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Abstract

When conducting numerical analyses, boundary conditions are generally
applied homogeneously, neglecting the inherent heterogeneity of the mate-
rial being represented. Whilst the heterogeneity is often considered within
the medium, its influence on the response at the boundary should also be
accounted for. In this study, A novel approach to applying heterogeneous
boundary conditions in the simulation of physical systems is presented,
particularly focusing on moisture transport in unsaturated soils. The proposed
method divides the surface into blocks or “macro-elements” and scales the
boundary conditions based on the variation of material properties within
these blocks. The principle of using overlapping kernel functions allows local
effects to be considered, impacting neighbouring regions. To demonstrate
the efficacy of the approach, a set of analyses were conducted that consid-
ered infiltration into a body of unsaturated soil, with various configurations
of material properties and boundary conditions. The numerical simulations
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indicate that the application of scaled boundary conditions leads to a more
natural and realistic response in the system. The applied method is inde-
pendent on the numerical techniques employed in the simulation process,
making it adaptable to existing computational codes, offering flexibility in
capturing complex behaviours, and providing insights into how heterogeneity
influences the system’s overall response.

Keywords: Heterogeneous boundary conditions, finite element methods,
unsaturated soils, random field, spatial variability.

1 Introduction

When simulating physical systems, the application of boundary conditions
is typically achieved through Dirichlet (fixed) or Neumann (flux) boundary
conditions. These could include prescribed displacements or temperatures
in the case of fixed conditions, or rainfall rates when considering flux con-
ditions. What is common is that these are normally applied uniformly to
a given surface, regardless of the heterogeneity that may be present at the
surface, or the medium itself. If a medium is heterogeneous, then naturally,
its heterogeneity should extend to its boundaries, and affect the way in which
mass can enter the system. If an electrical flux is applied to the surface of
a heterogeneous material such that the conductivity varies spatially, then the
regions of high conductivity should receive more of the applied flux as this is
where it would naturally track.

Boundary value problems with random or noise-based boundary condi-
tions have been considered analytically for a range of partial differential
equations (PDEs) (Wang and Duan 2007; Brune et al. 2009); in particular
for stochastic reaction-diffusion equations (Da Prato and Zabczyk 1993; Da
Prato and Zabczyk 1996). The inclusion of random boundary conditions
can imitate environmental fluctuations whose effects propagate through the
domain. Cerrai and Freidlin (2011) considered stochastic reaction-diffusion
equations with stochastic perturbations on the boundary defined by an inde-
pendent Wiener process. The authors showed that the associated class of
stochastic PDE (SPDE) could be represented by a sufficient 1-D stochas-
tic differential equation that depends upon the averaged coefficients and
noise of the original system. More generally, non-linear PDEs with random
Neumann boundary conditions have been considered, where a stochastic
Taylor expansion method was employed to simulate the systems numeri-
cally (Xu and Duan 2011). Perturbations at the boundaries were given by
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real valued Brownian motion, and the real Ginzburg-Landau equation (non-
linear heat equation) and sine-Gordon equation were solved numerically as
examples. It was observed that the solution was sensitive to the level of
noise added, which was shown to propagate through the domain with time.
With small enough perturbations, the solution was seen to vanish quickly
and fluctuate around zero. Similar numerical observations of this class of
problem were made by Mohammed (2015), who considered a general class of
reaction-diffusion equations with cubic non-linearities and random Neumann
boundary conditions. Amplitude evolution equations were derived by means
of multiple scale analysis to determine if the introduction of noise and random
boundary conditions lead to the stabilisation of the solution. The author also
considered the Ginzburg-Landau equation with real valued Brownian motion
to describe noise on the boundary. As expected, when the noise intensity
was increased, fluctuations in the solution near the applied boundary were
observed.

Investigations have also been carried out to explore the effects of random
boundary conditions on the simulated response of specific physical problems.
Groundwater flow through a shallow semiconfined aquifer – governed by
the Helmholtz equation – was subjected to stochastic boundary conditions
of Dirichlet and Neumann type (Satish and Zhu 1992). The implementation
of the perturbation method with the boundary element method allowed the
flow problem to be solved whilst accounting for uncertainty in the aquifer
and boundary conditions. The boundary conditions were accounted for by
expanding the random variables as an asymptotic series around a given
mean value, and their inclusion led to more accurate estimations of mean
values of potential. It was noted that the method is only valid when the
variances of the random variables were of small order. The effects of ran-
dom boundary conditions on groundwater flow was also considered by Shi
et al. (2008), simulating the response in heterogeneous media. Karhunen-
Loeve (KL) decompositions and perturbation expansion methods were used
to derive a series of deterministic PDEs that account for heterogeneity in the
hydraulic conductivity of the medium and applied boundary conditions of
Dirichlet and Neumann type. It was seen that the variability employed at the
boundary lead to increased head variance across the domain in some cases,
and in others, this was seen only in the near-boundary region. Stochastic
boundary conditions have also been applied when considering coastal flow
models. Mariano et al. (2003) used observations of surface velocity from
high-resolution radar data to formulate boundary conditions that could be
compared against traditional no-slip and free-slip conditions. The statistical
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analysis of vorticity-based on the physically based boundary conditions –
showed that the numerical model was able to better characterise the problem
through the stochasticity introduced. Less direct approaches have also been
considered, such as the boundary conditions being applied based on effective
properties of the surface to account for geometric heterogeneity (Guo et al.
2016).

Much of the previous work in this area has considered random boundary
conditions to account for the uncertainty observed at the boundary, with
fewer considering a material’s inherent heterogeneity as a catalyst for their
variable application. In this study, a novel method for applying boundary
conditions heterogeneously is presented. This was partially presented in the
authors previous work (Ricketts et al. 2023a), but its implementation – as
well as effects on physical processes – was not discussed in detail. The
approach is based on discretising the surface that a given condition is applied
to into blocks – akin to macro-elements – and distributing the condition
based on the variation of a given material property within a given block.
Clearly, the method depends on a certain level of spatial variability being
present in the domain, and as such, Gaussian random fields are introduced
to account for heterogeneity across the whole domain. Such random fields
are chosen to represent continuous variations in material heterogeneity as
opposed to the more discrete morphologies that materials such as composites
would present. This type of geometric heterogeneity is not considered, but
the presented approach would also be applicable in this case also. A key
aspect of the approach is the overlapping principle of the blocks, such
that local effects can be accounted for. This enables the response over a
given block to have influence over its neighbours. The novelty lies in the
ability to apply boundary conditions heterogeneously, accounting for the
characteristics of the material at its surface, whilst also preserving the total
applied mass. To highlight the effects of scaling conditions in this way, a
series of analyses were conducted, simulating infiltration into unsaturated soil
under different configurations. The effects of heterogeneous boundary condi-
tions, and the influence of heterogeneity throughout the domain can then be
quantified.

Section 2 presents the theory and numerical solution of the moisture trans-
port problem and random field generation; Section 3 presents the method of
heterogeneous boundary condition application in two and three dimensions;
Section 4 shows the application of the method to soil under rainfall conditions
and its influence over the resulting response; and Section 5 presents the main
conclusions of the study.
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2 Theoretical and Numerical Formulation

In the following section, the existing theory relating to moisture transport
in unsaturated soils and Gaussian random field generation is presented in a
summarised form. For full derivations of the governing equations and their
corresponding discretised forms, see Ricketts et al. (2023a).

2.1 Moisture Transfer in Unsaturated Soils

The theoretical model to describe the transport of moisture in soils is based
on the approach of Cleall et al. (2007), where the soil is assumed to comprise
solid mass and liquid water phases. The gaseous phase is neglected, such that
the volumetric water content θ is solely dependent on the liquid phase. Here,
the liquid pressure ul is given as the primary variable of the domain.

The governing equation is a combination of mass balance and Darcy’s
Law (Darcy 1856; Nielsen et al. 1986), such that the flow is driven by
gradients of pressure. These are expressed as

∂ (ρlnSl)

∂t
+ ρl∇ · vl = 0 (1)

where Sl the degree of saturation of pore water, ρl is the liquid density, n the
porosity, and vl the liquid velocity, and

vl = −kl
µl

[
∇
(
ul
γl

)
+∇z

]
= −Kl

[
∇
(
ul
γl

)
+∇z

]
(2)

where kl is the effective permeability, µl the pore liquid viscosity, γl the
unit weight of liquid, z the elevation and Kl the unsaturated hydraulic
conductivity. By combining Equations (2) and (1), the governing equation
for the flow of water can be formulated as

Cll
∂ul
∂l

−∇[Kll∇ul] = Jl (3)

where

Cll = −nρl
∂Sl
∂s

, Kll =
ρlKl

γl
, Jl = ρl∇(Kl∇z). (4)

This is then solved using the Finite Element Method, and by applying the
standard approach for obtaining the weak form of Equation (3), the associated
discretised equations are given as

Cll
∂ul
∂t

+Kllul = Fl (5)
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where

Cll =

m∑
e=1

∫
Ωe

Cllψ
TψdΩe,

Kll =
m∑
e=1

∫
Ωe

Kll∇ψT∇ψdΩe,

Fl =

m∑
e=1

∫
Ωe

Klρl∇ψT∇zdΩe −
m∑
e=1

∫
Γe

ψT[ρlv̂l]dΓ
e (6)

where ul are the nodal liquid pressures m is the total number of elements in
Ω, ψ are the shape functions, v̂l is the approximate liquid velocity normal
to the boundary and e denotes a given element in the discretised domain.
An implicit Euler backward difference scheme is employed for time dis-
cretisation (Zienkiewicz et al. 2013), where the standard Newton-Raphson
procedure is then applied such that the primary variable vector can be updated
incrementally (Chitez and Jefferson 2015).

2.2 Gaussian Random Fields

A tractable method for introducing spatially varying parameters must be
employed to instantiate a quantifiable and physically meaningful way to
scale applied boundary conditions. One such method is the use of random
fields, and can be used to represent material properties, initial conditions, and
many other quantities of interest. Correlated random fields are commonly
adopted as their inherent structure is similar to those of material properties
seen in many materials, such as soil (Liu and Leung 2018). This correlated
structure is determined by the covariance kernel of the field and its given
correlation length, and defines the region over which the field values are
correlated. Once these fields are introduced into the domain, the spatially
varying properties at the boundaries can be used to scale applied boundary
conditions in a way which coincides with the physical characteristics of the
medium being simulated. Here, the theory for generating Gaussian random
fields is described based on the SPDE approach. A particular advantage is
that the unknown field values X are determined by solving a system of partial
differential equations that have the same general structure as those used to
solve the transport problem. The approach follows that of Lindgren et al.
(2011) and Roininen et al. (2014).
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Let X ∈ Rd be a Gaussian random field whose contents are a parame-
terised collection of Gaussian random variables {X(x)}x∈Rd . The covariance
function defining the correlated structure of the field is assumed to be station-
ary, such that the structure of the generated field can be defined by the Matérn
autocorrelation function

ACFX(x) =
21−ν

Γ(ν)

(
|x|
l

)ν

Kν

(
|x|
l

)
(7)

for x ∈ Rd, where Γ is the gamma function, Kν is the Bessel function of the
second kind of order ν (Rasmussen and Williams 2005), |x| is the Euclidean
distance, ν > 0 is the smoothness parameter, and l > 0 is the length-scale
parameter. The length-scale parameter l represents a correlation length for
which the distance δ(ν, l) = l

√
8ν is the distance at which correlations are

near 0.1 (Lindgren et al. 2011). In practice, l is used to control the correlated
structure of the generated fields. Following the approach of Roininen et al.
(2014), Equation (7) is approximated by posing the function as the stochastic
PDE

(1− l2∆)
(ν+d/2)

2 X =
√
αldW (8)

where d = 1, 2, 3, W is white noise on Rd, and α is a constant defined by

α := σ2
2dπd/2Γ(ν + d/2)

Γ(ν)
. (9)

The smoothness parameter ν is fixed as ν = 2 − d/2, rendering
Equation (8) elliptic, resulting in the equivalent matrix equation

(I− l2∆)X =
√
αldW (10)

where I is the identity matrix. To be solved practically in a numerical
approach, the domain must be reduced to a bounded domain. As the solu-
tion is non-unique, boundary conditions are required, where the well-known
Dirichlet, Neumann and Robin conditions can be specified as

X|∂Ω = 0, (11)

∂X
∂n

∣∣∣∣
∂Ω

= 0, (12)(
X+ λ

∂X
∂n

) ∣∣∣∣
∂Ω

= 0, (13)
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where n is the unit normal to the boundary, and λ is the Robin coefficient
(a scalar value). The choice of boundary condition will change the final
matrix equation to be solved, as well as the optimal numerical approach of its
solution over Ω (Ricketts et al. 2023b).

Here, the Robin condition, Equation (13), is first considered. A weak
bilinear approximation in the defined problem space can be derived by first
employing the standard finite element approximation

X ≈
N∑
j=1

Xjψj , (14)

where Xj are random variables and ψj are the basis functions in H1(Ω).
By applying Green’s first identity and making the usual Galerkin choice of
ϕ = ψi, the problem can be approximated as

findX ≈
N∑
j=1

Xjψj such that a(X, ψi) = ⟨W,
√
αldψi⟩ for all i = 1, . . . , N,

(15)
where a is a bilinear functional defined as

a(φ, ϕ) =

∫
Ω
φϕdx + l2

∫
Ω
∇φ · ∇ϕdx + l2

λ

∫
σ
φϕdσ, φ, ϕ ∈ H1(Ω).

(16)

where σ = ∂Ω. Posing Equation (15) as a matrix equation, gives

HX = (M+ l2S+ l2/λN)X = W, (17)

where the solution X is a Gaussian random field, and M, S, N, and the vector
W are

Mi,j =

∫
Ω
ψjψidx,

Si,j =

∫
Ω
∇ψj · ∇ψidx, Ni,j =

∫
σ
ψjψidσ, Wi = ⟨W,

√
αldψi⟩. (18)

The Neumann and Dirichlet conditions are considered similarly. The
main difference is that, in both cases, the surface integral vanishes, either
directly from the prescribed condition as in the Neumann case, or though
careful choice of the function space to be H1

0 (Ω) when considering the
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Dirichlet condition. This leads to a matrix equation of similar form as
Equation (17), resulting in

(M+ l2S)X = W. (19)

3 Heterogeneous Boundary Condition Application

In the following, details of how to implement heterogeneous boundary con-
ditions are given. Whilst this can also be applied to Dirichlet conditions, the
following is posed in terms of Neumann boundary conditions. In physical
systems, it is more likely that fixed conditions are imposed uniformly to
control the response, so it may not be prudent to vary this numerically. In
contrast, a flux condition could be highly dependent on the material being
simulated, where variability at the boundary could promote flux surfaces that
are non-uniform, such as rainfall onto soils. In both two and three dimensions,
the boundary over which the Neumann condition is scaled is denoted as ΓN,
and will be scaled based on X, the random field obtained through the solution
of Equation (17). This represents a general material property, and has values
which, in this implementation, are stored at the nodes of Ω. Specifically, the
values of X stored at ΓN are used when scaling the flux, and relate to the
given material property that X represents.

To summarise the approach, the uniform flux applied over ΓN is locally
varied, based on nodal values of some predetermined parameter, within a
neighbourhood of nodes, defined as a ‘block’ (this can be thought of as a
kernel function). A weighted average is then taken over overlapping layers of
blocks such that non-local interactions are introduced at the surface. Finally,
the weighting is then normalised such that the total flux application over the
surface is preserved, matching the initial mass application before scaling.

3.1 Two-dimensional Case

Let Ω ∈ R2 be discretised by linear quadrilateral elements, such that ΓN is
composed of edges and nodes. It is assumed that a random field X has been
generated over Ω such that it holds values at the nodes of ΓN, and represents
a property of the domain.

Rather than scaling on an element-wise basis, the applied flux is scaled
in localised regions, referred to here as blocks, such that the total flux
is preserved. The structure of this can be seen in Figure 1, where ΓN is
composed of 4 edges and 5 nodes.



208 E. J. Ricketts et al.

Figure 1 Schematic to show the block structure, where ΓN is the surface over which the
Neumann BC is being scaled, and B1 and B2 are the blocks over which the flux is redistributed.

The blocks seen in B1 and B2 have no thickness associated with them
and can be considered as one dimensional. The flux is scaled at the nodes
over two block layers, denoted as B1 and B2. These are also seen in Figure 1,
where B1 contains 2 blocks, and B2 contains 3 blocks. It is worth noting that
the size of the blocks do not need to conform to the nodal positions of ΓN,
and is merely done here for clarity. In practise, the blocks can begin and end
relative to any position on ΓN.

The size of the block itself – here considered as its length – is the main
choice to be made when applying this method. This length could be based on
physical characteristics of the medium being simulated or fit as a hyperpa-
rameter. For the method to be effective, at least 2 nodes should be contained
within a given block, otherwise the flux of a single node will be redistributed
to itself, leaving it unchanged. Similarly, the effects of neighbouring regions
are relative to the element size. Further constraints are that, in 2-D, B1 and
B2 must overlap such that the midpoint of a block in B1 should be positioned
at the beginning of a block in B2, and vice versa. By ensuring that B1 and B2

are aligned in this way, linear hat shape functions can be used across a given
block to form a partition of unity such that the scaled flux at a given position
is the sum of the scaled flux for said position in both layers.

For an applied flux q on ΓN, test function v, and scaled flux q̃, the
corresponding integral in the weak form is given by

N =

∫
ΓN

q̃vdΓN , (20)

such that the value at the i-th node can be described as the discretised form

q̃i =

2∑
Bj=1

ψj

∑
q∑
X
Xi (21)

where q̃i is the scaled flux at the i-th node, ψj are the linear shape functions of
the j-th block layer, Xi is the random field value for the i-th node, and

∑
q
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Figure 2 Schematic to show the combination of shape functions over ΓN .

and
∑
X are the sums of the applied flux and random field of the considered

infiltration surface nodes. The combination of shape functions over B1 and
B2 is seen in Figure 2.

If the flux was scaled solely in B1 without the use of shape functions,
then the applied flux would be distributed based on the variation seen in that
block alone. In many physical systems, the behaviour at a given point on the
boundaries is influenced not only by the local region, but also by the near-
by response. For example, consider rainfall on a soil surface. The resulting
infiltration will be intensified in regions of pore permeable soil, and would
be expected to be greater than those in less permeable areas, i.e., inside the
given block. However, it could be the case that a neighbouring region has
positions of much larger conductivity, such that the water at the surface will
track here due to it being the path of least resistance into the medium. Hence,
the highly conductive neighbour will reduce the amount of water available
for its neighbours. By scaling over localised regions and combining them
over B1 and B2, the effects of nearby regions are accounted for, leading to a
more natural distribution of the applied flux.

3.2 Three Dimensional Case

Let Ω ∈ R3 be discretised by linear hexahedral elements, such that ΓN is
composed of edge-faces and their corresponding nodes. It is again assumed
that a random field X has been generated over Ω such that it holds values at
the nodes of ΓN, and represents a property of the domain. The same process
can be carried out in 3-D as in 2-D, where the blocks are now considered to
be surfaces over which the flux will be distributed. The simplest case in this
setting – other than a single element or pseudo 1-D configuration – is shown
in Figure 3, where ΓN comprises 4 edge-faces and 9 nodes.

In the given figure, the blocks are assumed to be square and align neatly
with the mesh. As in 2-D, the alignment of the blocks with the mesh is not
strictly necessary, and is done so here for clarity of illustration. Similarly, the
assumption of perfectly square blocks does not need to be enforced. It could
be the case that the blocks are longer in one direction that the other, or that not
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Figure 3 Schematic to show the block structure, where B1, B2, and B3 combine to form the
block layer over which the flux is redistributed.

Figure 4 Schematic of irregular block configurations where: (a) the blocks are longer on
one side L1 ≥ L2, and (b) they blocks take the form of a rhombus.

all corner angles within the block are 90◦ as for a rhombus (see Figure 4(a)
and 4(b) respectively).

The advantage of having irregular block configurations is the ability to
represent anisotropic local effects due to neighbouring regions. In certain
physical systems, it may be that an applied flux at a given position should see
greater locally affects in one direction tangential to the surface than another.
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In this instance, having a larger block length in this direction would allow
this greater region of influence to be accounted for. Furthermore, the main
constraints are that the blocks should be able to be layered such that they can
overlap at the midpoint of neighbouring blocks, as in Figure 3, and if irregular
blocks are employed, the opposing angles of a block should be equal such that
a rhombus is formed. It is noted that this study did not investigate further the
use of irregular block formations.

In 3-D, the composition of blocks for a given node is less straight forward.
The layers B1, B2, and B3 in Figures 3 and 6 are for illustration, and the
composition of the blocks is not necessarily always split into a given number
of layers. Instead, we define the scaled flux q̃i at the i-th node as

q̃i =
∑
B
ψBj

∑
q∑
X
Xi (22)

where B is the set of all blocks containing the i-th node, and ψBj is the pyra-
mid shape function over the Bj-th block in B. In this overlapping convention,
the i-th node will be contained within 4 blocks, as see in Figure 5.

By aligning the blocks in this manner, the pyramid shape functions –
which are nothing more than the product of two perpendicular hat shape
functions aligned with each axis of the block surface – enforce a partition
of unity for each position of the domain. This is seen in Figure 6, where
the blocks and corresponding shape functions are grouped by patterns of
alignment over ΓN. The implementation algorithm 1 is given below, where
the same approach is taken in 2-D by replacing the expression for q̃i with
Equation (21).

Figure 5 Schematic of the block contribution for the i-th node, where 4 blocks are used to
scale the given flux value qi.
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Figure 6 Schematic of the combination of shape functions from layers B1, B2, and B3 over
ΓN .

Algorithm 1 Scaled flux based on material heterogeneity
Objective:
To scale the applied flux q based on Equation (22) and the Gaussian random field X
Parameters:
– Block lengths
– Random field X
– Flux array q
Set block length
Set arrays of blocks and contained nodes
for iblock=1:nblock

Calculate
∑
q over iblock

Calculate
∑
X over iblock

for inode in iblock
Calculate q̃i =

∑
B ψBj

∑
q∑
X
Xi

end
end
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3.3 Transient Effects

As will be shown in the following section, the flexibility of the approach
allows the applied flux field to be neatly coupled with the material response,
such that it can vary with time. When conducting a time-dependent analysis,
X will remain unchanged, suggesting that the flux applied to the surface
will be distributed scaled and applied with the same variation throughout the
analysis.

The alternative is to base the scaling of the boundary condition on a
property that is changing in time as the condition is applied. If – as is seen
in the later sections – X = X(ul), where ul is the primary variable being
simulated in Ω, then the flux will be scaled depending on the response of the
medium. A schematic of this is seen in Figure 7.

Consider the case where X = X(ul), and a given block contains a
collection of nodes. Illustrated in Figure 7 are two of said nodes whose
nodal values are denoted as x1 = x1(ul) and x2 = x2(ul), where x1 ≥ x2
and are much larger relative to the other nodes of the given block. Based
on the scaling framework, more flux should be applied to x1 and x2, with
x1 receiving a larger amount, as is shown by the surface. This will lead to
high injections of flux into the medium at these position as opposed to the
rest contained in the block. If it is assumed that a diffusive process is being
simulated, then as time advances, the mass injected into the system at x1
and x2 will begin to diffuse to the surrounding nodes, meaning less flux is
distributed to x1 and x2 as they are smaller relative to the surrounding nodes.
This leads to the variations in the flux at the surface beginning to diffuse, and
a trend towards a more uniform flux application across the surface. Clearly,
the behaviour here is dependent on the nature of the transient evolution of
the solution, as well as the chosen property that the flux surface depends

Figure 7 Schematic to show the effects of a time-dependent flux surface for a diffusive
process, where the quantity that the flux is scaled by evolves in time.
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upon. In the previous section, it could have been assumed that X represented
scalar values of material properties, such as Young’s modulus or permeability,
leading to a non-evolving flux application.

4 Application: Moisture Transfer in Spatially Varying Soils

Here, the proposed heterogeneous boundary condition is applied to simulate
moisture transfer in unsaturated soil, in order to examine the effect that the
scaled flux surface has on the patterns of infiltration.

Random fields are utilised to introduce heterogeneity into the domain,
namely through spatially varying the saturated conductivity Ks, and van
Genuchten parameters αvg and nvg. These will directly influence the Darcian
type flow that is present in the medium by varying the constitutive compo-
nents of the model. The soil water retention curve is calculated using the
well-known van Genuchten model

Sl = (1 + (αvgul)
nvg)

1−nvg
nvg (23)

and the standard van Genuchten – Mualem model is used to represent the
relative permeability

Kr =
√
Sl

[
1−

(
1− Sl

1
mvg

)mvg
]2

(24)

where Sl is the degree of saturation, and mvg = 1 − 1/nvg. Darcy’s law
depends on the unsaturated hydraulic conductivityKl, and is calculated using
Equation (24) and Ks as

Kl = KrKs (25)

It can be seen that these material properties will vary spatially due to the
variation in the chosen parameters stated above, as they either depend explic-
itly or implicitly on spatially varying parameters. For further details on the
model and the effects of spatial variability on flow in soils, see Ricketts et al.
(2023a).

The material properties, given in Table 1, of the simulated soil are based
on those given by Wang et al. (2003) for a sandy loam

The domain Ω is a 1 m × 1 m × 1 m cube discretised by regular
hexahedral elements, composed of 9261 nodes and 8000 elements (with
appropriate convergence checks undertaken). The applied flux to be scaled is
given as 1.5 cm h−1 applied for a duration of 7 hours, which may be thought
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Table 1 Model parameters
Saturated

Conductiv-
ity, m/s αvg, Pa−1 nvg – Porosity – l (Vertical) m

Density
of Water
kg/m3

Mean
Value

7.1 × 10−5 0.0008 1.8 0.35 0.3 1000

Standard
Deviation

2.3 × 10−5 0.00015 0.01 – – –

of as a rainfall condition upon the soils surface. After the first 7 hours, the
analysis is run for a further 22 hours to simulate moisture to redistribution
within the domain. Here, the block length is chosen to be equal to l, the
correlation length of the soil parameters. Generally, the local effects at a
given point in Ω – when heterogeneity is present – should be relative to l
as this is nothing more than the distance over which values are correlated.
Namely, points outside of this region of influence should have little to no
effect on the response at its centre. This type of continuous representation
makes the choice of the block length relatively straightforward. To enable a
sufficiently smooth field representation, 5 elements are usually taken within
each correlation length, and as this is our block length, this satisfies the
condition of having a sufficient number of nodes per block. Generally, the
choice of block length must relate to the region of influence that a given point
in the domain has on its neighbours, and contain at least 2 nodes.

To clearly observe the influence of heterogeneous boundary conditions on
the resulting infiltration patterns, 6 configurations of varied domain type and
boundary condition were analysed. In all the presented cases, the variability
over Ω is kept constant to allow comparison of response to be made. There
are two cases for Ω, namely when the material properties in the soil body vary
spatially, and when they are homogeneous, the latter being denoted by ΩH .
This is done such that the effects of the differing boundary conditions on flow
can be observed clearly, decoupling the influence of heterogeneity present
in the medium. The flux scaling scenarios are a homogenously applied flux
surface, scaling based on the saturated conductivity Ks, and scaling based on
unsaturated conductivity Kl. The main difference here is that Kl = Kl(ul),
and so the flux surface will evolve in time based on the evolution of liquid
phase throughout the domain.

Figures 8, 9 and 10 show the progression of a wetting front over a
given time frame, where the main difference is the boundary condition
being applied. Figures, (a–c) and (d–f) represent solutions over Ω and ΩH
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Figure 8 Short-term wetting response when applying a homogenous Neumann boundary
condition, where (a–c) and (d–f) depict a heterogeneous and homogeneous domain respec-
tively at: (a), (d) 10 minutes, (b), (e) 26 minutes, and (c), (f) 60 minutes.

Figure 9 Short-term wetting response when applying a heterogeneous Neumann boundary
condition scaled based onKs, where (a–c) and (d–f) depict a heterogeneous and homogeneous
domain respectively at: (a), (d) 10 minutes, (b), (e) 26 minutes, and (c), (f) 60 minutes.
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Figure 10 Short-term wetting response when applying a heterogeneous Neumann boundary
condition scaled based onKl, where (a–c) and (d–f) depict a heterogeneous and homogeneous
domain respectively at: (a), (d) 10 minutes, (b), (e) 26 minutes, and (c), (f) 60 minutes.

respectively, where the times are 10 minutes for (a) and (d), 26 minutes for (b)
and (e), and 60 minutes for (c) and (f). Figure 8 shows the front after applying
a homogeneous boundary condition, Figure 9 shows the front after scaling the
flux based onKs, and finally Figure 10 shows the resulting wetting front after
scaling the flux based on Kl.

It is clear that the response at the boundary is quite different in all cases
based on the evolution of the degree of saturation (DOS) at ΓN. As expected,
Figure 8 (d-f) gives the expected response when applying uniform bound-
ary conditions to a homogenous domain, such that the front is stable and
advances with time through the medium. In contrast, when the domain is
heterogeneous, the front builds up more in regions where the conductivity is
lower and diffuses quickly through high regions of conductivity.

A more marked difference from the homogeneous response is observed
when the applied flux is varied based on Ks. As is expected, the regions
whereKs is larger receive more water compared with low conductivity zones,
and is seen in Figure 9(a). As time advances, the applied flux field remains
constant – as Ks is unchanging – such that in (b) and (c), the areas where
the moisture is generally highest relate to those in (a) that have a higher
DOS. Mass is continually forced into these areas over the time that the flux
is applied, leading to a pattern of infiltration based largely on Ks. This is
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also true for (d–f). The main difference here when simulating over ΩH is
that the front will diffuse uniformly in all directions for a given point in the
domain. This leads to the less uniform distribution of moisture on the surface
of (f) when compared against (c). The fluid is forced in larger quantities to
the areas of high Ks, but once this happens, the moisture present will diffuse
uniformly due to the homogenous conductivity. In the case of (c), even though
more mass is applied in the conductive regions, there is less build up here as
the heterogeneity of the domain allows it to diffuse faster into the surrounding
media.

Finally, Figure 10 shows the most distinct response for all (a–f) in the
three figures considered. The response here, specifically in the initial stages
of the analyses, can be thought of as the fluid following the paths of least
resistance locally, entering into large pores, and reducing the available water
for its neighbours. This is illustrated in (a) and (d) by the injection of flux in
distinct location on ΓN. As this fluid begins to diffuse around these points, the
conductivity in the plumed regions will rise, forcing the flux in the next time
step to be spread more evenly across the plumes. Physically, this is a result of
rising DOS and conductivity of the plumed areas, where water would be able
to enter much more easily. From (b) to (c), and (e) to (f), these plumes grow,
until eventually the applied flux is transformed from a surface containing
sharp peaks at very localised positions, to a much more uniform application
due to the growing level of saturation across ΓN.

To further highlight the various forms of wetting fronts seen when
applying the flux, slices were taken in each of the 6 cases after 1 hour.
These are seen in Figure 11 where the applied boundary conditions are: (a,d)
homogeneous Neumann, (b,e) heterogeneous Neumann scaled based on Ks,
and (c,f) heterogeneous Neumann scaled based on Kr (where (a–c) and (d–f)
are solutions from Ω and ΩH respectively). It is clear than for (a) through (c)
and (d) through (f), that the invading fluid phase becomes more distinct. It is
also clear that, whilst the heterogeneity present in the domain is having an
effect on the front, the influence of the heterogeneous boundary conditions
further adds to this change in response.

The cases that have been considered here have all been in a relatively
short time frame when compared with the total simulation time. Figure 12
shows the fronts after the final simulation time of 29 hours.

It is clear that after the full simulation time, the fluid phase has had time to
diffuse into the domain laterally and vertically, forming wetting fronts that are
similar for each boundary condition considered. The difference here is only
seen between (a–c) and (d–f) due to the level of heterogeneity present. As the
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Figure 11 Vertical profiles of infiltration at 1 hour, where the applied boundary conditions
are: (a,d) homogeneous Neumann, (b,e) heterogeneous Neumann scaled based on Ks, and
(c,f) heterogeneous Neumann scaled based on Kr (where (a–c) and (d–f) are heterogeneous
and homogeneous domains respectively).

Figure 12 Final wetting fronts at 29 hours where the applied boundary conditions are:
(a,d) homogeneous Neumann, (b,e) heterogeneous Neumann scaled based on Ks, and (c,f)
heterogeneous Neumann scaled based on Kr (where (a–c) and (d–f) are heterogeneous and
homogeneous domains respectively).

analysis advances and the boundary condition is turned off, the flow through
the medium is governed by the properties of the soil body, and as (a–c) and
(d–f) are identical in this manner, it is reasonable that their responses should
converge.



220 E. J. Ricketts et al.

In all cases, the response across the surface is largely dependent on the
observation time frame. The constitutive relations in the model ensure that
as the DOS rises, the values of Kl across Ω will converge to Ks, meaning
that if enough mass is applied over a given length of time, the flux surfaces
will converge. If the flux was continued to be applied after reaching saturated
conditions, the flux field being applied would be the same when scaled based
on Ks or Kl. Whilst this is true for the physical system considered in this
study, there may be instances where material relations are employed that do
not follow this convergent behaviour, but this has not been addressed.

5 Concluding Remarks

The conclusions of this study are given as follows:

• The simulated response of many physical systems is strongly dependent
on the way in which boundary conditions are applied. This depends on
the type of system, as well as the time-scale over which the processes are
being represented. In Section 4, the differences between the responses
of analyses with different boundary conditions reduce with time over
the period of the analysis, with the differences becoming negligible with
increasing time. For other systems, materials, or simulation configura-
tions, this may not be the case, and applying boundary conditions in
this manner can lead to a more natural application of mass based on the
physical properties of the medium.

• For soils, the inclusion of the scaled condition leads to a more natural
response of infiltration, where the choice of dependence on a constant
parameter such as Ks or an evolving parameter such as Kl depends on
the soil being simulated.

• A key benefit of the method is that it is independent of the discreti-
sation and order of interpolation employed. As the blocks are simply
“macro-elements”, they can be position across a domain surface in
many configurations regardless of the numerical techniques used in
the solution process. This makes its adoption into existing codes less
intrusive, as it can be carried out as a self-contained process in each
time step.

• The ability to implement irregular blocks would allow for anisotropy of
local effects to be accounted for. For example, if the boundary condition
is not applied normal to the surface, then there could be greater local
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influence in a given direction, for example runoff on a slope. By scal-
ing the blocks, this local phenomenon could be represented. Another
assumption is the overlapping principle that should be maintained
through the block layers. This specific configuration is chosen such that
a partition of unity can be achieved with linear shape functions; however,
this does not imply that other overlapping configurations with different
shape functions would not lead to alterative or similar responses. With
the choice of appropriate shape functions and subsequent overlapping to
form a partition of unity, this could lead to more intricate local effects
being accounted for.

• It is clear that the response at the surface is strongly influenced by
implementing such a method. This can be tailored to experimental
observations by careful choice of the variable that the scaled flux field
is dependent on. Furthermore, the method shows great flexibility in
representing alternate responses at the surface of a given medium when
simulating complex systems.
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