

The global architecture is organized around several basic classes associated with
the classical steps of a multibody finite element analysis (geometry definition,
meshing, interactions definition, finite element formulation, behaviour law, joints
definition, solving algorithms). The description of these classes is presented in the
next sections. Since these are intended to be high-level descriptions of the code
architecture, the included code fragments do not show all of the member variables
and member functions that exist in the actual code.

The management of the different stages of the analysis is performed by the major
class Domain, which represents the heart of the software architecture (Figure 1). It
has been created to represent an elementary problem (corresponding to a specific
multibody system analysis). The complete description of the class Domain is given
in section 3.3.

Figure 1. Global architecture of the software

3.2. Description of the basic classes

3.2.1. Common tools

Some utility classes have been developed to manage mathematical tools, variable
size of objects, stacks, buffers, pools for memory management, read and write
protection on objects and execution time measurement, among others (for example,
classes Vect, TabVect, Matrix, SMatrix, DMatrix, List). The implementation of
these classes is based on the templates mechanism.

3.2.2. Finite element formulation

3.2.2.1. General organization

The Element and Node classes are traditional classes used for the representation
of finite elements. The class Element_Formulation (Figure 2) is the abstract master

Domain
Joint_Formulation Element_ Formulation

Material_Behaviour Interactions

File_In_Out

���������

940 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

class of the finite elements library. It provides virtual methods of computation of the
different finite element arrays and tables (Figure 3) (as, for example, the classical
mass and rigidity matrices, the strain increments vector, the non-linear acceleration
vector, the internal forces vector). The effective computation depends on the chosen
formalism and may vary significantly. In these conditions, the object-oriented
programming eases the implementation of new formalisms, without requiring a
complete redefinition of the software’s architecture. In order to give a better
understanding of the general organization, the formalism implemented in the current
code is explained briefly in the next section.

Figure 2. Classes associated with the finite element modelization

Figure 3. Element_Formulation class definition

Class Element_Formulation
{
private :

int label_ ;
int nb_eq_ ;
int nb_dof_ ;
Element *el_ ;
Domain *domain_ ;

public :
//constructors

Element_Formulation();
Element_Formulation(Element *element, Domain *d) ;
Element_Formulation(const Element_Formulation &ef) ;

//virtual methods
virtual Matrix<double> * Calculate_Mass_Matrix()= 0 ;
virtual Matrix <double> * Calculate_Strain_Operator()= 0 ;
virtual Vect<double> * Calculate_Strain_Increments()= 0 ;
virtual Vect<double> * Calculate_NL_Acceleration()= 0 ;

} ;

Beam2Beam2_Formulation

Element_TypeElement_Formulatio

ElementNode

TBeam2TBeam2_Formulation

OO programming and multibody systems 941

The abstract class Element_Type contains virtual methods for the calculation of
the element’s shape function and its derivatives. It possesses an attribute which is a
pointer to an Element object. From Element_Type, subclasses corresponding to a
specific finite element are derived (for example, Beam2 for a two-nodes beam
element).

The class Beam2_Formulation is derived from Element_Formulation. One of
its attributes is a pointer to the desired finite element, Beam2, for example. This
class corresponds to a specific finite element formulation, and allows the
redefinition of the methods according to the type of the element. For instance, as
will be shown in the next section, the formalism implemented in the present code
corresponds to spatial beam elements and requires the calculation of curvatures and
curvature increments of the beams. As a consequence, besides the methods already
defined in its mother class Element_Formulation, the class Beam2_Formulation
also contains specific methods such as Calculate_Curvatures(),
Calculate_Curvatures_Increments() (Figure 4).

Figure 4. Beam2_Formulation class definition

Class Beam2_Formulation : virtual public Element_Formulation
{
private :

Beam2 *beam_ ;
public :

//constructors
Beam2_Formulation();
Beam2_Formulation(Element *element, Domain *d) ;
Beam2_Formulation(const Beam2_Formulation &bf) ;

//destructor
~Beam2_Formulation() ;

//definition of the virtual methods
Matrix<double> * Calculate_Mass_Matrix()= 0 ;
Matrix<double> * Calculate_Strain_Operator()= 0 ;
Vect<double> * Calculate_Strain_Increments()= 0 ;
Vect<double> * Calculate_NL_Acceleration()= 0 ;

���������� ��	
���

Beam2 *Type_Element() {return beam_ ;}
Vect<double> * Calculate_Curvatures()= 0 ;
Vect<double> * Calculate_Membrane_Strain_Increments()= 0
Vect<double> * Calculate_Curvature_Strain_Increments()= 0 ;
Vect<double> * Calculate_Curvature_Increments()= 0 ;

} ;

942 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

3.2.2.2. Chosen formalism

The formalism implemented in the current code is based on specific kinematic
assumptions, for the description of the dynamics of a flexible beam. Two reference
frames are used, an inertial reference frame (I) for the description of the translational
motion and a body-fixed frame (B) attached to the cross-section for the rotary
motion (Park et al., 1991, Downer et al., 1992).

Figure 5. Spatial beam kinematics

The location from the inertial origin of an arbitrary point P on a beam (Figure 5)
is represented by the following position vector:

{} { } { } { }BII luXr ++= [1]

where { }X is the position vector of a point of the original neutral axis, { }u is the

total translational displacement vector of the neutral axis, {}l is a vector connecting

the beam neutral axis to the material point P located on the deformed beam cross-

section. The notation I_ or B_ in [1] indicates that the quantity is expressed with

respect to the frame (I) or (B), respectively.

The velocity, acceleration and virtual displacement vector of the material point P
are given by:

{} { } [] { }BBI l�~ur += ��

C3

C2

C1

P,l

B3

B2

B1

	

r

��

��

��

OO programming and multibody systems 943

{ } { } [] { } [] [] { }BBBBBI l�~�~l�~ur ++= �����

{ } { } [] { }BBI l�
~
�ur +δ=δ

where []�~ is the skew-symmetric angular velocity tensor and []�~� the skew-
symmetric virtual rotational tensor of the body-fixed basis, respectively.

The motion due to rigid motion is not distinguished from that due to the
deformations. Moreover, the translational inertia is completely decoupled from the
rotary inertia. The advantage to this is that the beam inertia is identical in form to
that of rigid body dynamics. As a consequence, the same formalism can be used for
mechanisms containing rigid elements as well as deformable elements.

The principle of virtual work for a given set of particles in a continuum
occupying a domain Ω with a surface ∂Ω is stated as�

∫+∫=∫ ∂
∂+∫

∂�
ii

�
ii

� j

iI
ij

�
ii dSt��dVf��dV

x

��
�dVr��� �� [2]

where xi represent the inertial coordinates of a particle, i�� a kinematically

admissible virtual displacement, ir�� the acceleration, if the external force per unit

mass, it the stress vector acting on a surface with outward normal components ni,
I
ij� the inertial components of the Cauchy stress tensor, and � ��� ���� 	�
����

The key point to the current formulation is the calculation of the internal force
operator, due to member flexibility. It is defined by:

∫ ∂
∂=ℑδ

� j

iI
ijI dV

x

��
�

In order to provide conceptual and computational simplifications for the stress
representation, we use the technique proposed by Downer (Downer et al., 1992): a
convected frame (C) is introduced as a reference for the Cauchy stress and the
conjugated strain. This frame is constant on the element level, one of its axes lies
tangent to the deformed beam neutral axis (Figure 5). This frame does not coincide
with the body frame (B), the relative difference between (B) and (C) models the
effects of torsion deformations and transverse shear. Let ()ζψξ ,, denote the
coordinates of the convected reference frame (C). The internal force operator
becomes:

944 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

∫



















=∫=ℑ
�

��

��

��

������
�

C
ij

C
ijI dV

��

��

��

2�2��dV���� ,,

The vector of virtual strain can be rewritten as:

{ } { }��l
~

��

2��

2��

��
TC

��

��

��

























+=

where { }�� represents the membrane and two transverse shear strains, and { }��

represent the torsion and two bending strains.

By integrating over the area coordinates of a symmetric cross-section, the virtual
work of the internal forces is:

{ } { }() []∫








∫ =+=ℑ
� �

�T

�
��I d�

M

N
L�����d�M��N���

In the above expression, { }�N represents the axial and transverse shear forces

per unit length, { }�M represents the torsion and bending moments per unit length:

{ } { }∫=
S

� dS�N { } [] { }∫=
S

TC
� dS�l

~
M

[]L is the strain operator such as:

[]








=








��

��
L

��

��
²

For the finite element discretization, the displacement field along the beam is
approximated by:

{ } { }i
n

1i
i u Nu ∑=

=

where n is the number of nodes per element, { }iu is the vector of the degrees of

freedom at the element nodes, and iN are the linear shape functions.

OO programming and multibody systems 945

By the same way, the virtual rotations { }�� , the angular velocities { }�� and the

angular accelerations { }�� � are approximated as follows:

{ } { }i
n

1i
i �� N�� ∑=

=
{ } { }i

n

1i
i �� N�� ∑=

=
{ } { }i

n

1i
i �� N�� �� ∑=

=

These approximations applied to the variational form [2] lead to the final discrete
equations of motion of a flexible beam element:













=












+








+















B

I

B

I

F

F

S

S
D

0

�

u

J0

0m

�

��
 [3]

where [m] and [J] represent the mass and inertia matrices; { }u�� and { }�� represent

the nodal accelerations vectors; { }D represents the non-linear acceleration, { }BI,S

and { }BI,F represent the internal and external force vectors partitioned into

translational and rotational parts, respectively. These equations can be specialized to
the case of static equilibrium as { } { }FS = . The equations of motion [3] can also

represent a rigid body by setting the internal force vector { }S to zero.

As one can see, the unconstrained equations of an arbitrary configuration of
flexible beams and rigid bodies are written in terms of one set of kinematical
coordinates denoting both the nodal coordinates of the flexible members and the
physical coordinates of the rigid bodies.

The formalism presented above has been implemented in the current software.
However, it is possible to implement other formalisms without requiring a complete
redefinition of the software’s architecture.

Figure 6. Classes associated with material behaviour

Material_Behaviour Element_Formulation Element

Elastic_MaterialLinear_Elastic_Behaviour

946 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

3.2.3. Behaviour law

In most object-oriented calculation software, the material behaviour is included
in the finite element formulation. In our code architecture, a separated class
Material_Behaviour has been created which contains the virtual methods for the
calculation of the stresses according to a given material behaviour law (Figure 6).

The current formalism introduces a rate-type constitutive law that relates the
instantaneous rate of stress to the instantaneous rate of deformation, according to:

C
klijkl

C
ij �C� �� =

where C
ij�� and C

ij�� are the convected frame stress and strain rates, respectively,

ijklC is the material response tensor.

This law is obtained from the objective Truesdell rate equation, transformed
from the inertial basis to the convected basis. The stress update procedure is
obtained from the time integration of the rate equation:

C
klijkl

C
ij

n
t

t

C
klijkl

C
ij

nC
ij

1n
��C�dt �C��

1n

n
+=∫+=

+
+

�

The resultant forces can be obtained by a simple additive procedure:









+








=






+

�

�

�

�
n

�

�
1n

��

��

M

N

M

N

For a linear elastic material, the resultant stress increments are deduced from:

{ } { }��

GS00

0GS0

00ES

���
















= { } { }��

EI00

0EI0

00GJ

��

3

2�
















=

where E and G are the Young and Coulomb modulus, S the cross-sectional area,
J the torsional inertia, 2I and 3I the inertia momentum.

The methods for a linear elastic material (Calculate_Tangent_Operator(),
Calculate_Stress_Increments(), Calculate_Resultant_Stress_Increments()) are
defined in the class Linear_Elastic_Behaviour derived from Material_Behaviour
(Figure 7, Figure 8).

OO programming and multibody systems 947

Figure 7. Material_Behaviour class definition

Figure 8. Example of a method of the class Linear_Elastic_Behaviour

3.2.4. Parametrization of the rotations

Various methods have been proposed for the parametrization of large rotations
(Euler angles, Bryant angles, rotational vector, Rodrigues parameters, Euler

Class Material_Behaviour
{
private :

int code_ ;
double time_ ;
Element *el_ ;
Domain *domain_ ;
Element_Formulation *f_ ;

public : //examples of specific methods
//constructors

Material_Behaviour(Element *element, Element_Formulation *f,
Domaine *d);

//virtual methods
virtual Matrix<double> * Calculate_Tangent_Operator()= 0 ;
virtual Vect<double> * Calculate_Stress_Increments()= 0 ;
virtual Vect<double> * Calculate_Resultant_Stress_Increments()= 0 ;

} ;

������	
���
� Linear_Elastic_Behaviour::
Calculate_Resultant_Stress_Increments ()
{

Vect<double> *inc_N_M;
inc_N_M=new Vect<double>(6);
Matrix<double> *C;
C=this->Calculate_Tangent_Operator();
Vect<double> *strain_inc;
strain_inc=f_-> Calculate_Strain_Increments ();
(*inc_N_M)=(*C)*(*strain_inc);
delete C; delete strain_inc;
return inc_N_M;

};

948 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

parameters). An overview of these methods can be found in (Cardona et al., 1988)
(Cardona, 1989).

An adequate representation of the finite rotations is required for the modelization
of 3D multibody systems, as it is used in several steps of the formalism (calculation
of the internal forces, updating of the rotational orientation, among others). Details
concerning those different steps associated with the corresponding treatment of the
finite rotations can be found in (Downer, 1990).

Figure 9. Rotation class definition

Figure 10. Derived classes from the Rotation virtual class

The abstract class Rotation has been developed in order to manage the
information for the different parametrizations of the finite rotations. It contains
several virtual methods, as for example the method GiveMatrRotFrom(), which
calculates the rotation matrix from the parametrization system, or the method
GiveVectParamRotFrom(), which gives the rotation parameters from the rotation
matrix (Figure 9). For instance, given any finite rotation uniquely represented with a
rotation angle θ and a rotation axis { }n (Euler-Chasles theorem), the rotation matrix
describing the rotation can be expressed as a function of the Euler parameters as:

Class Rotation
{

private :
int nb_param_ ;
Matrix<double> *R_ ;
Vect<double> *param_ ;

�
���� �
virtual Matrix<double> * GiveMatrRotFrom(Vect<double> &q)=0 ;
virtual Vect<double> * GiveVectParamRotFrom(Matrix<double> &R)=0 ;

� �

Rotation

Euler_Parameters Rodrigues_Parameters

Rotational_Vector

Euler_Angles���
���������

OO programming and multibody systems 949

[] [] [] [][]q~ q~2q~2q IR T
0 ++= [4]

where the four Euler parameters are defined by:

2

�
cosq 0 = { } { }n

2

�
sinq =

��� ��� �
����� �	 ��� �	�������� ��
���	��

{ } 1qqq 2
0 =+

The classes corresponding to a specific parametrization of the rotations are
derived from the Rotation base class (Figure 10). For instance, in addition to the
method GiveMatrRotFrom(), which has been illustrated in the case of the Euler
parameters by equation [4], the Euler_Parameters class contains a method for the
calculation of an average rotation matrix and a method defining the multiplication of
two rotation matrices with the quaternions law.

3.2.5. Joint formulation

As the Element class, the Joint class has been created for the modelization of
the joints between bodies (Figure 11).

Figure 11. Joint class definition

The abstract class Joint_Formulation allows the treatment of the joints
according to different formalisms (Figure 12). Currently, the only available class is
the derived class Jacobian, for the calculation of the constraint Jacobian matrices
required in the Lagrange multipliers technique that we have chosen to use to couple
the algebraic constraint equations with the differential equations of motion of the

Class Joint
{

private :
Node **node_;
int nb_nodes_,label_,code_ ;
Matrix<double> *B_ ; //constraint Jacobian matrix

public : //examples of specific methods
int NodeLabel(int n) {return node_[n-1]->Label() ;}
Node *PtrNode(int i) {return node_[i-1] ;}
….

} ;

950 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

assembled mechanism (Cardona et al., 1991) (Ibrahimbegovic et al., 2000). The
incorporation of the constraints via the Lagrange multiplier technique is
straightforward, as the inertially-based degrees of freedom of the beam components,
which embody both the rigid and deformation motions, are kinematically of the
same sense as the physical coordinates of rigid body components.

Figure 12. Classes associated with constraints modelization

Two types of constraint conditions exist: holonomic or configuration constraints
and nonholonomic or motion constraints.

Holonomic constraints are formulated as implicit functions of the displacement
coordinates and eventually of time. They express a restriction on the number of
degrees of freedom and therefore, on the set of possible configurations of the
system. A set of algebraic equations representing holonomic constraint conditions
between the displacement coordinates are written as:

{ }(){ } { }0t,u�
H =

The differential of these constraints is given as:

{ } { } []{ } { }0��B��
u

�
��

H
H

H ==












∂
∂= [5]

Nonholomic constraints conditions can only be expressed as a relation between
the differentials of the coordinates and not as a finite relation between the
coordinates themselves. Constraints of this kind are such that they cannot be
integrated to be transformed to the holonomic type. They bring a restriction on the
behaviour of the system, but not on the set of possible configurations. A set of non-
integrable equations concerning nonholonomic constraints between the virtual
displacements and rotations are written as:

{ } { } [] { }(){ } [] { }0
��

��
B��,R,��,u��

NHNH =








= [6]

Master_SlaveJacobian

Joint_Formulation Joint Node

OO programming and multibody systems 951

Another distinction is made between constraints involving equalities, which are
called bilateral constraints, and constraints involving inequalities, named unilateral
constraints. Holonomic constraints are only of the bilateral type. Unilateral
constraints are usually considered of the nonholonomic type.

Given the constraints [5] and [6], the virtual work expression [2] for the
unconstrained system is modified by the inclusion of the virtual work which
enforces the constraints through the Lagrange multiplier technique as:

∫+∫=++∫ ∂
∂

+∫
∂�

ii
�

ii
NH
i

NH
i

H
i

H
i

� j

iI
ij

�
ii dSt��dVf��������dV

x

��
�dVr��� ��

The equations of motion for constrained flexible multibody systems are written
as follows:

[] { }












=+















�

u
T

Q

Q
�B

�

u

J0

0m

�

��
[7]

In order to alleviate the equations, the same notation has been used (in [7] or in
[3]) to represent elementary or assembled matrices and vectors. The right-hand side
vector of [7] contains the remaining force-type terms as:

{ }








−












−












=












=
D

0

S

S

F

F

Q

Q
Q

B

I

B

I

�

u
[8]

In equation [7], the notation contains both the holonomic and non-holonomic

constraints in the constraint force vector { }�[B]T as:

[]











=

NH

H

B

B
B { }













=
NH

H

�

�
�

The [B] matrix is called the constraint Jacobian matrix. It is deduced from the
kinematic relationship between the bodies of the system. These relationships can be
imposed on the nodal degrees of freedom of two separated flexible beams, or
between a beam nodal degree of freedom and a rigid body. Classical Jacobian
matrices modeling standard joints (universal, revolute, spherical, translational joints)
are described in (Chiou, 1990). Specific joints (rigid or flexible wheel element)
describing contact conditions (with bi- or unilateral contact, with or without friction
and slipping) are described by Cardona (Cardona, 1989). Thus, given the Jacobian
matrices for the joints and beam connections, the equations [7] can be employed in a

952 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

systematic manner in order to represent an arbitrary assemblage of articulated
flexible and rigid components.

The constraint Jacobian matrices calculated by methods of the class Jacobian
are stored as attributes of the class Joint (Figure 9). This organization is not the
only, or perhaps not even the best, organization for classes associated with the
constraints modelization. For example, one could argue that the calculation of the
Jacobian matrices could be instead performed directly inside the Joint class, and
that there is no specific need for the abstract class Joint_Formulation.
Nevertheless, in our sense, the current organization favors the modularization and
the understanding of the software. Also, although not currently implemented, other
procedures of treatment for the constraint equations (Master/Slave methods, among
others) can be introduced in a straighforward way, by a simple derivation of
Joint_Formulation.

3.2.6. External interactions

The word « interaction » designates a relationship of the studied domain with the
outside, i.e, a boundary condition or an applied load. We define an interaction at the
element level, by specifying the node where the interaction is applied (in the case of
a boundary condition or a punctual action), the direction of the interaction and its
time evolution.

The class Time_Function has been created to manipulate any function
depending on the time. At a given time, the value of the function is given by the
method Calculate_Function(). In order to represent any interaction, the class
Interaction has been implemented (Figure 13). At a given time, the method
Calculate_Force() calculates the components of the vectors of forces and moments
applied to the element. The applied loads and the boundary conditions are stored as
attributes of the class Domain, by the use of the template class List (Figure 14).

Figure 13. Classes associated with the interactions (boundary conditions and
loading)

List<Interaction>

Domain

Interaction Time_Function

List<Interaction>

OO programming and multibody systems 953

Figure 14. Use of Interaction instances in the class Domain

3.2.7. Computation procedure

The different algorithms used for the resolution of multibody systems equations
[19] are defined in classes derived from the abstract class Algorithm (Figure 15).

Figure 15. Abstract class Algorithm

In order to introduce an attractive modularity in the solution procedures, which
favors the object-oriented programming, the integration of the generalized
coordinates (translational coordinates { }u and angular velocities { }�) is performed

separately from the calculation of the constraint forces (Lagrange multipliers { }�) in

the current computational engine (Park et al., 1988, Park et al., 1990), which also
includes a proper treatment of three-dimensional finite rotations (Ibrahimbegovic,
1997), as well as a method to satisfy the kinematic constraints conditions.

Some indications concerning the chosen techniques are given below.
Nevertheless, as the class Algorithm already contains methods and attributes which
are common to the different algorithms, the implementation of new algorithms can
be achieved easily.

Implicit_Euler

Algorithm

Implicit_Trapezoida

Modified_Central_Difference

Newmar

List<Interaction> *boundary_conditions_list_ ;
List<Interaction> *loading_list_ ;
//return load number i
Interaction *PtrLoad(int i)
{return (Interaction *)loading_list_->Find(i) ;}
//return boundary condition number i
Interaction *PtrBound(int i)
{return (Interaction *)boundary_conditions_list_->Find(i) ;}

954 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

3.2.7.1. Integration of the generalized coordinates

The generalized coordinates are calculated with a particular explicit integration
procedure, called « two-stage staggered algorithm », first developed by Park (Park et
al., 1990),. The algorithm is based on an interlaced application of the central
difference algorithm such that the generalized coordinates are advanced one-half
time step at a time, as follows:

{ } { } { }uhuu n1/2n1/2n
���� += −+

{ } { } { }uhuu n1/2n1/2n
�+= −+

{ } { } { }�h�� n1/2n1/2n
�+= −+

The stability analysis of this algorithm can be found in (Downer, 1990).
Unconditional stability in time integration schemes can be obtained with implicit
algorithms, such as Newmark, but increases the complexity of the computation
scheme.

3.2.7.2. Updating the rotational orientation

The rotational orientation parameters are not directly integrable from the angular
velocity vector. As a consequence, given the angular velocity, a procedure must be
developed to update the configuration orientation. The Euler parameters
representation has been chosen in this work, because of its algebraic nature and
especially because it does not possess any singularity limitation. As such, Euler
parameters appear to be the only set that allows the treatment of rotations of
arbitrary magnitude without resorting to any special precautions.

Given the rotation matrix []R describing the orientation of the body-fixed
reference frame (B) with respect to the inertial reference frame (I), the angular
velocity tensor is obtained by:

[] [][]
















−
−

−
==

0��

�0�

��0

R R -�~

12

13

23
T� [9]

where i� are the components of the angular velocity vector { }� .

Given [9] and [4], the angular velocity vector can be expressed in terms of the
Euler parameters and their time derivatives as:

{ } [] [] 














−−

=







ω q

q

q~Iqq

qq
2

0 0

0

0

�

�
[10]

OO programming and multibody systems 955

By inverting [10], the Euler parameters derivatives are obtained in terms of the
body frame angular velocity components:

{ } [] ()[]{ }q�A
q

q

�~�

�-0

2

1

q

q 0
T

0 =


















=









�

�
 [11]

The configuration orientation is deduced from a time discretization of [11]. The
Euler parameters derivatives are subject to the following constraint conditions:

{ } 0qqqq 00 =+ �� [12]

��	�� ������� �	������ �������� ��� �������� ������	���� 	��
�� ����� ��

����	!�����	� "���� ����� ��� #$%& �� ��� �������� ������

{ } { }() ()[] { } { }()qqqq n1n1/2nn1n

2

1
�A

h

1 +=− +++

where h is the time step.

The discrete orientation update is then given by:

{ } [] { }()[] [] { }()[] { }qq n1/2n1/2n1n
�A

2

h
I �A

2

h
I

D

1





 +




 += +++

where
2

2
�

4

h
1D += and the notation x designates the euclidian norm.

3.2.7.3. Lagrange multipliers treatment

The Lagrange multipliers are solved by the use of a stabilized constraint force
procedure. The kinematic constraint conditions are replaced by the following
penalty equations:

{ } [] []{ }dB
�

1

�

u
B

�

1
� �

�
� =









= [13]

where ε is a penalty coefficient.

In order to obtain a numerical solution to the companion differential equation
[13], the constrained equations of motion [7] are first integrated using the implicit
forward Euler formula as:

956 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

{ } { } { }ddhd
n1n1n

���� += ++

The stabilized differential equation for the Lagrange multipliers is obtained by
substituting the result of the integration of [7] into [13] as:

{ } [][] [] { } [][] { } [] { }d BQM Bh�BM Bh��

n1n11nT11n
�� +=+ +−+−+

where []M represents the mass and inertia matrix of [7].

The forward Euler formula is applied to obtain a discrete update of the Lagrange
multipliers, as follows:

[] [][] []() { } { } [][] { } [] { }dBhQM Bh���BM BhI�

n1n12n1nT12
�++=+ +−+− [14]

As one can see, the updating of the generalized coordinates, of the rotational
orientation and of the Lagrange multipliers are performed separately. For each time
step, the generalized coordinates are first calculated and are used to update the right-
hand side vector { }Q . This vector is put into the Lagrange multiplier update module.

Finally, the right-hand side vector { }Q is corrected with the current constraint force

vector { }�[B]T . The procedure is then advanced to the next time step.

These separated treatments lead to an attractive modular software
implementation, which favors the object-oriented programming and eases the
introduction of new algorithms and new formalisms in the future. The next section is
dedicated to the description of the class Domain, which manages the different stages
of the analysis.

3.3. Description of the class Domain

The class Domain has already been evoked in the general description of the
software architecture. It is used for the representation of an elementary problem and
drives the different stages of the analysis. The summarized description of Domain is
given in Figure 16.

The analysis is performed through the message Solve() of the class Domain
(Figure 17). This message first generates the lists of nodes, elements, joints and
interactions from the files created by the preprocessor. Three initialization methods
are then activated and the iterative resolution is initiated. At the end of the
resolution, Terminate() is activated in order to free the memory occupied by the
initializations.

OO programming and multibody systems 957

Figure 16. Domain class definition

At each time step, the calculation is performed by the method Solve_at(). The
Figure 18 shows the operations which follow the activation of Solve_at().
Summarized explanations of these operations are given as inline comment remarks.

From Figures 17 and 18, it can be seen that the implementation of the solve() and
solve_at() methods of Domain does not depend on the chosen formalisms and
solving algorithms. The introduction of new formalisms or new solving strategies
can be achieved easily, with small changes of some existing classes or the definition
of new classes. In any case, it does not require the complete redefinition of the
software architecture.

Class Domain
{

private : //examples of specific private attributes
List<Element> *element_list_ ;
List<Node> *node_list_ ;
List<Joint> *joint_list_ ;
List<Interaction> *boundary_conditions_list_ ;
List<Interaction> *loading_list_ ;
Matrix<double> *global_mass_matrix_;
Vect<double> *global_NL_acceleration_ ;
Element elem_ ;

protected : //examples of specific protected attributes
int nb_node_,nb_element_,nb_joint_,nb_eq_ ;

public : //examples of specific public methods
void GetElement_Domain() ;
void GetNode_Domain() ;
void Initialization() ;
void Give_Init_Conditions() ;
void InitRotation_Euler_Param() ;
int NbEq() {return nb_eq_ ;}
void TopElement() {element_list_->Top() ;}
Element *GetElement() {return element_list_->Get() ;}
void Solve() ;
void Solve_at(const double &time) ;
void Terminate() ;

};

958 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

Figure 17. Solve() method of the class Domain

3.4. Example of code extension

One example of code extension concerns the deployment dynamics of beam
structures. The simulation of extrusion of beam-like structures can be interesting to
study various problems such as tethers, space assembly, hot rolling and fluid jets. As
the beam extends from the guide, the spatial volume which deforms changes.

To model this effect, one solution is to discretize the beam by an equal number
of finite elements growing in length (Downer, 1990). This moving grid approach
can readily be adopted in the beam formulation presented in 3.2.2.2. The grid
deformation is accounted for in a proper manner by making the finite element basis
functions implicit functions of time (space-time discretization). Due to the changing
spatial reference for the dynamic variables, the inertia operator acquires terms
representing the convective rate of change of the variable in addition to those
representing the local rate of change of the variable. The internal force formulation
presented in 3.2.2.2 and the computation procedure exposed in 3.2.7 remain.

The introduction of this new functionality into the current code architecture
could be performed by deriving a class TBeam2 from Beam2, which would
modelize a Beam2 element growing in length. Also, it would be necessary to derive
a new class TBeam2_Formulation from Beam2_Formulation, in order to
integrate the specific convective terms appearing in the inertia operator (Figure 2).

�	�� ���
����'	���()

*
this->GetElement_Domain() ;
this->GetNode_Domain() ;
….
//initialization of the different matrices and vectors
this->Initialization() ;
//initial conditions
this->Give_Init_Conditions() ;
//initialization of the Euler parameters and the rotation matrices
this-> InitRotation_Euler_Param() ;
double time=0. ;
//max_time and deltat are defined by the user
int nb_step=(int)(max_time/(deltat/2.)) ;
 	� (��� ����+$ ������+��,���� �����--)

*

����-+������.%/ �

����0
'	���,��(����) �

�

����0
1��������() �

�

OO programming and multibody systems 959

Figure 18. Solve_at() method of the class Domain

�	�� ���
����'	���,��(const double &time)
*

��
���	��� ��
��� ��� 	
� ����������� ��������	��

����0
���	() �

��
���	��� 	
� �
��� ������	��� ��� 	
� ��	�	��� ��	�����

����0
2�����,3	����	���,4��������	�(����) �

global_mass_matrix_=new Matrix<double>(this->NbEq());
global_NL_acceleration_=new Vect<double>(this->NbEq());
….
for (this->TopElement() ;elem_=this->GetElement()) ;)
// iteration on all elements
*

�� �
���� �� 	
� ����	� ������	 ����
��	���

5���%,6	��
����	� ��(����,����������) �

7����!��	
���
 �����,���� �

�� ����
��	��� �� 	
� ������	��� ���� ��	���

����,����+��/8���
����,7���,7����!() �

�� ��������	��� 	���� �� 	
� ������	

��� ��	� �

�	�+����,9	��() �

�� ����
��	��� �� 	
� ������ ���� ��	���

����0
��������(��	���,����,�����!,�����,������	�) �

������ ����,���� �

�/

�

�� ����
��	��� �� 	
� ��	����� ����� ���	�� ���� �����������	�

����0
8�����6�!�(����)�

�� ������	��� �� 	
� ���
	�
��� ���� ���	�� Q
�

���
�	��� ���

����0
8�����,':����,	��(����) �

�� ����
��	��� �� 	
� !������� �
�	������� �
�

��������� 	�

�� 	
� �
���� ������	
� ���� �������" �
��� ����
�� �#$�

����0
'	���,9�������,7
���������(����) �

�� ������	��� �� 	
� ���
	�
��� ���� ���	�� Q
�

%�	
 	
� �
����	

�� ����	����	 ����� ���	�� �[B]T
�

����0
8�����,':����,�"	(����) �

������
��	��� �� 	
� ����� ��������	���� ���	��� u��
�

��� ��
�

���& �'�

����0
'	���,;����������,8		��������(����) �

�� ����� 	
� �
����	 ���
	��� ��� ����� ������

����0
1��������(����) �

�

960 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

4. Conclusions

A finite element calculation software may advance in different directions. In
particular, for software dealing with multibody systems, many formalisms and
hypotheses can evolve and combine with each other, as for example, the choice of
the finite elements, the choice of the referential frame, the definition of physical or
material parameters, the choice of the parameters for the representation of the finite
rotations, the choice of the solving algorithm, the formalism and the treatment of the
joints, the flexibility or the rigidity of the bodies, among others.

In this paper, the architecture of the computational engine of a new finite
element software for the simulation of flexible mechanisms has been presented. The
program has been designed according to object-oriented principles, which allow us
to simplify the architecture of the program. Although the current architecture is
based on given hypotheses and formalism, its originality lies within the fact that it
has been conceived in order to provide a flexible and extensive set of objects that
facilitate multibody systems analysis and which can be adapted to meet future
developments. The introduction of new formalisms or new solving strategies can be
achieved easily, with small changes of some existing classes or the definition of new
classes. In any case, it does not require the complete redefinition of the software
architecture.

5. References

Arnold K., Gosling J., The Java programming language, Reading, Addison-Wesley, 1998.

Besson J., Foerch R., “Object-oriented programming applied to the finite element method.
Part I. General concepts”, Revue européenne des éléments finis, vol. 7, n° 5, 1998, p. 535-
566.

Besson J., Leriche R., Foerch R., Cailletaud G., “Object-oriented programming applied to the
finite element method. Part II. Application to material behaviors”, Revue européenne des
éléments finis, vol. 7, n° 5, 1998, p. 567-588.

Booch G., Object oriented analysis and design with applications, Redwood City, Benjamin
Cummings, 1993.

Breitkopf P., Escaig Y., “Object-oriented approach and distributed finite element
simulations”, Revue européenne des éléments finis, vol. 7, n° 5, 1998, p. 609-626.

Cardona A., Géradin M., “A beam finite element non-linear theory with finite rotations”,
International Journal for Numerical Methods in Engineering, vol. 26, 1988, p. 2403-
2438.

Cardona A., An integrated approach to mechanism analysis, Ph.D. Thesis, University of
Liège, 1989.

OO programming and multibody systems 961

Cardona A., Géradin M., Doan D.B., “Rigid and flexible joint modelling in multibody
dynamics using finite elements”, Computer Methods in Applied Mechanics and
Engineering, vol. 89, 1991, p. 395-418.

Chiou J.C., Constraint treatment techniques and parallel algorithms for multibody dynamic
analysis, Ph.D. Thesis, University of Colorado, 1990.

Downer J.D., A computational procedure for the dynamics of flexible beams within
multibody systems, Ph.D. Thesis, University of Colorado, 1990.

Downer J.D., Park K.C., Chiou J.C., “Dynamics of flexible beams for multibody systems: a
computational procedure”, Computer Methods in Applied Mechanics and Engineering,
vol. 96, 1992, p. 373-408.

Dubois-Pèlerin Y., Pegon P., “Object-oriented programming in nonlinear finite element
analysis”, Computers and Structures, vol. 67, 1998, p. 225-241.

Dufossé F., Approche orientée objet appliquée à la conception d’un logiciel dédié à l’analyse
des systèmes multicorps, Ph.D. Thesis, Université Henri Poincaré, Nancy 1, 2001.

Dufossé F., Kromer V., Mikolajczak A., Gueury M., “Simulation of 3D polyarticulated
mechanisms through object-oriented approach”, in: N. Mastorakis, ed., Problems in
Modern Applied Mathematics, Mathematics and Computers in Science and Engineering,
2000, p. 84-89.

Eyheramendy D., “An object-oriented hybrid symbolic/numerical approach for the
development of finite element codes”, Finite Elements in Analysis and Design,vol. 36,
2000, p. 315-334.

Goldberg A., Robson D., Smalltalk-80: The language and the implementation, Reading, MA,
Addison-Wesley, 1983.

Ibrahimbegovic A., “On the choice of finite rotation parameters”, Computer Methods in
Applied Mechanics and Engineering, vol. 149, 1997, p. 49-71.

Ibrahimbegovic A., Mamouri S., “On rigid components and joint constraints in nonlinear
dynamics of flexible multibody systems employing 3D geometrically exact beam model”,
Computer Methods in Applied Mechanics and Engineering, vol. 188, 2000, p. 805-831.

Klapka I., Cardona A., Géradin M., “An object-oriented implementation of the finite element
method for coupled problems”, Revue européenne des éléments finis,vol. 7, n° 5, 1998,
p. 469-504.

Kunz D.L., “An object-oriented approach to multibody systems analysis”, Computers and
Structures, vol. 69, 1998, p. 209-217.

Lai M., Conception orientée objet. Pratique de la méthode HOOD, Dunod, 1991.

Mackerle J., “Object-oriented techniques in FEM and BEM. A bibliography (1996-1999)”,
Finite Element in Analysis and Design, vol. 36, 2000, p. 189-196.

Mackie R.I., “Object-oriented programming and numerical methods”, Microcomputers in
Civil Engineering, vol. 6, 1991, p. 123-128.

Miller GR., “A LISP-based object-oriented approach to structural analysis”, Engineering with
Computers, vol. 4, 1988, p. 197-203.

962 Revue européenne des éléments finis. Volume 12 – n° 7-8/2003

Nikravesh P.E., Chung I.S., “Application of Euler parameters for the dynamic analysis of
three-dimensional constrained mechanical systems”, Journal of Mechanical Design,
vol. 104, 1982, p. 785-791.

Otter M., Elmqvist H., Cellier F.E., “Modeling of multibody systems with the object-oriented
modeling language Dymola”, Proceedings of the MATO/ASI, Computer-aided analysis of
rigid and flexible mechanical systems, Troia, Portugal, June 27-July 9, 1993.

Park K.C., Chiou J.C., “Stabilization of computational procedures for constrained dynamical
systems”, Journal of Guidance, Control and Dynamics, vol. 11, 1988, p. 365-370.

Park K.C., Chiou J.C., Downer J.D., “Explicit-Implicit staggered procedure for multibody
dynamics analysis”, Journal of Guidance, Control and Dynamics, vol. 13, 1990, p. 562-
570.

Park K.C., Downer J.D., Chiou J.C., Farhat C., “A modular multibody analysis capability for
high precision, active control and real-time applications”, International Journal for
Numerical Methods in Engineering, vol. 32, 1991, p. 1767-1798.

Remy P., Devloo B., Alves Filho J.S.R., “An object-oriented approach to finite element
programming (phase I): a system independent windowing environment for developing
interactive scientific programs”, Advances in Engineering Software, vol. 14, 1992, p. 41-
46.

Rumbaugh J., Object oriented modeling and design, Prentice Hall, 1991.

Rumbaugh J., Jacobson I., Booch G., The unified modeling language reference manual,
Reading, MA, Addison-Wesley, 1999.

Ryan R. R., “ADAMS: Multibody system analysis software”, in Multibody Systems
Handbook, Scheihlen W. (ed), Berlin, Springer, 1990.

Scholz S.P., “Elements of an object-oriented FEM++ program in C++”, Computers and
Structures, vol. 43, n° 3, 1992, p. 517-529.

Tisell C., Orsborn K., “A system for multibody analysis based on object-relational database
technology”, Advances in Engineering Software, vol. 31, 2000, p. 971-984.

