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ABSTRACT
In this study, a numerical method is presented in order to
approximately solve singularly perturbed second-order differen-
tial equations givenwith boundary conditions. Themethod uses
the set ofmonomialswhose degrees do not exceed aprescribed
N as the set of base functions, resulting from the supposition that
the approximate solution is a polynomial of degree N whose
coefficients are to be determined. Then, following Galerkin’s
approach, inner product with the base functions are applied to
the residual of the approximate solution polynomial. This
process, with a suitable incorporation of the boundary condi-
tions, gives rise to an algebraic linear system of size Nþ 1. The
approximate polynomial solution is then obtained from the
solutionof this resulting system. Additionally, a technique, called
residual correction,which exploits the linearity of the problem to
estimate the error of any computed approximate solution is
discussed briefly. The numerical scheme and the residual correc-
tion technique are illustrated with two examples.
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1. Introduction

It is quite often in science and engineering that modelling a phenom-
enon involves the examination of differential equations with very small
(or very large) parameters. The main problem with such equations is
the dramatically different behaviour exhibited by the solutions when
these parameters approach zero (or infinity). This concept, known as
singular perturbation, makes it harder to obtain accurate approximate
solutions by any numerical scheme (Zhang, 2002). A historical treat-
ment including an in-depth review of some ideas aiming to obtain
accurate solutions of singularly perturbed problems can be found in
(Lagerstrom & Casten, 1972). Interested reader can learn more from the
fairly rich literature on the topic such as (Miller, O’Riordan, & Shishkin,
2012) and (Kevorkian & Cole, 1996).

A rudimentary insight on the concept of singular perturbation is pro-
vided by the following example from O’Malley’s book (O’Malley, 1997):
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Given ��0, the solutions of the algebraic equation x2 þ �x� 1 ¼ 0, which

are x1 ¼ ��� ffiffiffiffiffiffiffi
�2þ4

p
2 and x2 ¼ ��þ ffiffiffiffiffiffiffi

�2þ4
p
2 , approaches the values � 1 and 1.

These two values are just the solutions of the equation x2 � 1 ¼ 0, which is
obtained by taking the limit of the original equation as � goes to 0. This
situation is termed as regular perturbation. On the other hand, singular
perturbation can be observed when we have � in the quadratic term;
namely when we have the equation �x2 þ x� 1 ¼ 0.

Solutions of the equation are x1 ¼ �1þ ffiffiffiffiffiffiffiffi
1þ4�

p
2� and x2 ¼ �1� ffiffiffiffiffiffiffiffi

1þ4�
p
2� . The

limits of these values as � ! 0 are 1 and �1. However, �1 is not a
solution of the limit equation, which is x� 1 ¼ 0. Therefore, the equation
�x2 þ x� 1 ¼ 0 is an example of a singularly perturbed equation.

In this paper, we will be dealing with the following second-order
differential equation considered in a real interval ½0; b� and given with
boundary conditions:

�y 00ðxÞ þ pðxÞy 0ðxÞ þ qðxÞyðxÞ ¼ f ðxÞ; yð0Þ ¼ α; yðbÞ ¼ β (1)

Here, pðxÞ; qðxÞ and f ðxÞ are known real-valued functions, ε< 1 is a known
positive perturbation parameter, while α and β are real boundary values.
Problems of type (1) are encountered in numerous applications. For
instance, it was used to model the motion of fluids (Prandtl, 1904) with
small viscosity and human pupillary light reflex (Longtin & Milton, 1988).
Solving singularly perturbed equations of this type also plays an important
role in variational problems in control theory (Mohapatra & Natesan,
2011).

Although the theory of linear differential equations has been extensively
developed, the case of variable coefficients does not have a general method
of solution even in the second-order case. Thus, numerous attempts have
been made to obtain numerical solutions of problems of type 1. To name a
few of these, a uniformly convergent finite difference scheme for singular
perturbation problems was presented by Kadalbajoo and Patidar
(Kadalbajoo & Patidar, 2006), whereas the same goal was realised by
applying a seventh-order compact difference scheme to same type of
problems in (Chakravarthy, Phaneendra, & Reddy, 2007). Collocation
methods were also presented for second-order singularly perturbed pro-
blems in conjunction with Bessel (Yüzbaşı, 2015) and Laguerre (Yüzbaşı,
2017) polynomials by Yüzbaşıs. In Pandit & Kumar (2014), a version of
Problem (1) where a second perturbation parameter is present in the first
derivative term was solved with the help of Haar wavelets. Delayed ver-
sions of Problem (1) have also been considered by various authors. For
instance, a matrix method involving Chebyshev polynomials was presented
in Gülsu, Öztürk, & Sezer (2011) to solve singularly perturbed delay
differential equations where the delay appears in the first derivative term.

110 Ş. YÜZBAŞI AND M. KARAÇAYIR



Lastly, an efficient algorithm based on finite differences was presented in
Habib & El-Zahar (2007) to solve non-linear singularly perturbed
differential equations of second order.

The presentation of the paper is organised as follows: The numerical
scheme of the paper is explained in Section 2. Section 3 deals with a short
description of a way of estimating the error of an already obtained
solution, thus making it possible to improve the solution. Numerical
examples are considered in Section 4, where the technique of residual
correction are also demonstrated. Finally, conclusions regarding the
simulation results are given in Section 5.

2. Method of solution

In this section, we will outline the procedure to be used to solve
Problem (1). A similar method was previously applied to high-order
Fredholm integro-differential equations in (Türkyılmazoğlu, 2014) and
to same type of equations with singular kernel functions in (Yüzbaşı &
Karaçayır, 2016a). In addition, a modified version of it was applied to
Lotka-Volterra predator-prey system (Yüzbaşı & Karaçayır, 2017a) and
Riccati equations encountered in quantum physics (Yüzbaşı &
Karaçayır, 2016b).

To begin with, we assume that the exact solution yexactðxÞ of Problem (1)
corresponding to a fixed value of the perturbation parameter � can be
written as a power series given by

yexactðxÞ ¼
X1
k¼0

akx
k:

Truncating this power series after the N-th degree term and denoting the
obtained polynomial of degree N by yNðxÞ, we have

yNðxÞ ¼
XN
k¼0

akx
k ¼ XðxÞA; (2)

where

XðxÞ ¼ 1 x x2 . . . xn
� �

; A ¼ a0 a1 a2 . . . aN½ �T:
Here, the approximate solution to be found is the polynomial yNðxÞ of
degree N. The aim of the algorithm is to determine the unknown coeffi-
cients ak; k ¼ 0; 1; . . . ;N and the vector A of length N þ 1 is just a matrix
formed by these coefficients. In order to make it easier to express the
derivatives of yNðxÞ, we define the auxiliary matrix B to be the ðN þ 1Þ �
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ðN þ 1Þ square matrix having entries Bi;iþ1 ¼ i for i ¼ 1; 2; . . . ;N and Bi; j

otherwise. In a more explicit manner, we define

B ¼

0 1 0 . . . 0
0 0 2 . . . 0
..
. ..

. ..
. . .

. ..
.

0 0 0 . . . N
0 0 0 . . . 0

2
66664

3
77775:

With the auxiliary matrice B such defined, one can easily check that the
derivatives present in Problem (1) satisfy the following matrix equalities:

y0NðxÞ ¼ XðxÞBA; y00NðxÞ ¼ XðxÞB2A:

Next, we substitute in the differential equation of Problem (1) the matricial
counterparts of the approximate solution yNðxÞ and its two derivatives and
obtain

GðxÞA ¼ f ðxÞ; (3)

where

GðxÞ ¼ �XðxÞB2 þ pðxÞXðxÞBþ qðxÞXðxÞ:

Now, in order to convert the differential Equation (3) into a system of
linear equations in the unknowns ak, we take inner product of Equation
(3) with the elements of the set Φ ¼ 1; x; x2; . . . ; xNf g. In our context,
‘inner product’, means the inner product in the space L2ð½0; b�Þ of square
integrable functions. More explicitly, if f and g are two functions from
L2ð½0; b�Þ, then their inner product is defined by

f ; gh i ¼
ðb
0
f ðxÞgðxÞdx:

Each inner product thus taken will give rise to a linear equation involving
the unknown coefficients ak. Since there are N þ 1 functions in the basis
set Φ, so is the number of inner products; thus a linear system WA ¼ F of
N þ 1 equations in N þ 1 unknowns is formed as a result. The ðN þ 1Þ �
ðN þ 1Þ coefficient matrix W and the column matrix F of length N þ 1 are
given by

Wi; j ¼ < x i�1;GðxÞ1; j > ; Fi;1 ¼ < x i�1; f ðxÞ> ; 0 � i � N; 0 � j � N:

More explicitly, W and F are given by
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W ¼

1;GðxÞ1;1
D E

1;GðxÞ1;2
D E

. . . 1;GðxÞ1;Nþ1

D E

x;GðxÞ1;1
D E

x;GðxÞ1;2
D E

. . . x;GðxÞ1;Nþ1

D E

..

. ..
. ..

. ..
.

x N;GðxÞ1;1
D E

x N;GðxÞ1;2
D E

. . . x N ;GðxÞ1;Nþ1

D E

2
6666664

3
7777775
;

F ¼ 1; f ðxÞh i x; f ðxÞh i x2; f ðxÞh i . . . x N; f ðxÞh i� �T
:

We would like the approximate solution yNðxÞ to satisfy the boundary
conditions of Problem (1). For this reason, we now incorporate the
boundary conditions yð0Þ ¼ α and yðbÞ ¼ β into the system WA ¼ F.
The condition yð0Þ ¼ α implies a0 ¼ α, or in matricial form
uA ¼ 1 0 . . . 0½ �A ¼ α. Likewise, the condition yðbÞ ¼ β can be writ-
ten as vA ¼ 1 b b2 . . . bN

� �
A ¼ β. Now, in order to force the

approximate solution yNðxÞ to satisfy the boundary conditions, we replace
the last two rows of the system WA ¼ F by the matrix counterparts of
these conditions and obtain a new system given by ~WA ¼ ~F. More
explicitly, the last two rows of ~W are u and v, whereas the last two entries
of ~F are α and β. The solution of the new linear system ~WA ¼ ~F yields the
unknown coefficients ak, hence the approximate solution

yNðxÞ ¼
XN
k¼0

akx
k:

This method can be generalised to partial differential equations of any
dimension in a straightforward manner. For instance, if the dimension
(excluding time) of a boundary value problem given over a rectangular
region is 2, the monomials in the basis set Φ are replaced by xiy jtk where
i; j; k ¼ 0; 1; . . . ;N and the inner products are evaluated over a three
dimensional rectangular region instead of the interval ½a; b�. A way of
incorporating the boundary conditions in vicinity of variable boundary
data goes as follows: On each face of the boundary region we mark
(possibly equidistant) collocation points and we impose the boundary
data only at these points. This can be thought of as a mixture of the
present method with collocation method utilised only on the boundary. An
example of such a scheme can be found in Yüzbaşı & Karaçayır (2017b).

3. Error estimation and residual correction

In this section, we will outline a method that aims to obtain accurate
solutions of any equation using an already obtained solution of it. This
technique, known as residual correction, was first used in conjunction with
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a collocation method aiming to solve ordinary differential equations given
with two-point boundary conditions in Oliveira (1980). Here, we will
briefly describe how it can be extended to Problem (1). Note that the
process of residual correction is analogous to iterative refinement intro-
duced by Wilkinson in Wilkinson (1963) in the case of linear algebraic
equations.

Let us assume that we have obtained an approximate solution yNðxÞ of
Problem (1). Since yexactðxÞ is the exact solution, it satisfies the differential
equation and thus

�yexact
00ðxÞ þ pðxÞyexact0ðxÞ þ qðxÞyexactðxÞ � f ðxÞ ¼ 0: (4)

We now replace yexactðxÞ by the approximate solution yNðxÞ and obtain

�yN00 ðxÞ þ pðxÞyN0 ðxÞ þ qðxÞyNðxÞ � f ðxÞ ¼ RNðxÞ; (5)

where RNðxÞ is the residual of the approximate solution yNðxÞ. Subtracting
Equation (5) from Equation (4) and rearranging yields

e
00
NðxÞ þ pðxÞe0NðxÞ þ qðxÞeNðxÞ ¼ �RNðxÞ; (6)

where eNðxÞ ¼ yexactðxÞ � yNðxÞ is the error of the approximate solution
yNðxÞ. Equation (6) is the same as the original equation with the non-
homogeneous term f ðxÞ being equal to � RNðxÞ, which we can calculate
since we already know yNðxÞ. The unknown function of this equation is the
error function eNðxÞ. Since the approximate solution satisfies the boundary
conditions, we have

eNð0Þ ¼ yexactð0Þ � yNð0Þ ¼ 0; eNðbÞ ¼ yexactðbÞ � yNðbÞ ¼ 0: (7)

Equation (6) given with the homogeneous boundary conditions (7) is
called the ‘error problem’ associated with the approximate solution
yNðxÞ. Applying the method of Section 2 to this error problem for some
choice of M, we can obtain an approximate solution of it, which we will
denote by eN;MðxÞ. This approximate solution is an estimate of the actual
error function eNðxÞ. Keeping in mind that yexactðxÞ ¼ yNðxÞ þ eNðxÞ, we
can use this estimate to compute a new approximate solution

yN;MðxÞ ¼ yNðxÞ þ eN;MðxÞ
of Problem (1). The error of this new solution yN;MðxÞ, called the corrected
solution, is directly related to the accuracy of the error estimate eN;MðxÞ.
More explicitly, if we denote the error of yN;MðxÞ by EN;MðxÞ, it is true that
EN;MðxÞ ¼ yexactðxÞ � yN;MðxÞ ¼ eNðxÞ � eN;MðxÞ. Therefore, the success
of residual correction directly depends on the accuracy of the error esti-
mate eN;MðxÞ. This situation will be made more clear in the example
problems that will be covered in the next section.
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4. Numerical examples

In this section, we will apply the numerical scheme described in Section 2
to two example problems. All the required calculations have been carried
out in MATLAB. In order to assess the accuracy of our results, we will use
the L1-norm given by

k eNðxÞk1 ¼ sup
0�x�b

eNðxÞj j

where eNðxÞ ¼ yexactðxÞ � yNðxÞ is the actual error of the approximate
solution yNðxÞ.

Example 1. Our first problem is the following ordinary differential
equation with constant coefficients also examined in (Body, 2000;
Yüzbaşı, 2015):

�y00ðxÞ þ yðxÞ ¼ 0; yð0Þ ¼ 0; yð1Þ ¼ 1: (8)

The exact solution of this problem is yexactðxÞ ¼ sinðx= ffiffi
�

p Þ
sinð1= ffiffi

�
p Þ : In order to

measure the effect of both the method parameter N and the perturbation
parameter � on the accuracy of approximate solutions, we solved the
problem using various N and � values. Figure 0 compares the absolute
errors of the approximate solutions obtained by various N values corre-
sponding to � ¼ 2�4 and those obtained by various � values corresponding
to fixed value of N ¼ 10. It is obvious from the two graphs that the
solutions corresponding to greater N and � values are more accurate as
expected.

Table 1 compares the maximum absolute error values obtained by the
present scheme with Bessel collocation method (Yüzbaşı, 2015) for various
values of � and N. The values in the table reveal that the present scheme
outperforms Bessel collocation method in terms of maximum absolute
error for Problem (8).

For the purpose of improving some of the already obtained approximate
solutions corresponding to � ¼ 2�6, we applied residual correction and
obtained estimates of the actual error e5ðxÞ using M ¼ 6 and M ¼ 7.
Similarly, we obtained estimates of the actual error e8ðxÞ using M ¼ 9
and M ¼ 10. The resulting error estimates are compared with the actual

Table 1. Comparison of the present method with Bessel collocation method with respect to
L1-norm of the error function eNðxÞ obtained for several values of N and � in Problem (8).

Bessel collocation method (Yüzbaşı, 2015) Present method

� N ¼ 7 N ¼ 10 N ¼ 12 N ¼ 14 N ¼ 7 N ¼ 10 N ¼ 12 N ¼ 14

2�2 6:141E � 5 2:574E � 8 1:007E � 10 3:113E � 13 6:895E � 7 4:937E � 11 4:076E � 12 1:138E � 11
2�4 2:693E � 2 2:832E � 5 5:110E � 7 6:460E � 9 2:130E � 4 9:168E � 8 5:626E � 10 3:041E � 10
2�6 5:148E � 1 1:171E � 1 6:665E � 3 3:126E � 4 3:850E � 2 1:870E � 4 4:735E � 6 1:564E � 6
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error functions in Figure 2. It is clearly seen from the graphs that the error
estimates are in good agreement with the actual errors. We can improve
the original approximate solutions with the help of these estimates as
explained in Section 3. For instance, the corrected solution corresponding
to N ¼ 5;M ¼ 6 is formed by y5;6ðxÞ ¼ y5ðxÞ þ e5;6ðxÞ. The closeness of
the error estimates to the actual errors implies that the improved solutions
are more accurate than the original approximate solutions, which is
demonstrated in Table 2.

It is worth noting that increasing the parameter N indefinitely does not
necessarily give rise to more accurate solutions. This is partly due to the
coefficient matrix W of the linear system WA ¼ F in the algorithm being
ill-conditioned. The condition numbers κðWÞ of W corresponding to
various bigger N values are listed versus the maximum absolute errors
attained corresponding to these N values in Table 3. The values in the table
indicate that no improvement in accuracy is achieved when one employs
the present method using N values beyond 15. Still, the high levels of
accuracy attained by modest N values as shown in Figure 1 and Table 1
shows the effectivity of the present scheme.

Example 2. Secondly, let us consider the inhomogeneous equation of
second order examined in (Kadalbajoo & Patidar, 2006; Yüzbaşı, 2015)
given by

� �y00ðxÞ þ 1
xþ 1

y0ðxÞ þ 1
xþ 2

yðxÞ ¼ gðxÞ; yð0Þ ¼ 1þ 2�1=�; yð1Þ
¼ 2þ e; (9)

where gðxÞ ¼ 1
xþ1 þ 1

xþ2 � �
� �

ex þ 2�1=�ðxþ1Þ1þ1=�

xþ2 . The exact solution of this

problem is known to be yexactðxÞ ¼ ex þ 2�1=�ðxþ 1Þ1þ1=�. We solved this
problem for several values of the perturbation parameter � and using various
values for the parameter N of the numerical scheme. The absolute errors of
the approximate solutions corresponding to � ¼ 2�3 and � ¼ 2�6 for various
N values are depicted in Figure 2. It is understood that absolute error values

Table 2. Maximum absolute errors of approximate solutions of Problem (8) compared with
their improvements obtained using several N and M values for ε ¼ 2�6.

N ¼ 5 N ¼ 5;M ¼ 6 N ¼ 5;M ¼ 7 N ¼ 8 N ¼ 8;M ¼ 9 N ¼ 8;M ¼ 10

� ¼ 2�6 4:004E � 1 9:850E � 2 3:850E � 2 5:047E � 3 1:335E � 3 1:870E � 4

Table 3. Condition number of the coefficient matrices W and maximum absolute error k eNk1
corresponding to � ¼ 2�4 and several N values in (8).

N ¼ 15 N ¼ 20 N ¼ 25 N ¼ 30

κðWÞ 2:948E17 1:131E18 4:932E18 4:587E18
k eNk1 2:819E � 10 1:319E � 9 1:337E � 9 1:062E � 9
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decrease substantially as we increase the parameter N, with the only excep-
tion of N ¼ 12 compared to N ¼ 10 in the graph on the left. Additionally,
the error values corresponding to the greater perturbation parameter value of
� ¼ 2�3 are significantly smaller than those corresponding to � ¼ 2�6, as
expected. This situation is more apparent in Figure 3, which illustrates the
absolute error values of the approximate solutions obtained for different
values of the perturbation parameter � corresponding to N ¼ 6 and N ¼ 10.

In Table 4, the maximum absolute error k eNk1 corresponding to the
approximate solution yNðxÞj j obtained using various values of N and � are

Figure 1. Graphics of the (a) actual absolute errors eNðxÞj j corresponding to the approximate
solutions obtained for the fixed � value of 2�4 and (b) actual absolute errors e10ðxÞj j
corresponding to the approximate solutions obtained by the fixed value of N ¼ 10.

Figure 2. Graphics of (a) the actual error e5ðxÞ compared with its two estimates (b) the actual
error e8ðxÞ compared with its two estimates obtained for � ¼ 2�6.
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compared with those of the solutions obtained by Bessel collocation
method (Yüzbaşı, 2015) and mesh finite difference method(Kadalbajoo &
Patidar, 2006). It is understood that results of the present scheme are
almost always more accurate than those of Bessel collocation method for
the same parameter values N and �. On the other hand, according to the
listed parameter values of N (which has different meanings in the contexts
of two methods), the present scheme outperforms the mesh finite differ-
ence method for large values of � whereas the situation is the opposite for
small values of �.

In order to have an opinion on the utility of residual correction in this
problem, we attempt to improve the approximate solutions y4ðxÞ and y7ðxÞ
for � ¼ 2�3 and the approximate solutions y5ðxÞ and y8ðxÞ for � ¼ 2�6. For
this purpose, corresponding to the approximate solutions obtained for
� ¼ 2�3, we estimate the error of y4ðxÞ using M ¼ 5 and M ¼ 6 and the
error of y7ðxÞ using M ¼ 8 and M ¼ 9. As for � ¼ 2�6, we choose M ¼ 7

Figure 3. Graphics of the actual absolute errors obtained using various N values correspond-
ing to (a) � ¼ 2�3 and (b) � ¼ 2�6.

Table 4. Comparison of the present method with two other methods according to the
L1-norm of the error function eNðxÞ obtained using several values of N and � in Problem (9).

Bessel col. method (Yüzbaşı, 2015) Present method

Finite dif. method
(Kadalbajoo & Patidar,

2006)

� N ¼ 5 N ¼ 8 N ¼ 10 N ¼ 5 N ¼ 8 N ¼ 10 N ¼ 64 N ¼ 256

2�2 6:272E � 5 1:139E � 8 1:824E � 11 4:365E � 6 1:237E � 10 1:210E � 13 7:8E � 5 4:9E � 6
2�3 1:858E � 2 7:610E � 6 1:434E � 11 2:391E � 3 1:052E � 7 1:323E � 13 3:0E � 4 1:9E � 5
2�4 1:794E � 1 9:630E � 3 4:495E � 4 5:807E � 2 3:135E � 4 3:455E � 6 1:1E � 3 6:7E � 5
2�5 5:314E � 1 1:615E � 1 5:235E � 2 4:029E � 1 1:992E � 2 1:566E � 3 4:0E � 3 2:5E � 4
2�6 9:319E � 1 5:301E � 1 3:410E � 1 1:442E � 0 2:281E � 1 5:465E � 2 1:6E � 2 9:8E � 4
2�7 1:283E � 0 9:404E � 1 7:571E � 1 3:779E � 0 1:003E � 0 4:390E � 1 7:0E � 2 3:9E � 3
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and M ¼ 8 corresponding to y6ðxÞ and M ¼ 10 and M ¼ 12 correspond-
ing to y9ðxÞ. The resulting error estimates are illustrated together with the
actual errors in Figures 4, 5 and 6. For each of the four ðN; �Þ pairs, the
error estimates greatly agree with the actual error; furthermore, the error
estimate obtained using bigger M value is even closer to the actual error.

The error estimates we have obtained can be used to compute the
corrected approximate solutions as before; namely, if eN;MðxÞ is the error
estimate of yNðxÞ obtained using M, then the corrected solution is calcu-
lated as yN;MðxÞ ¼ yNðxÞ þ eN;MðxÞ. The maximum absolute errors for
each of the thus computed corrected solutions corresponding to the
already selected ðN; �Þ pairs are given in Table 5. Values in the table
indicate a significant improvement in the accuracy of the approximate
solutions as a result of residual correction.

Figure 4. Graphics of the actual absolute errors obtained using various � values corresponding
to (a) N ¼ 6 and (b) N ¼ 10.

Figure 5. Graphics of (a) the actual error e4ðxÞ compared with its two estimates (b) the actual
error e7ðxÞ compared with its two estimates obtained for � ¼ 2�3.
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5. Conclusion

In this paper, we have presented a Galerkin-like scheme to obtain approx-
imate polynomial solutions of the singularly perturbed second-order differ-
ential equation given with two boundary conditions. The method involves
transforming the original differential equation to a linear system of algebraic
equations by making proper use of Galerkin-type inner products taken with a
set of base functions. We have applied the scheme to two problems.
Simulation results have revealed that the accuracy of the computed approx-
imate solutions undergoes a substantial increase as we increase the value of
the parameter N of the method. In addition, although the error values
naturally increase as we decrease the perturbation parameter ε, they are
generally within acceptable limits even for small values of it. We have also
exhibited that residual error correction can be used to estimate the error of an
obtained approximation with high accuracy. Having obtained several
approximate solutions, this enabled us to construct more accurate solutions
compared to these original solutions, in the case of both example problems.
Lastly, comparisons reveal that the present scheme outperforms two other
popular methods in terms of maximum error. On the whole, simulation
results make it clear that the numerical scheme presented in this paper can be
relied on to give accurate approximate solutions when applied to ordinary
differential equations involving singular perturbation.

Figure 6. Graphics of (a) the actual error e6ðxÞ compared with its two estimates (b) the actual
error e9ðxÞ compared with its two estimates obtained for � ¼ 2�6.

Table 5. Maximum absolute errors of approximate solutions of Problem (9) compared with
their improvements obtained using several N and M values.

N ¼ 4 N ¼ 4;M ¼ 5 N ¼ 4;M ¼ 6 N ¼ 7 N ¼ 7;M ¼ 8 N ¼ 7;M ¼ 9

� ¼ 2�3 2:822E � 2 2:391E � 3 1:403E � 4 5:939E � 6 1:052E � 7 2:895E � 12
N ¼ 6 N ¼ 6;M ¼ 7 N ¼ 6;M ¼ 8 N ¼ 7 N ¼ 7;M ¼ 8 N ¼ 7;M ¼ 9

� ¼ 2�6 7:746E � 1 4:637E � 1 2:281E � 1 1:133E � 1 5:465E � 2 1:078E � 2
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