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ABSTRACT
Generating reduced-order models (ROMs) is one of the most
efficient procedures for predicting pull-in instability threshold
in electrically actuated rectangular micro-plates. To date,
there exist some different approaches for this procedure in
the literature with different numbers of employed natural
modes which yield different results. The main objective of
the present paper is to answer the basilar question of how
many natural modes for discretising the in- and out-of-plane
displacements should be included to ensure an efficient
ROM. To this end, a full geometric non-linear Kirchhoff’s
plate model with fully clamped boundary conditions, which
accounts for both in-plane and transverse displacements is
considered. A multi-mode ROM is also developed and both
static and dynamic instability thresholds of the system are
extracted. Convergence studies on both static and dynamic
findings are also performed to illustrate the importance of
each in- or out-of-plane mode on the accuracy of the results.
Utilising the present convergence studies, the minimum
number of in- and out-of-plane modes, which should be
employed to achieve precise predictions, is determined. At
the rest of the paper, effect of micro-plate inertia on reducing
the instability threshold of systems with different initial gaps
and aspects ratios is also studied in details.
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1. Introduction

Technology of micro-electro-mechanical systems (MEMS) has experienced
many improvements in recent years. Because of their small size, low power
consumption, reliability and their capability of batch fabrications, they
have found lots of potential applications in engineering. The building
blocks of these systems are some sort of electrically actuated mechanical
structures such as bars, beams or plates (Senturia, 2001). In general, an
electrically actuated micro-plate is a conductive and elastic thin plate
suspended over a stationary rigid electrode and deflects toward its sub-
strate by applying the external voltage (Batra, Porfiri, & Spinello, 2007). By
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increasing the values of the applied voltage, the Coulomb attraction
between the movable electrode and its rigid substrate is also increased
which results in the increase of the micro-plate deflection. The applied
voltage has an upper limit in which the elastic restoring force of the
movable electrode cannot resist against the Coulomb attraction and this
electrode suddenly collapses toward the substrate underneath it (Batra
et al., 2007). This unstable behavior is called pull-in instability and the
upper limit of the applied voltage is also named as the pull-in voltage
(Batra et al., 2007).

Due to the coupling between electrical and structural physics as well as
the strong non-linearities arising in the field of electrically actuated micro-
structures, modelling of MEMS is so challenging (Younis, 2011). To date,
variety of numerical procedures such as the finite element (FE) (Tajalli,
Moghimi Zand, & Ahmadian, 2009) and differential quadrature (Ansari,
Gholami, Mohammadi, & Faghih Shojaei, 2012; Wang, Zhou, Zhao, &
Chen, 2011) methods as well as generating reduced-order (RO) models
(Batra, Porfiri, & Spinello, 2008a, 2008b; Zhao, Abdel-Rahman, & Nayfeh,
2004) have been employed to uncover the behaviors of electrically actuated
micro-plates. Amongst all of these procedures, generating reduced-order
models (ROMs) enjoys several attractive features such as the robustness
over the whole operation range of the device, low run-time and providing
the ability of presenting semi-analytical solutions (Zhao et al., 2004).

In view of the available ROMs for plate-type MEMS in the literature, it can
be observed that there exist different types of this method with different
numbers of basis functions in the discretisation procedure. For example,
Zhao et al. (2004) studied statics and free vibrations of electrically actuated
rectangular micro-plates in which the effects of non-linear von Kármán
strains had been taken into account. They utilised the Galerkin-weighted
residual method (GWRM) with the linear mode-shapes of the system as the
basis functions. It is worth mentioning that since the linear out-of-plane
mode-shapes of fully clamped rectangular micro-plates cannot be obtained
analytically, they employed the hierarchical finite element method (HFEM) to
determine these basis functions. In addition, they approximated the in-plane
displacements in terms of the transverse generalised coordinates through the
HFEM and retained eight out-of-plane eigen modes in their RO procedure to
achieve precise predictions. Batra et al. (2008b) analyzed the influence of
Casimir attraction on static and free vibration responses of electrostatically
actuated fully clamped rectangular and circular micro-plates. They also pre-
sented another work which investigated the effect of thermal stresses on
rectangular micro-plates subjected to the van der Waals force (Batra et al.,
2008a). In these two studies, they accounted for the effect of von Kármán non-
linear strains and employed the GWRMwith the in-plane and transverse basis
functions, respectively, approximated by sinusoidal functions and the product
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of doubly clamped beam mode-shapes for micro-plates with the rectangular
shape. It is worth noting that their model, which include one and nine basis
functions, respectively, for the transverse and each in-plane displacement,
could predict the static pull-in voltage and the fundamental frequency of the
system in good agreement with those reported by Zhao et al. (2004). Chao,
Chiu, and Tsai (2006) studied static pull-in instability in geometric linear
micro-plates. They employed a single-term GWRM, expanded the electro-
static forcing term up to the fifth order and extracted an explicit expression for
the static pull-in voltage of the system. Talebian, Rezazadeh, Fathalilou, and
Toosi (2010) investigated the influence of temperature on static pull-in and
free vibrations of geometric non-linear micro-plates. Nabian, Rezazadeh,
Almassi, and Borgheei (2013) also presented a similar work for systems
made of functionally graded materials. It is to be mentioned here that the
authors of the latest two studies (Nabian et al., 2013; Talebian et al., 2010)
approximated the transverse deflection by employing only one eigen mode
and set the values of the in-plane displacements to zero. Mohammadi and Ali
(2015) investigated the effect of thermoelastic damping on the natural fre-
quencies of electrically pre-deformed micro-plates. They accounted for the
effect of geometric non-linearity together with the in-plane displacements and
solved the set of the governing equations through the GWRM. They approxi-
mated each component of the in-plane displacements with only one basis
function. Saghir and Younis (2016) studied the static pull-in instability as well
as the primary and secondary resonances of the fundamental mode of fully
clamped rectangular micro-plates under the application of AC voltages super-
imposed to statically applied DC ones. They employed COMSOL
Multiphysics commercial software to extract both in- and out-of-plane basis
functions, respectively, by performing stationary and free vibration studies in
this software. Using these basis functions, they solved the set of governing
equations of motion through the GWRM, in which the in- and out-of-plane
displacements have been discretised by considering one and five basis func-
tions, respectively. They compared and validated their model’s predictions by
those obtained using COMSOL Multiphysics. Furthermore, they illustrated
that their procedure does not suffer from long run-time in comparison to the
three-dimensional (3-D) FE simulations.

According to the aforementioned literature, it is observed that there exist
some differences between the number of employed in- and out-of-plane basis
functions in the discretising procedure: some researchers employed only the
first natural mode for discretising the transverse deflection (Batra et al., 2008a,
2008b; Chao et al., 2006; Mohammadi & Ali, 2015; Nabian et al., 2013; Talebian
et al., 2010), while some others believed that higher out-of-plane natural modes
should be included into the RO procedure to ensure the accuracy of the results
(Saghir & Younis, 2016; Zhao et al., 2004); also the number of employed in-
plane basis functions in some published works (Batra et al., 2008a, 2008b;
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Mohammadi & Ali, 2015; Nabian et al., 2013; Saghir & Younis, 2016; Talebian
et al., 2010) differs from each other. Therefore, the main object of the present
study is to provide a multi-mode ROM for full geometric non-linear plate-type
MEMS with fully clamped boundary conditions and investigate the importance
of each eigen mode on the accuracy of the results. In addition, by removing
the non-significant natural modes from themodel, an optimised ROMwith the
minimum number of essential approximating functions for both in- and
out-of-plane displacements is introduced.

The rest of the paper is organised as follows. In Section 2, the mathe-
matical model of the system is represented briefly. In Section 3, the details
of developing our efficient ROM are explained. In Section 4, the static
results of the present study are compared and validated by those available
in the literature. However, due to the lack of multi-mode dynamic results
in the previous studies, the present dynamic findings are compared with
those obtained by 3-D FE simulations carried out in COMSOL
Multiphysics commercial package COMSOL, 2016. The rest of this section
is also devoted to a detailed parametric study which emphasises on the
significant effect of the micro-plate inertia on the instability threshold of
systems with different initial gaps and aspect ratios. The main conclusions
of the present work are also summarised in Section 5.

2. Theoretical formulation

Figure 1 shows an electrically actuated rectangular micro-plate whose
length, width, thickness and density are denoted by b, a, h and ρ, respec-
tively. The initial gap between the non-actuated micro-plate and the sub-
strate is assumed to be d. Utilising the non-linear Kirchhoff plate model in
which the strain-displacement relations have been approximated by the
von Kármán theory, the governing equations of motion take the form
(Zhao et al., 2004):

Figure 1. Schematic of an electrically actuated rectangular micro-plate.

126 A. R. ASKARI



û;x̂x̂ þ ŵ;x̂ŵ;x̂x̂ þ 1� ν

2
û;ŷŷ þ ŵ;x̂ŵ;ŷŷ
� �þ 1þ ν

2
v̂;x̂ŷ þ ŵ;ŷŵ;x̂ŷ
� � ¼ 0 (1a)

v̂;ŷŷ þ ŵ;ŷŵ;ŷŷ þ 1� ν

2
v̂;x̂x̂ þ ŵ;ŷŵ;x̂x̂
� �þ 1þ ν

2
û;x̂ŷ þ ŵ;x̂ŵ;x̂ŷ
� � ¼ 0 (1b)

ρhŵ;̂t̂t þ
Eh3

12 1� ν2ð Þ�
4ŵ ¼ Eh

1� ν2
ŵ;x̂x̂ û;x̂ þ 1

2
ŵ;x̂
� �2 þ νv̂;ŷ þ ν

2
ŵ;ŷ
� �2� ��

þ 1� νð Þŵ;x̂ŷ û;ŷ þ v̂;x̂ þ ŵ;x̂ŵ;ŷ
� �þ ŵ;ŷŷ v̂;ŷ þ 1

2
ŵ;ŷ
� �2þνû;x̂ þ ν

2
ŵ;x̂
� �2�� �

þ ε V2
DC

2 d� ŵð Þ2 ð1cÞ

where û, v̂ and ŵ are the displacements along the x̂, ŷ and ẑ directions,
respectively; t̂ is the time, E is the Young modulus, ν is the Poisson ratio, ε
is the dielectric constant of the media and VDC is the external applied
voltage. Also the comma sign followed by an independent variable refers to
the partial derivative with respect to that variable and the �4 operator for a
two-dimensional Cartesian space is expressed as:

�4 ¼ @4

@x̂4
þ 2

@4

@x̂2@ŷ2
þ @4

@ŷ4

� �
(2)

Introducing the dimensionless variables u ¼ aû
d2 , v ¼ bv̂

d2 , w ¼ ŵ
d , x ¼ x̂

a ,

y ¼ ŷ
b and t ¼ t̂=T, the non-dimensionalised form of the governing equa-

tions of motion in (1) are expressed as:

u;xx þ w;xw;xx þ α21 1� νð Þ
2

u;yy þ w;xw;yy
� �

þ α21 1þ νð Þ
2

v;xy þ wyw;xy
� � ¼ 0

(3a)

α41 v;yy þ w;yw;yy
� �þ α21 1� νð Þ

2
v;xx þ w;yw;xx
� �

þ α21 1þ νð Þ
2

u;xy þ wxw;xy
� � ¼ 0

(3b)

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 127



1
12

� �
w;xxxx þ 2α21w;xxyy þ α41w;yyyy
� �þ w;tt ¼ α2

ð1� wÞ2

þ α23 w;xx u;x þ 1
2
w2
;x

�	
þ να21 � v;y þ 1

2
w2
;y

� ��
þ w;xy 1� νð Þα21 u;y þ v;x þ w;xw;y

� �
 �
þ w;yy α41 v;y þ 1

2
w2
;y

� ��
þ ν � u;x þ 1

2
w2
;x

� ���
(3c)

in which the normalized parameters of the problem are as follows:

α1 ¼ a
b
; α2 ¼ εa4 1� ν2ð ÞV2

DC

2Eh3d3
; α3 ¼ d

h
(4)

Also, the timescale T, which is determined such that the coefficient of w;tt

becomes unity, is defined as:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρa4 1� ν2ð Þ

Eh2

r
(5)

It is noteworthy to mention that, hereinafter, the normalized parameters
α1, α2 and α3 are named as the micro-plate aspect ratio, the electrostatic
and gap parameters, respectively. Also the non-dimensional form of the
boundary conditions for present micro-plate with fully clamped and
immovable edges can be expressed as:

u ¼ v ¼ w ¼ w;x ¼ w;y ¼ 0 at x ¼ � 1
2

(6a)

u ¼ v ¼ w ¼ w;x ¼ w;y ¼ 0 at y ¼ � 1
2

(6b)

3. The reduced-order model

Due to the high-non-linearity involved in the system of PDEs in (3),
analytical solution for this set of equations is not proposed yet.
Therefore, an approximate solution based on the GWRM will be developed
here. To this end, the dimensionless displacements u, v and w are dis-
cretised as follow:

u x; y; tð Þ ¼
Xn
i¼1

Xn
j¼1

uij tð Þφij
u x; yð Þ (7a)
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v x; y; tð Þ ¼
Xn
i¼1

Xn
j¼1

vij tð Þφij
v x; yð Þ (7b)

w x; y; tð Þ ¼
Xm
i¼1

Xm
j¼1

wij tð Þφij
w x; yð Þ (7c)

where uij, vij and wij are the generalised coordinates which should be deter-
mined during the GWRM. Also φij

u x; yð Þ, φij
v x; yð Þ and φij

w x; yð Þ are the GWRM
admissible basis functions which, respectively, approximate the displacements
u, v and w and identically satisfy all associated boundary conditions presented
in Eq. (6). Furthermore, n and m refer to the number of in- and out-of-plane
approximating functions in each direction of x and y, respectively.

In the present work, the linear undamped mode-shapes of the system are
selected as the GWRM admissible basis functions. It is to be mentioned here
that although the in-plane mode-shapes for the present micro-plate with
immovable edges can analytically be obtained as sinusoidal functions (Batra
et al., 2008b), there exist no analytical solution for the transverse ones.
Hence, in the present study, the out-of-plane mode-shapes of the structure
is obtained semi-analytically through the extended Kantorovich method (for
more details, see the work of Jones & Milne, 1976). It is noteworthy that, due
to the symmetry of the present system, only the symmetric out-of-plane
mode-shapes are retained in the RO procedure and the in-plane approx-
imating functions have been chosen as (Amabili, 2004):

φij
u x; yð Þ ¼ sin 2iπ xþ 1

2

� �� �
sin 2j� 1ð Þπ yþ 1

2

� �� �
(8a)

φij
v x; yð Þ ¼ sin 2i� 1ð Þπ xþ 1

2

� �� �
sin 2jπ yþ 1

2

� �� �
(8b)

By substituting Eqs. (7) into Eqs. (3a) and (3b) and also, according to
the GWRM, multiplication of both sides of each equation by its respective
approximating function, the values of unknown in-plane displacements u
and v can readily be obtained in terms of the transverse generalised
coordinates. It is to be mentioned here that, for the purpose of simplicity,
the displacements u, v and w are rewritten using single sub/superscript
notation as follow:

u x; y; tð Þ ¼
Xn2
p¼1

up tð Þφ p
u x; yð Þ (9a)
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v x; y; tð Þ ¼
Xn2
p¼1

vp tð Þφ p
v x; yð Þ (9b)

w x; y; tð Þ ¼
Xm2

p¼1

wp tð Þφ p
w x; yð Þ (9c)

where in Eqs. (9a) and (9b), the sub/superscript p relates to the sub/superscripts
i and j through p ¼ n i� 1ð Þ þ j, and in Eq. (9c) the sub/superscript p relates to
the sub/superscripts i and j by p ¼ m i� 1ð Þ þ j. By applying the abovemen-
tioned GWRM on Eqs. (3a) and (3b), one would get:

u ¼
Xm2

i¼1

Xm2

j¼1

Xn2
p¼1

φ p
u Λ

ij
pwiwj (10a)

v ¼
Xm2

i¼1

Xm2

j¼1

Xn2
p¼1

φ p
v Γ

ij
pwiwj (10b)

in which:

Λij
p

Γijp

( )
2n�1

¼ � K1
pq

K3
pq

K2
pq

K4
pq

" #�1

2n�2n

1Fijq
2Fijq

( )
2n�1

(11)

where:

K1
pq ¼

ðð
A

φ p
u;xx þ

α21 1� νð Þ
2

φ p
u;yy

� �
φq
udA (12a)

K2
pq ¼

ðð
A

α21 1þ νð Þ
2

φ p
v;xy

� �
φq
udA (12b)

K3
pq ¼

ðð
A

α21 1þ νð Þ
2

φ p
u;xy

� �
φq
vdA (12c)

K4
pq ¼

ðð
A

α41φ
p
v;yy þ

α21 1� νð Þ
2

φ p
v;xx

� �
φq
vdA (12d)

1Fijq ¼
ðð

A
½φi

w;xφ
j
w;xx þ

α21 1� νð Þ
2

φi
w;xφ

j
w;yy

þ α21 1þ νð Þ
2

φi
w;yφ

j
w;xy�φq

udA

(12e)
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2Fijq ¼
ðð

A
½α41φi

w;yφ
j
w;yy þ

α21 1� νð Þ
2

φi
w;yφ

j
w;xx

þ α21 1þ νð Þ
2

φi
w;xφ

j
w;xy�φq

vdA

(12f)

To complete the procedure and generate the ROM, it is sufficient to
substitute Eqs. (9c), (10a) and (10b) into Eq. (3c). Multiplying both sides of
Eq. (3c) by φp

w x; yð Þ and integrating the outcome over the whole dimen-
sionless region A. Doing so, the ROM associated with the PDEs of motion
in (3), is obtained as:

Xs¼1

m2

Mrs€ws þ
Xs¼1

m2

Krsws � α23Hr

� α2

ðð
A
φr
w 1�

Xs¼1

m2

φs
wws

 !�2

dA ¼ 0

(13)

where:

Mrs ¼
ðð

A
φr
wφ

s
wdA (14a)

Krs ¼ 1
12

ðð
A
ðφs

w;xxxx þ 2α21φ
s
w;xxyy þ α41φ

s
w;yyyyÞφr

wdA (14b)

Hr ¼
Xm2

i;j;k¼1

Xn2
p¼1

Λij
p

ðð
A
φk
w;xxφ

p
u;xφ

r
wdA

 !(
þ 1
2

ðð
A
φi
w;xφ

j
w;xφ

k
w;xxφ

r
wdA

þ να21
Xn2
p¼1

Γijp

ðð
A
φk
w;xxφ

p
v;yφ

r
wdA

 !
þ 1
2

ðð
A
φi
w;yφ

j
w;yφ

k
w;xxφ

r
wdA

" #

þ α41
Xn2
p¼1

Γijp

ðð
A
φk
w;yyφ

p
v;yφ

r
wdA

 !
þ 1
2

ðð
A
φi
w;yφ

j
w;yφ

k
w;yyφ

r
wdA

" #
ð14cÞ

þ ν
Xn2
p¼1

Λij
p

ðð
A
φk
w;yyφ

p
u;xφ

r
wdA

 !
þ 1
2

ðð
A
φi
w;xφ

j
w;xφ

k
w;yyφ

r
wdA

" #

þ 1� νð Þα21
Xn2
p¼1

Λij
p

ðð
A
φk
w;xyφ

p
u;yφ

r
wdA

 !"
þ
ðð

A
φi
w;xφ

j
w;yφ

k
w;xyφ

r
wdA

þ
Xn2
p¼1

Γijp

ðð
A
φk
w;xyφ

p
v;xφ

r
wdA

 !#)
wiwjwk
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The dynamics of the system will be obtained through the solution of the
reduced equations in (13). In the present paper, this set of equations will be
solved using the fourth order Runge-Kutta method (Faires & Burden,
2002) with zero initial conditions. The static configuration of a statically
excited system will also be obtained through the application of the
Newton-Raphson procedure (Faires & Burden, 2002) on the ROM pre-
sented in Eq. (13) when the inertia terms are neglected (i.e. Mrs ¼ 0). It is
worth noting that although the present ROM contains 2n2 þm2 basis
functions, it has m2 degrees of freedom.

4. Results and discussions

4.1. Model verification

To find the number of modes which should be included into the present ROM,
convergence studies on static and dynamic pull-in parameters are performed,
respectively, in Tables 1 and 2 for a square micro-plate with normalized
properties α3 ¼ 1 and ν ¼ 0:3. According to the results of Tables 1 and 2,
both static and dynamic pull-in parameters will completely be converged if the
number of transverse and in-plane modes in each direction is set tom ¼ 1 and
n ¼ 3, respectively. Therefore, in what follows, only the first transverse mode is
employed and three in-plane basis functions at each direction in the ROM are
retained to ensure the accuracy of the results. It is worth noting that by
removing the unnecessary natural modes from the present ROM, it contains
2n2 þ 1 basis functions and only one degree of freedom. Hence, the present
ROM will be fast convergent and so rapid; because the response of the device
can easily be obtained by solving only a single ODE in time. This important
feature of the present ROMprovides the ability of presenting analytical or semi-
analytical solutions for complex problems arising in the field of plate-type
MEMS which can be utilised in future studies.

Table 1. Convergence of the static pull-in parameter for a square micro-plate with normalized
properties α3 ¼ 1 and ν ¼ 0:3.

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

m ¼ 1 15.05 15.16 16.05 16.06 16.06
m ¼ 2 14.98 15.09 16.05 16.06 16.06
m ¼ 3 14.98 15.09 16.05 16.06 16.06

Table 2. Convergence of the dynamic pull-in parameter for a square micro-plate with
normalized properties α3 ¼ 1 and ν ¼ 0:3.

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

m ¼ 1 12.40 12.64 13.25 13.26 13.26
m ¼ 2 12.34 12.58 13.25 13.26 13.26
m ¼ 3 12.34 12.58 13.25 13.26 13.26
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To verify the accuracy of the present findings, a 3-D FE simulation is
also carried out in COMSOL Multiphysics commercial software COMSOL,
2016. To this end, a flexible micro-plate with fully clamped boundary
conditions has been modeled using 3-D brick elements together with the
physics of Electromechanics. It is to be mentioned here that this physics
combines the physics of solid mechanics and electrostatics with a moving
mesh to simply model the deformation of electrically actuated structures.
Stationary and time-dependent studies have also been selected to provide
static and dynamic results, respectively.

For the purpose of validation, a square silicon micro-plate with α3 ¼ 1
and other properties presented in Table 3 is considered. Figure 2 verifies

Table 3. Geometric and material properties of a square silicon micro-plate (Osterberg, 1995).
aðμmÞ hðμmÞ EðGPaÞ ν ρðkg=m3Þ
1000 3 169 0.3 2332

0 2.7 5.4 8.1 10.8 13.5
0

0.25

0.5

0.75

1

M
ax

 (
w

m
id

 )

0 3.3 6.6 9.9 13.2 16.5
0

0.25

0.5

0.75

1

w
m

id

Present, ROM
Zhao et al. (2004)

Present, COMSOL

Present, ROM

Present, COMSOL

(a)

(b)

Figure 2. Verification of the (a) static and (b) dynamic responses of a micro-plate with
normalized properties α3 ¼ 1 and ν ¼ 0:3 over its whole operation range.
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the accuracy of both static and dynamic responses of the present micro-
plate over its whole operation range. Figure 2(a) compares the static values
of the micro-plate mid-point deflection by those reported in the literature
(Zhao et al., 2004) as well as the ones obtained via 3-D FE simulations in
COMSOL (Version 5.2a, 2016). Also, Figure 2(b) provides a comparison
between the maximum dynamic values of the micro-plate mid-point
deflection and those achieved through 3-D FE simulations.

According to the results shown in Figure 2, the present RO and FE
findings in both static and dynamic cases are in excellent agreement with
each other. Also, all of the present static findings, which are obtained by
the RO procedure and 3-D FE simulations, match with those reported by
Zhao et al. (2004) very well.

Table 4 provides verifications for the converged static and dynamic pull-
in parameters of micro-plates with properties given in Table 3 and differ-
ent initial gaps. Besides a comparison between the present RO and 3-D FE
results, this table compares all the present findings by those available in the
literature for statically excited systems (Batra et al., 2008b; Zhao et al.,
2004). According to Table 4, the present RO and FE findings are in full
agreement with each other in both static and dynamic loading cases.
Furthermore, the present static predictions especially for systems with
large initial gaps, which suffer from strong non-linearities (Zhao et al.,
2004), agree with the FE results better than those reported by Zhao et al.
(2004). Hence, using the present ROM is strongly suggested for both static
and dynamic pull-in analysis of plate-type MEMS; because it not only does
not suffer from the long run-time but also is so accurate and reliable in
comparison to 3-D FE simulations.

As it is mentioned earlier, the main object of the present paper is to answer
the basilar question of how many natural modes for discretising the in- and
out-of-plane displacements should be included to ensure an efficient ROM. In
view of the results reported in Tables 1 and 2, one can answer this question as:
employing only one out-of-plane natural mode is sufficient for the convergence
of the results; however, each in-plane displacement needs to be approximated
using at least four basis functions (i.e. n ¼ 2). This is due to the fact that the
deformed configuration of the transverse deflection is very similar to the first
natural mode of the micro-plate, but the final shape of each in-plane

Table 4. Verification of the static and dynamic pull-in parameters for a square micro-plate
with different gaps and ν ¼ 0:3.
Analysis Method α3 ¼ 1 α3 ¼ 1:5 α3 ¼ 2

Static Present 16.06 18.73 22.97
COMSOL 16.06 18.75 23.05
Zhao et al. (2004) 16.00 18.48 22.43
Batra et al. (2008b) 16.33 – –

Dynamic Present 13.26 15.27 18.35
COMSOL 13.30 15.31 18.40
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displacement includes at least the first four natural modes of the system (Batra
et al., 2008b). Therefore, one can conclude that the previous studies which
neglected the effect of in-plane displacements (Nabian et al., 2013; Talebian
et al., 2010) or approximated each of them using less than four natural modes
(i.e. n< 2) (Mohammadi & Ali, 2015) may not be accurate. It is to be
mentioned here that, in view of Tables 1 and 2, although employing 18 in-
plane natural modes (i.e. n ¼ 3) is essential for full convergence, the results
will be accurate enough if eight in-plane natural modes (i.e. n ¼ 2) are
utilised.

To investigate the influence of in-plane displacements on the accuracy of
the results, Figure 3 illustrates the convergence of both in- and out-of-plane
time histories for a square micro-plate with α3 ¼ 1 and other properties given
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Figure 3. Time histories of the maximum in- and out-of-plane displacements for a square
micro-plate with α3 ¼ 1 and other properties presented in Table 3 under an input voltage of
VDC ¼ 0:9VDPI.
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in Table 3. It is assumed that the input voltage equals to 90% of the micro-
plate dynamic pull-in counterpart and the maximum values of the in- and
out-of-plane time histories are selected just for the sake of improving the
quality of presentation. It is worth mentioning that the maximum
time histories occur at x̂ ¼ 0:16a; ŷ ¼ 0 for the in-plane displacement u,
x̂ ¼ 0; ŷ ¼ 0:16b for the in-plane displacement v and x̂ ¼ 0; ŷ ¼ 0 for the
out-of-plane displacement w. In addition, since the present micro-plate takes
the square shape, the time histories of the maximum in-plane displacements
are the same. Hence, just for the sake of brevity, only one of the in-plane time
histories is depicted in Figure 3.

As Figure 3 illustrates, it is apparent that both in- and out-of-plane vibration
frequencies of the micro-plate as well as its amplitudes are converged when at
least eight in-plane basis functions (i.e. n ¼ 2) are employed. In addition,
according to this figure, it is obvious that although in-plane displacements
take so negligible values in comparison to the micro-plate transverse deflection,
ignoring these parts of the displacement field results in producing inaccurate
out-of-plane findings. Therefore, one can say that accounting for the influences
of the in-plane displacements is so essential in pull-in analysis; because they
seriously affect the accuracy of the out-of-plane findings and all quantities
related to it such as the micro-plate instability thresholds.

Figure 4 provides the final configurations of the maximum displacements
for the previous case study occurring at t̂ ¼ 13:4 μs. According to this figure,
the final configuration of the micro-plate transverse deflection is very similar
to the clamped plates’ first natural mode. That is the reason for the fact that
the out-of-plane displacement needs to be approximated only using one
natural mode. However, according to Figure 4, the final configurations of
the in-plane displacements require more than one natural mode for the
convergence.

It is to be noted that the convergence speed of the results seriously
depends on the particular shapes of the basis functions. Therefore, different
ROMs with different approximating functions may require different num-
bers of basis functions to be convergent. In this way, consider the work done
by Saghir and Younis (2016). They approximated the in-plane displace-
ments of the system using only one basis function which was extracted from
the FE simulation of a micro-plate under uniform pressure in COMSOL
Multiphysics commercial software (Saghir & Younis, 2016). Figure 5 repre-
sents a comparison between the present RO findings and those of Saghir and
Younis (2016) for a micro-plate with properties presented in Table 5.

According to Figure 5, the present findings agree excellently with those
reported by Saghir and Younis (2016). That is due to the fact that the deformed
shapes of the in-plane displacements under electrical loading are very similar to
the basis functions employed by Saghir and Younis (2016). Hence, it can be
concluded that if the selected basis functions are similar to the deformed shape
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of a displacement, the solution will be converged through employing only
one basis function for approximating the respective displacement.

As it was mentioned above, employing only the first natural mode in the
transverse direction is sufficient for converging the results; however, some
previous studies (Saghir & Younis, 2016; Zhao et al., 2004) believed that it
is so necessary to account for the effect of higher out-of-plane natural

Figure 4. The maximum in- and out-of-plane displacements (a, c, e) and their corresponding
contour plots (b, d, f) for a square micro-plate with α3 ¼ 1 and other properties presented in
Table 3 under an input voltage of VDC ¼ 0:9VDPI.
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modes. This contrast between the present conclusion and that reported by
Zhao et al. (2004) as well as Saghir and Younis (2016) is due to the fact that
the authors of these papers pre-multiplied the transverse governing equa-
tion of motion by the denominator of the electrostatic forcing term which
results in changing the weighting functions of the GWRM (Gutschmidt,
2010) and so in its convergence speed. Therefore, they were forced to
employ higher transverse natural modes for generating a convergent ROM
with accurate results.

4.2. Effect of micro-structure inertia

According to the results presented in Table 4 and Figure 2, it is obvious that
accounting for the influence of micro-structure inertia reduces the instability
threshold of the system. To investigate this issue more, Figure 6 depicts the
variation of the dynamic to static pull-in voltages ratio, which is calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αDPI2 =αSPI2

p
, versus the aspect ratio of the system at some different gap

parameters. As Figure 6 illustrates, dynamic pull-in voltages in plate-type
MEMS usually take values around 90% of the static counterparts. It is worth
noting that this ratio for doubly clamped micro-beams was reported as
VDPI=VSPI � 91� 92% (Chao, Chiu, & Liu, 2008). Hence, it can be concluded
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Figure 5. Comparison between the present findings and those reported by Saghir and Younis
(2016) for a micro-plate with properties presented in Table 5.

Table 5. Geometric and material properties of a micro-plate investigated by Saghir and Younis
(2016).
aðμmÞ bðμmÞ hðμmÞ dðμmÞ EðGPaÞ ν

300 450 2 2 153 0.23
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that the micro-structure inertia plays a more crucial role in reducing the
instability threshold of plate-type MEMS than that of beam-type ones.

In view of the results presented in Figure 6, one can observe that the
ratio of dynamic to static pull-in voltages reduces with an increase of the
gap parameter. This fact means that increasing the gap between the two
electrodes increases the effect of micro-structure inertia. Therefore, it is
more important to account for the effect of inertia in the calculation of
pull-in voltage for MEMS devices with larger initial gaps. Furthermore,
based on the results of Figure 6, it is seen that increasing the aspect ratio of
the micro-plate increases the ratio of dynamic to static pull-in voltages.
Hence, one can conclude that the effect of micro-structure inertia is the
minimum for micro-plates with the square shape.

Figure 7 represents the variation of the geometric non-linear to linear
pull-in voltages ratios versus the micro-plate aspect ratio in both static and
dynamic loading cases. As this figure depicts, accounting for the effect of
micro-structure inertia slightly reduces the influence of geometric non-
linearity. In addition, based on the results shown in this figure, increasing
the values of the gap parameter increases the influence of inertia on
reducing the geometric non-linearity effect. Furthermore, one can observe
that increasing the micro-plate aspect ratio decreases the effect of geo-
metric non-linearity in both static and dynamic cases. Therefore, the
influence of the geometric non-linearity is the minimum for square
micro-plates in both static and dynamic loading cases. It is to be men-
tioned here that a similar conclusion for statically excited rectangular
micro-plates has also been reported by Batra et al. (2008b).
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Figure 6. Effect of inertia on the instability threshold of systems with different gap parameters
and aspect ratios.
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5. Concluding remarks

The present paper aimed to answer the important question of how many
natural modes have to be considered in generating a ROM for plate-type
MEMS to ensure its convergence. For this object, a full geometric non-linear
Kirchhoff’s plate model, which includes the effect of in-plane displacements,
was considered. The system of governing equations of motion was solved by a
multi-term ROM in which the transverse approximating functions had been
obtained by the extended Kantorovichmethod. Theminimumnumbers of in-
and out-of-plane natural modes were obtained by performing a convergence
study on the values of both dimensionless static and dynamic pull-in voltages
of the system. The results revealed that the transverse deflection of the micro-
plate can be approximated using only its first natural mode. However, at least
four eigen modes for each in-plane displacement should be included into the
ROM to give a converged solution. The results of the present fast convergent
ROM were also verified by those simulated using COMSOL Multiphysics
commercial FE package as well as the available static findings in the literature.
It was found that the present static predictions agreed with those obtained by
3-D FE simulations better than the available results in the previous studies. At
the rest of the paper, the present so rapid ROM was employed to investigate
the influence of micro-structure inertia on the instability threshold of the
system. The main conclusions which can be drawn from this section of
the present study can be summarised to:

● The instability threshold of electrically actuated fully clamped rectan-
gular micro-plates is affected by the micro-structure inertia more than
that of doubly clamped beam-type MEMS.
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Figure 7. Effect of geometric non-linearity on the instability threshold of the system in both
static and dynamic loading cases.

140 A. R. ASKARI



● In general, accounting for the influence of micro-structure inertia
decreases the instability threshold of the system. That is the dynamic
pull-in voltage in plate-type MEMS usually takes a value around 90%
of its static counterpart.

● The effect of micro-structure inertia, which is the minimum for
micro-plates with square shapes, increases with an increase of the
gap parameter.

● The influence of the geometric non-linearity in dynamically excited
systems is lower than those actuated statically. Furthermore, this effect
is the minimum for micro-plates with square shapes.
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