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ABSTRACT. | n thiswork we present a general theoretical framework for developing a constitutive
model capable of coupling two basic types of inelastic behaviour, plasticity and damage. We
elaborate upon the main novelty with respect to the previous models of this type, which pertains
to a systematic use of criteria for defining the elastic domain, both for plasticity and damage,
which can be adapted to a very wide variety of engineering materials, from metals with voids
on one side to concrete compaction on the other side. The numerical implementation is first
presented for a simple one-dimensional case, and subsequently extended to 2D and 3D criteria
which are adequate for either metals or concrete.

RESUME. Dans ce travail on présente un cadre théorique général du développement des modéles
de couplage de deux types de comportement anélastique, la plasticité et I'endommagement. On
introduit la nouveauté principale par rapport aux modéles précédents de ce type en utilisant
un critére pour définir le domaine élastique valable aussi bien pour la plasticité que pour |'en-
dommagement, qui peut étre adopté pour une grande variété des matériaux, d'une part pour
les métaux poreux et, d’ autre part, pour le béton en compaction. L’ implantation numérique est
d’abord présentée pour un cas unidimensionnel simple et ensuite généralisée pour les critéres
2D et 3D, pertinents a des métaux ou des bétons.
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1. Introduction

Two classes of congtitutive models of inelastic behaviour, those of plasticity and
damage, are most frequently employed for engineering materials. Plasticity model
(e.g.see[HIL 50], [LUB 90] or [SIM 98] for acomprehensiveaccount), with aclearly
defined yield criterion for identifying the occurrence of plastic deformation which
does not affect the elastic response which remains the same in elastic loading and
unloading, is mostly applicable to simplified representation of metals and alloys. Si-
milarly, the continuum damage model (e.g. see [LEM 88] or [KRA 96]), with its abi-
lity to account for the micro-cracking induced change of elastic response but without
residual deformation upon loading, is only a simplified representation of cracking of
concrete or soil-mechanics materials. It has been long recognized (e.g. see [LEM 85])
that the validity of these basic constitutive models can be significantly extended when
combined into a single coupled model of damage and plasticity. The applications
which can be tackled in such a manner are typically outside of the scope of each
of the basic models when acting alone, ranging from the metals with voids (e.g. see
[GUR 77], [NEE 84]) to compacting concrete (e.g. see [GAT 99]). Typical attempts
of merging these two constitutive models have been devel oped along a one-track ap-
proach (e.g. see [LEM 85], [BEN 88], [SIM 87] or [JU 89], among others) where the
damage model isfirst applied to produce the equivalent stress measure for virgin ma-
terial or so called effective stress, followed by the plasticity model defining the yield
criterion in terms of this effective stress. Even nowadays, the same kind of develop-
ments are being carried out to provide areliabl e representation of constitutive behavior
of concrete (e.g. see [MES 98], [JOH 99] or [MAH 00], among others), each propo-
sing arather complex computational procedure to obtain stresses and tangent moduli.

In this work we depart from these previous devel opments to propose a new kind
of coupled damage-plasticity model which has the following desirable features:
(i) both plasticity and damage model are built around the corresponding criteriaindi-
cating the presence of inelastic deformation. For the former this amounts to construc-
ting the classical yield criterion only in terms of total rather than the effective stress,
whereas for the latter thisimplies using a somewhat less standard continuum damage
formulation with a clearly defined damage criterion.
(ii) the numerical computation on both plasticity and damage part of the model can
be carried out in parallel (even making use of the presently available parallel com-
puter architecture) and their final results can then be merged through alocal iterative
procedure which imposes the uniqueness of stresses.

The outline of the paper is as follows. In the next section we briefly present the
main idea of coupling the plasticity and damage in a single constitutive model, star-
ting with a simple one-dimensional setting and extending it to a more general case.
Numerical implementation is discussed in Section 3 and several numerical examples
are presented in Section 4. In Section 5 we state some closing remarks.
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2. Theoretical formulation

For clarity, we first start with a simple one-dimensional setting allowing for only
non-trivial component of the stress tensor and the strain tensor. It is mostly a matter
of tensor calculus to develop the corresponding 2D or 3D version of any equation
governing the model. However, the particular forms of the yield or damage criterion
provide a very significant wealth of possible applicationsin higher dimensional case,
making the model useful for both metals and soil-mechanics materials.

2.1. Basic hypothesis

The one-dimensional constitutive model of coupling the damage and plasticity can
be built on 3 basic hypotheses. additive decomposition of the total strain field, the
strain energy and finally the plasticity and damage criteria. The first of them implies
that the total deformation can be additively decomposed into elastic part € ¢, plastic
part e? and damage part ¢, leading to

€=¢€" 4 e el [1]

We note in passing that the damage models rarely make use of the notion of the
damage strain, with few exceptions(e.g. see[CAR 97] or [YAZ 90]) dealing only with
rate form of the equation (1) .

The second ingredient of the model governing elastic responseis specified in terms
of strain energy. Assuming the simplest quadratic form in terms of the corresponding
state variables we can write the strain energy as the sum of elastic, damage and plastic
parts:

U(e,e’, D, &%, €, €7) = U°(e°) + (e, D) + EP(€7) + E4(¢7), (2]

where,

1
Teé(e®) = 5660666 [3]

In equations (2) and (3) above, the elastic modulusis denoted with C' ¢, e? and D are
internal variables of plastic strain and damage compliance, £P and £¢ are strain like
interna variables describing the hardening phenomenon for plasticity and damage,
respectively, and =P (¢P) and Z4(¢?) are the corresponding hardening functions. Ins-
tead of working with the damage strain energy ¥ ?(-), it is convenient to appeal to the
Legendre transformation (e.g. see [STR 86]) to define complementary energy, which
is postulated as a quadratic form in stress with
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x4(o,D) = oe? — Vi, D)
1

= §UDO' , [4]

The final group of basic model ingredients is provided to specify the elastic do-
main, where no change of internal variables takes place, along with the yield criteria
P and damage criteria ®¢ with

®P(0,¢") = |o|=(oy —¢") <0

% (0,¢") = |o|-(of—q") <0, 5]

where ¢? and ¢ are stress like variables describing the hardening phenomena, o, is
theyield limit and o ¢ is the fracture limit.

We next show that all the remaining ingredients can be derived from these three
basic ones simply by the standard thermodynamics consideration and the principles
of maximum plastic and maximum damage dissipation. To start, one can provide the
local form of the second principle of thermodynamics(e.g. see[LUB 90], [LEM 88)),
stating that the total inelastic dissipation is always non-negative. Subsequently, by
making use of the resultsin (2) to (4) we can further write

0<D = océ—V"
DP
ove o=r . oxt 4
P — € P — P -/ __
(o 5er )ee + oe 35”5 +5( 9 €*)
ox? . =d .
X p_ d
+ G D~ Gt 6
—_———
Dd

where DP and D¢ denote, respectively, plastic and damage dissipation.

In an elastic process with no change of plastic variables, with é? = 0 and £7 = 0,
and no change of damage variables, with D = 0 and ¢ = 0, which further implies
that no dissipation takes place, with DP = 0, D% = 0 and D = 0, it follows from (6)
above that the stress can be obtained from the elastic strain energy:

ove

Uizwzcﬁ [7]
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and that the damage strain is defined through stress and the current value of he damage
compliance:
ox?
d.— "X — Dg.
€ o o [8]
Assuming that the stress constitutive equation in (7) and damage strain definition

in (8) remain the same in an inelastic process we can conclude from dissipation in-
equality in (6) that

. . A .
0 <D:Uep+qp£p+—aDa+qd£d, [9]
—_—— 2
) —_—
Dr p

where we introduced stress-like variables ¢? and ¢ which are as thermodynamically
conjugate to hardening variables £ and ¢ and which can be computed from

o=P

rp - __—
q - aé-p
o=

2.2. Plasticity model

In an inelastic process where the plastic module is activated we can appeal to the
principle of maximum plastic dissipation (e.g. see[HIL 50] or [LUB 90]) to conclude
that among all plastically admissible fields of stress and stress-like hardening variable
we can choose those which render the maximum of the plastic dissipation. This can be
formally presented as a constrained minimization problem which can also berecast in
a non-constrained form by making use of the Lagrange multiplier procedure (e.g. see
[STR 86])

c= 7 . .
=7 }:> MiNg go:00 (7,7 =0(—DF (7, ¢7))

)

minVa,qP (Lp(ga qv, ,'yp), [11]
where 42 isthe plastic multiplier and

LP = —DP(0,q") + 4P PP (0, q"). [12]
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The Kuhn-Tucker optimality conditions (e.g. see [STR 86]) for this problem can
be readily obtained as:

P D AP 2 _(I)p
0= @ a3 0P 0
5o oo
OLP(a,q",4") v 00 > — 4902
o) _ 0¥ 13
0 dqP &+ dqP =&=1 ogr’ -

which can be interpreted as the evolution equations of the internal variables of the
plastic model with the Lagrange multiplier 47 as the plastic multiplier. If we assume
that the latter takes a zero value in an elastic process, the last Kuhn-Tucker equation
associated with the Lagrangian in (11) leads to the standard form of the loading /un-
loading conditions which can be written as

Y205 @ <0; 47eP =0. [14]

The positive value of the plastic multiplier can be obtained from the plastic consis-
tency condition, imposing for a state of plastic loading the plastic admissibility on the
subsequent state, resulting with

. ooer oPr
— PP = _ 4P
0="2 oo o+ 6ql’q ' [19]
From (10) and (13) we get:
. oqP .
Y Z— 1 ¢p
q 3 gpf
0%=P 9P
. _AD il
= —5 9¢r” O’ [16]
and from (7) and (13):
6 = Cé—é' —éP)
p
Combining the equations (15), (16) and (17) we obtain:
: 987 e ¢ — é?)
V= Bﬂce%@ 5%P 5257 HDP [18]
do

oo BqP BEPZ DgP



Coupled damage-plasticity 387

Finally, using (17) and (18) we determinethe el asto-plastic consistent tangent modulus
(with damage kept fixed) that

e OPP OPP e

c do _da c
OPP e PP OPP §2EP 9PP
do c do + OqP HEP2 OgP

6=[C*—- J(¢ — €. [19]

2.3. Damage model

The damage model can a so be cast in an equivalent format as the one given for the
plasticity, although that is not the usual manner of presenting it (e.g. see [LEM 88] or
[KRA 96]). Namely, in the case where the damage model is activated while the plasti-
city remains inactive, we can appeal to the principle of maximum damage dissipation
to select among all admissible value of stress and hardening damage variables those
which maximize the damage dissipation. The latter can be formulated as an constrai-
ned minimization problem and further transformed into an unconstrained one by using
the Lagrange multiplier method

o= 7 . -
d ? }:> mmqu@d(v,qd):[)(_Dd(g’ )

q:
)

minVo’,qd (Ld(g" qd)a ,yd)’ [20]
where 4 is the Lagrange multiplier for damage and

L = -D%0,q%) +410%(0, ¢%). [21]

The Kuhn-Tucker optimality conditions corresponding to the damage Lagrangian
can readily be obtained as

_oLYoq" Y e g0% 1091
0=""0%, = Pt = P=V%

_ 9L%o,¢", 47 g0 0
0="%4 g = =g [22]

which specify the evolution equations for the internal variables of the damage model.
To complete this description of the Kuhn-Tucker optimality condition we also provide
the loading/unloading conditions with

44 >0; 8% <0; 478 =0, [23]



388 Revue européenne des éléments finis. Volume 12 - n° 4/2003

where the zero value of the damage multiplier is introduced for an elastic process,
where no change of damage internal variables would take place. The positive value
of the damage multiplier, which occurs for the case of damage loading can be com-
puted from the damage consistency condition, by imposing the admissibility on the
subseguent state to get

. o%? . 07,
From (10) and (22) we have
dq? .
d _ Y99 pa
¢ = 6&15
9?2 9
_ . d
= -3 Wa—qd’ [29]
and from (8) and (22) we get
6 = (D led)
i
= D% _D DDl
d
= D '¢l— 7‘10—1—8;; , [26]

where we used the relation (D~!) = —D~1DD~. Combining equations (24),(25)
and (26) we obtain:

0%% y—1:d
. d — Oo D¢ [27]
v %% 1094 | pdd 52=d pai -
do do 9q? ped? 9q?

Hence using (26) and (27) we get the damage consistent tangent modulus as

—10%% 594 -1
_ D do _Oo D ] -d [28]
53 1)1 01 | pdd 5251 Hd €
0o do 0q% pgd? 9q?

-1

& =D

2.4. Elasto-plastic-damage coupling

Finally, for the case where both plasticity and damage models are active one can
apply simultaneously the principle of maximum plastic and maximum damage dissi-
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pation to recover both sets of results as presentedin (7), (13) and (15) for plasticity and
(8), (22) and (24) for damage. This would imply in particular that we can write two
different forms of the stress rate equation, one for plasticity and another for damage,
according to

b =C%P(é— ¢, [29]
where
ce PP =
C = Ce b e Ce A [30]
Ce_mce&”‘a B?LP@ZEPM ;Y2 >0
Do do +0qp 2¢P2 dqP
and
o =Cedéd, [31]
where
D~ ;31 =
ed _ -1934 pad H—1
c = D1 _— D 9 95 D . 'd>0 [32]
22d b1 93d | ped p2=d ped > v
9o 9o 0qd 9gd2 9qd

Therefore, from equality of stressratesin (29) and (31) we can obtain the damage
strain rate according to

CP(é — ¢l = C¢d = ¢ = [C°P 4 C°] 71O Pe. [33]
Replacing the last result in (31) we can rewrite the stress rate equation as
& = CPle, [34]

where CP? is the el asto-plastic-damage consistent tangent modulus is given as

Crt = CUC + Co O [35]

3. Numerical Implementation

In this section we address the numerical implementation issues of the proposed
damage-plasticity model, within the framework of one-step, implicit backward Euler
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Figure 1. Theo — e diagramfor the one-dimensional elasto-plastic-damage constitu-
tive model. We first reach the yield surface and then the fracture threshold surface. By
unloading we can observe both phenomena, the appearance of plastic strains and de-
creasing of elastic properties. We also give the graphical representation of the strain
decomposition, € = €® + P + €?

time-integration scheme. The central problem of computational plasticity can thus be
presented as follows:

Central problem of computational damage-plasticity

Given: €n = 6(',tn), 6% = e%('atn)i 6% = E%(',tn)u fﬁ = fﬁ(,tn), D, = D(',tn)i
&n =10 tn), At = tog1 — tn

Tare O p d P d
Find: e€n11, €010 €00 15 §nprr Dot oy

Such that:
1,i I,
Agli1 [fri+21nt - f;iflmt] =0,

el,int __ el p P d d
fn+1 _/ B U(€n+17€n+17€n+17Dn+17£n+176n+1)dw7

e
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felert = / Nbdz + N8,
le

"Y£+1 >0, ‘I’ﬁ+1(0n+1,Qﬁ+1) <0, 7£+1(I)ﬁ+1 =0

’Vg+1 >0, (I)Z+1(Un+laqg+1) <0, ’Vg+1‘1)gz+1 =0. [36]

In (36) above the first equation expresses equilibrium of the complete system,
whereas the other two are the equations imposing the plastic and damage admissi-
bility of the computed stress state at time ¢,,.,. The symbol A7, denotes the stan-
dard finite element assembly procedure summing up all el ement contributions(e.g. see
[BAT 90]), fel-int and fel-¢*t represent the internal and external forces of the element
‘el’, N°! is element displacement variation and B ¢! the corresponding strain variation.
The essential role of the finite element method and the commonly used numerical
integration scheme is to drastically simplify the central problem reducing it to corres-
ponding numerical integration points which are chosen according to the given finite
element mesh.

Furthermore, in accordanceto the usual operator split procedure (e.g. see[SIM 99)),
we can separate the solution of the equilibrium equations from the one carried out to
find the admissible stress state. The first group of equations, namely the equilibrium
eguations are solved iteratively in order to provide the current guess of the total strain
field. If the Newton method is employed, one would need the tangent stiffness matrix,
or more precisely the el asto-pl astic-damage tangent modulus (e.g. see [BEN 88]). Ho-
wever, this is not essential and many other iterative schemes can be used for such a
purpose. For any global solution procedure we are given the best iterative value for
total strain field at each integration point, e%’ll, where the superscript (i)’ denotes
the iteration counter. The central problem thus reduces to computing the correspon-
ding values of theinternal variableswhich will provide an admissible stressfield. This
computation is accomplished by alocal iterative scheme, with iteration counter deno-
ted by ' (k)’, where two ingredients of the model exploited independently produce the
current values of plastic and damage strains, effﬁ and efff{, and the corresponding
stress field according to the following expression:

i1 = C (e, — ) — ). [37]

As already indicated, the computation of this kind is carried out independently on
plasticity and damage part of the model, producing the stress values, o ¥ ; and od 1
respectively. At the final stage, we then impose that these two stresses coincide, which
provides the converged val ues of the plastic and damage deformation.

3.1. Plasticity computation

The computation for the plasticity model is carried out by the procedure described
in this section. By keeping the damage variable fixed and, in particular, the current
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value of the damage strain, eiﬁf{ , frozen, we first assume that the step remains elastic

(with respect to the potential change of plasticity model internal variables), which
alows us to compute the elastic tria state:

Uﬁiqial = ¢ (652_1 _ efl _ Ei(fi) [38]
BL = ael). 159

If thetrial elastic step isindeed plastically admissible in the sense that

pitrial _ xp¢ _p,irial  p,trial
¢n+1 - 'I) (UnJrl ’anrl ) S 07

we concludethat the total step isthe exact solutionwith 4% ; = 0. Inthe opposite, we
need to correct thisresult for the stress by finding the positive value of the plastic mul-
tiplier which will re-establish the plastic admissibility. To that end we first integrate
by backward Euler scheme the evolution equation in (13) to obtain the correction of
internal variables:

oP?
+1
i1 = et 503
n+1
@P
+1
Pao= &+45, aqfﬂ
n
(Jﬁﬂ = qp(§§+1)a [40]
where
7£+1 = 'Y£+1At [41]

and the corresponding value of the stress,

p e( (4 P d(k)
Opnt1 C (€n+1 —€pt1 T EnJrl)

= O, — el — i) —Co(hy, — )

; odr
p,trial e.p n+1
= o -C —, 42
n+1 ’Yn+1 ao_n+1 [ ]
which should be tested for the plastic admissihility,
(I)Zﬂ = ‘I”’(UﬁH,qZH) =0. [43]

Using the yield surface function defined in (5) and the equations (40) and (42),
(43) can berewritten as



Coupled damage-plasticity 393

p,trial

(D n+1

| - Ce'Yngl - (‘75 - qp(§£+1)) =0. [44]
For a convex hardening function (e.g. saturation hardening ) we can always solve
the last equation using the Newton procedureto get convergedvaluey ? . ; fromwhich

we can calculate

ﬁ+1 =|o

D _ P D . p,trial
€nt1 = €n Tt Ynyrsign(opi™)
p — 14 P
£n+1 - fn + ’Yn+1
p _ p,trial e.p . p,trial
Opy1 = Opi1 o — Cfvpygsign(op 1) - [45]

3.2. Damage computation

We then turn towards the damage part of the model to compute the potentia evo-
lution of the damage internal variables. We start again this computation by assuming
theelastic trial step and keeping the damage variables the same asin the previous step,
which leads to

d,trial d(k)

n+1 = D;1€n+1 [46]
gt = qed). [47]

We recall that the damage strain value at ¢, 1, €%, is determined by the iteration
process, where for either plastic and damage calculation at & — th iteration we keep

the damage strain value frozen at effﬂ :

If the damage admissibility of thetrial step is confirmed with

d,trial
n+1

d,trial

ditrial _ xd
P =0 Ao

n+1 )SO)

(o

the trial step is indeed the exact solution with ¢ +1 = 0. Inthe opposite, one needs
to compute the corresponding positive value of the damage multiplier that will re-
establish the damage admissibility. More precisely, integrating by backward Euler
scheme the damage variables evolution equationsin (20) we can write

d _ —1 _d(k)
Ont1 = Dpii€4
d
_ d,trial D71 d 6(pn—&-l
- n+1 - Mn ’Yn+16 d
UnJrl
1 0®¢
_ d n+1
D,y = Dn+7n+1d—a d
Un+1 Un+1
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ol
&g = G+
+1 +1 aq;iz—i-l
qg+1 = qd(fg-i-l)' (48]

By using the damage function formintroducedin (5) and the updatesin (48) above,
the damage admissibility condition can be written as

d,trial - _
‘I’Z-H = |Un+t-qw | - Dnl’Y;Li-H - (U? - qd(£g+1)) =0. [49]

Solving this non-linear equation by the Newton method gives us the value of the
damage multiplier 2 11 and hencethefinal values of stresses and the damageinternal
variables:

d d,trial —1.d - d,trial

Opy1 = n+§la -D, 7n+1519n(0n+7im)
1
Dpi1 = Dp+ ’Yngl Td
Un+1|

d d d

§n+1 = fn + ’Yn—i-l

d d(ed

qn+1 = q (£n+1)‘ [50]

In equation (46) the trial stress is calculated assuming that the initial value of the
damage variable is non-zero, Dy > 0, to avoid a potential problem of dividing by
zero. By this assumption we have to change the elastic property valuesin the program
to C, so that the real elastic properties of the model do not change:

C° = (Do +Cc ). [51]

However, by taking the value of D non-zero, we dlightly change the damage har-
dening variable evolution since D(¢? = 0) > 0. Thus, Dy becomes another mate-
rial parameter for the hardening evolution. In our calculationswe took Dy = C¢ ™,
which means that within the present model calculations the elastic properties have to
be C¢ = 2C°.

3.3. Coupling

We note that the computation on the plastic model described in the previous sec-
tion is carried out in a completely independent manner from the computation on the
damage part of the model summarized in (46) to (50); In particular these two compu-
tational procedures can be advanced in parallel with no exchange of results, dedicating



Coupled damage-plasticity 395

to each its particular processor on a parallel computer, to carry out the corresponding
part of the work.

Thefinal results produced by thetwo parts of the model should finally be compared
against one another and any discrepancy, or residual, should be eliminated with

d(k d(k d(k
() == o%, (i) — o (X)) = 0. [52]

The last equation is then solved by an iterative procedure to which we supply the
results available from the two parts to perform the next iterative step with

k e d(k e d(k
0= riﬂgl - CnilAen&£ - nilAen&£ [53]
leading to
k
AR 7“211
o+
d(k+1 d(k d(k
e = el +aell. [54]

The computation then continues with this improved value of the damage strain
until the convergence in (52) is finally achieved. The number of iterations depends
significantly on the choice of the starting value of the damage strain, e Zﬁzo) . Asthe
first guess we should not take the last converged value, e?, since the damage strain
evolvesalso inan elastic process (e = Do # const. evenif D = const). So, wefirst
assume that process remains elastic, which means that the damage variable, D, does
not change and the tria stress equals:

Uf:fil =0+ (D +C° 1) Hent1 — €n). [55]

By definition the corresponding damage strain is equal to:
nii™") = Duo' [56]

The value aboveis then taken as the starting value of the damage strain iteration pro-
cess to solve the non-linear case (equations (52) to (54)).

In (54) above we need the corresponding values of the elasto-plastic as well as
the elasto-damage moduli, which can be easily computed from (45) for plasticity and
from (50) for damage to obtain:

e AP —
60p C 7'Yn+1 - 0
—nJrl Cep = 8(8255 )n+1
O(eny1 — €l et — e 71 >0
( n+1 7’L+1) Ce+(g€;§)n+1 ) In41 =
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—1 ) —
6Ud 1 Dn 2zd Tt =0
1,022
. Cia=y DGy oy - [57)
n+l D;lJr(zzfg)an il =

The given values of tangent moduli for both parts of the model are also of direct
use for constructing the tangent modulus of the coupled model, according to

Crezpﬂ(denﬂ - dEZ-H) = 051161524-1 [58]
cer
= del = " e
S P
CEP Ced
= dop41 npl Tndl gy [59]

ep ed
CnJrl + CnJrl
—_——
Clepd

The tangent elasto-plastic-damage modulus given in (59) is used to compute the
corresponding element contribution to the global stiffness matrix for the Newton ite-
rative scheme applied in solving global equations with

. 1,(i 1,(i+1 [,(i)\ _ pel,ext el,int
A KD (@A = i) = g1 - el

K\ = [, BUOn B da [60]

The computational procedure presented in the foregoing can be generalized to 2D
or 3D problems with no modification other than dealing with the second order tensors
used for stress and strain, and the fourth order tensor for the tangent modulus. The
outline of such a computational procedureis given in Appendix.

4. Numerical simulations

In this section we present the results of a couple of numerical simulations. In or-
der to illustrate the versatility of the model to represent large spectrum of different
materials, one of the example draws from porous metal failure and another from com-
pacting concrete .

4.1. Criteriafor porous metalsin tension
The porous metal coupled model was built along the lines of the pioneering work

of Gurson ([GUR 77]), however with important difference regarding the present mo-
del, which hasthe ability to describe the closing of pores at unloading. Postulating that
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it is only spherical part of stress which determines the porosity, the damage criterion
isgiven as

®4(0,q") = (tr(o)) — (oF — ), (61]

where tr(o) denotesthe trace of the tensor o and < - > the Macauley brackets:

z ;x>0
<x>—{0 r<0 [62]

Here we neglect the possibility that the material can be damaged in compression. To
model the plasticity of metal matrix, we used the von Mises criterion:

®?(0,q") = \/dev(a) : dev(a) — (o — ¢°), [63]

where dev(o) denotesthe deviatoric part of the tensor o, dev(o) = o — Ltr(o).

From the choice of the criteria it follows that the evolution of damage variables
depends only upon the spherical part of the stress tensor and the evolution of plastic
variables upon its deviatoric part. Hence, the two nonlinear phenomenaappear uncou-
pledin strain space. Thisis the direct consequence of theinitial physical presumption
that the opening of the micro-cracksis due to positive spherical part of the stress and
dliding of crystal planes due to the stress deviator. The former corresponding to da-
mage and the latter to plasticity.

Finally, we use an exponential hardening law for either phenomenon, plasticity
and damage,

") = (of —of)(1—e ")

g€ = (of —ol)(1—e ), [64]

where o, and o are saturation values of stress, whereas b” and b are the material
parameters governing the rate of saturation.

4.1.1. Results

The model isillustrated on an example of arectangular plate with a circular hole
in the middle, submitted to a simple tension test. By exploiting symmetry conditions,
only one quarter of the model is used in the analysis (see Figure 2).

The material properties taken in the calculation were the following; (i) for elas-
ticity: Young's modulus, E = 240G Pa and the shear modulus, p = 92G Pa; (ii)
for plasticity: yield stress, o, = 170M Pa, hardening limit stress, o2, = 210M Pa
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Figure 2. One quarter of the specimen, used in calculation and prescribed boundary
conditions

and saturation parameter, b = 50; (iii) for damage: fracture stress, oy = 170M Pa,
hardening limit stress, o, = 210M Pa and saturation parameter, b¢ = 50.

In Figures 3 and 4 we show how the spreading of plastified and damaged regions
will change with the other phenomenon being activated. Different stages of activation
of either plasticity or damage modelsareillustrated by contoursof hardening variables
€P and ¢4, respectively.

We observe the compl ete disappearance of shear band (Figure 3), a typical res-
ponse of metals or alloys with von Mises criterion, when damage is also taken into
account. Besides, we notice that in the case where both phenomena are activated ei-
ther region is reduced to a smaller volume, but the differences between the maximum
and minimum value of £7 and £7 islarger. With other words, the phenomenaare, when
activated simultaneously, more localized.

4.1.2. Convergence characteristics

Since the plastic and damage model state variables computations are carried out
independently, the convergence rate of each one is not affected by another. In parti-
cular, the implementation of the von Mises model is completely the same as for the
plasticity model and thus keeps its robustnessin the coupled model aswell. Moreover,
since the damage model isformulated in a compl etely analogousway to the plasticity,
that is using the fracture criterion and the principle of the maximum dissipation, we
obtain comparable computational efficiency and similar robustness. In both cases, for
saturation hardening models defined in (64), we need 2 — 8 iterationsto convergewith
the Newton procedure applied to each model.

The iterative procedure for the coupled plasticity-damage model, assuring the fi-
nal uniqueness of stresses, requiresin general only a few iterations to converge. The
convergencecriteriaat k-th iteration can be written as:
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a)

Plastic Hardening
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Figure 3. Contours of the plastic hardening variable £7, when a) only plasticity is
activated and b) both plasticity and damage are activated

3
Y (0P (el®) — gt (el)2 < g min(oy, 05), (65]

4,j=1

wheren isachosen tolerance. A typical sequence of the intermediate results obtained
in the iterative processis presented in Table 1.

iter. | [lo” — o €7y €5 €y
1 2.400521 10*7 | 0.01681690 | 0.006922074 | —0.002569930
2 7.003845 102 | 0.01614148 | 0.007330000 | —0.002210263
3 3.758989 10° | 0.01615158 | 0.007325925 | —0.002293375
4 1.50453510% | 0.01615126 | 0.007326051 | —0.002292093
5 | 9.815405107° | 0.01615126 | 0.007326049 | —0.002292127

Table 1. Iterative values for stress difference norm and damage strain computed by
plasticity-damage model .
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Damage Hardening
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Figure 4. The value of the damage hardening variable ¢ ¢, when a) only damage is
activated and b) both, plasticity and damage are activated

The solution uniqueness for the model of this kind is guaranteed if the plasticity
and damage criteria do not concern the same inelastic mechanisms. Nevertheless, uni-
queness of the solution does not ensure the easy convergence. We have remarked that
for the plastic and damage criteriatoo similar, we need smaller time stepsto converge,
while the convergenceis remaining quadratic.

4.2. Criteria for compacting concrete

It is quite interesting that the same kind of model can be used to represent com-
pacting concrete behavior, although the latter can be seen as placed at the opposite
end of the spectrum with respect to porous metal behavior described by Gurson's cri-
terion. Namely, while the previous study deals with the increase of metal porosity
and softening response under tension loading, in this example we model the decrease
of concrete porosity under hydrostatic pressure loading and increasingly hardening
response of compacting concrete [GAT 99].

Since we do not necessarily seek to use the most elaborate model for concrete
capable of providing a very good agreement between the numerical simulations and
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experimental results, we use rather a simple model for plasticity component in terms
of the Drucker-Prager criterion with no hardening:

dP(0) = /dev(o) : dev(o) — tan(a) étr(a) -2/3 0?, [66]

where tan(«) isa (positive) material constant, roughly representing internal friction.

The damage model component is chosen to describe an essential mechanism of
compacting concrete "damage" leading to an increasein resistance. Therefore, the da-
mage criterion for concrete compaction concerns only the spherical part of the stress:

(Dd(o-v qd) = t’f’(O’) - (U? - qd)7 [67]

where ¢¢ is the damage elastic limit and ¢ is the damage hardening variable. By
introducing alinear hardening law for the damage:

Qe = -k
[68]

with fairly large value of hardening modulus K ¢ we hope to provide a reliable repre-
sentation of concrete behavior in compaction.

4.2.1. Results

The computations are performed for the same model of a perforated plate (see Fi-
gure 2), but this time submitted to compression loading. The numerical values for the
material parameters taken in the calculation are the following: (i) elasticity: Young's
modulus £ = 240G Pa and the shear modulus . = 92G Pa; (i) plasticity: yield
stress, o, = 170M Pa, material parameter, tana = 0.6; (iii) damage: fracture stress,
o = 210M Pa, K¢ = 200.

In Figure 5 we show how the damaged regions change with or without the plasticity
component activated, by tracing the contours of the damage hardening variable ¢ 4. We
observethat the damage hardening is much less present when both model components
are activated.
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Figure 5. The value of the damage hardening variable ¢ ¢, when a) only damage is
activated and b) both, plasticity and damage are activated

In Figure 6 we show contours of the largest stress component in terms of its absolute
value, 011, for three different cases where only the plasticity, only the damage or
both model components are activated. It isfor the latter case when the stress response
appears least localized.

a) b)

STRESS 11 STRESS 11
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Figure 6. The value of the stress o1;, when a) only plasticity is activated, b) only
damage is activated and c) both plasticity and damage are activated
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5. Conclusions

The general theoretical framework for developing a coupled plasticity-damage
constitutive model presented herein allows to accommodate a wide variety of ma-
terials, as illustrated on porous metal and compacting concrete. The main novelty of
the model with respect to the standard coupled models of this kind pertainsto treating
each model component, plasticity and damage, in an independent manner attributing
to each its own yield or damage criteria. This kind of feature may especialy be ad-
vantageous when the behavior of one or both components of the coupled model is
well under control. In the opposite case, in order to simulate areal material behaviour,
we need to identify the material parameters, either in the phenomenological sense by
comparing it with experimental results or by using a microscale-based representation
to provide the material parametersfor a particular component.

Another important novelty introduced herein concerns the numerical implementa-
tion, where the plastic and damage component state variables computations are carried
out independently from each other. The latter allows that the classical return mapping
algorithm providing the quadratic convergenceratesis directly used for plasticity com-
ponent computations. Moreover, since the damage model is formulated in a comple-
tely analogousway to the plasticity, that is using the damage criterion and the principle
of the maximum dissipation, the same type of return mapping a gorithm can be used
to obtain computational efficiency and robustness comparable to those of plasticity
component.

The chosen strategy of separating the computations for two componentsto reduce
the model complexity is in general taxed mildly, since the additional computational
cost concerns typically only a few iterations to obtain the correct value of damage
strain and to converge the stress provided by two componentsto the same value.
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Appendix : Numerical algorithm of the elasto-plastic-damage model
given
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