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ABSTRACT
Updated Lagrangian formulations of two eight-node
hexahedral solid elements with rotational degrees of
freedom (DOFs) are developed to analyse geometrically
nonlinear large deflection problems. These two elements
are based on the so-called Space Fibre Rotation (SFR) concept
that considers fictive small rotations of a nodal fibre within
the element to enrich the displacement vector approximation
of low-order finite elements. The validity and efficiency of the
proposed formulations are demonstrated by solving several
nonlinear large deflection benchmarks and the obtained
results show a much better accuracy than those based on
the total Lagrangian approach.
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1. Introduction

Full three-dimensional (3D) finite element numerical modelling of thin and
moderately thick structures involving nonlinear geometric and material effects
becomes nowadays more attractive than the classical surface modelling thanks
to the advent of more powerful computing tools. It is for instance the case of
sheet metal forming analysis for which classical shell elements become
inaccurate when bulk deformation appears and accordingly 3D solid and
solid-shell elements are more suited for this type of analysis (Mackerle,
2006; Parente, Fontes Valente, Natal Jorge, & Cardoso, 2006; Salahouelhadj,
Abed-Meraim, Chalal, & Balan, 2012). Another nonlinear example concerns
extrusion and injection moulding simulations in the plastic industry for which
it is important to analyse 3D effects across the thickness that can not be
captured by classical shell elements (Ilinca & H´Etu, 2002).

The use of standard low-order solid elements in linear and nonlinear
analyses requires the enhancement of their formulations that suffer from
many numerical locking pathologies leading to inaccurate and unreliable
results. Within this context, several methods have been proposed for years
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to improve the response of first-order solid elements. For example,
reduced or selectively reduced integration procedures have been used to
improve the computational effectiveness of low-order solid elements and
prevent the volumetric locking for incompressible materials (Papoulia,
1999; Reese, 2005).

However, these techniques are known to introduce spurious deforma-
tion modes that need stabilisation procedures (Belytschko & Bindeman,
1993). Besides, some authors have considered other techniques like the
method of incompatible modes or more generally the enhanced assumed
strain (EAS) method to alleviate several types of locking present within
standard low-order solid elements (Klinkel & Wagner, 1997; Rj, Natal
Jorge, Fontes Valente, & Cesar De Sa, 2003; Simo, Armero, & Taylor,
1993; Slavkovic, Zivkovic, & Kojic, 1994). Based on these advanced meth-
ods, a consequent research effort has been made during the last 20 years to
develop the so-called solid-shell elements which constitute an interesting
compromise between shell and full solid elements (see e.g. Abed-Meraim &
Combescure, 2009; Fontes Valente, Alves de Sousa, & Natal Jorge, 2004;
Hauptmann & Schweizerhof, 1998; Klinkel, Gruttmann, & Wagner, 2006;
Mostafa, Sivaselvan, & Felippa, 2013; Schwarze & Reese, 2011; Sze, Chan,
& Pian, 2002, among others). In addition to that, 3D solid elements with
rotational DOFs have been also proposed to solve linear elastic problems
(Ayad, Zouari, Meftah, Ben Zineb, & Benjeddou, 2013; Meftah, Ayad, &
Hecini, 2013; Sze & Ghali, 1993; Yunus, Pawlak, & Cook, 1991). In the
work by Yunus et al. (1991), the eight-node hexahedral element HEX8R is
obtained by transforming the mid-side displacement DOFs of the classical
20-node hexahedral element into corner nodal translations and rotations
based on the concept of vertex rotations put forward by Allman (1984). It
has been reported in Yunus et al. (1991) that the added rotational nodal
variables improve considerably the accuracy of the standard eight-node
hexahedral element. In the paper by Ayad et al. (2013), two eight-node
hexahedral elements with rotational DOFs, named SFR8 and SFR8I, have
been formulated. They are based on the so-called Space Fibre Rotation
(SFR) concept introduced by Ayad (2002). This concept supposes fictive
small rotations of a nodal fibre within the finite element that enhances the
displacement vector approximation of low-order elements. It is important
to note that the nodal rotations based on the SFR concept have no physical
meaning but this latter concept has the merit to propose a more concise
and direct formulation when compared to previous works dealing with
drilling rotations like that of Allman (1984). The hexahedral element
SFR8I is a nonconforming element because three internal (element-wise)
parameters are introduced to avoid the Poisson’s ratio locking in bending
dominated problems.
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To solve nonlinear geometric problems, the formulations of many
enhanced solid and solid-shell elements have been extended based on the
total Lagrangian description, the updated Lagrangian approach or the co-
rotational description (Abed-Meraim & Combescure, 2009; Fontes Valente
et al., 2004; Hauptmann & Schweizerhof, 1998; Klinkel & Wagner, 1997; Li,
Peng, & Li, 2011; Mostafa et al., 2013; Sze et al., 2002; Wang, Chalal, & Abed-
Meraim, 2017). To the authors best knowledge, only a few works, among
them the recent paper by Meftah, Zouari, Sedira, and Ayad (2016), have been
interested in extending solid elements with rotational DOFs to account for
geometrically nonlinear problems. In this latter contribution (Meftah et al.,
2016), the total Lagrangian formulations of the above mentioned SFR con-
cept-based hexahedral elements (SFR8 and SFR8I) have been presented.
Contrary to nonlinear shell elements based on the total Lagrangian scheme,
Meftah et al. (2016) have not considered finite rotation kinematics because
the added nodal rotations based on the SFR concept are first moderate and
second have no physical meaning. It has been shown in Meftah et al. (2016)
that SFR8 and SFR8I enhance the accuracy of the standard eight-node
hexahedral element as in linear elastic problems. However, the response of
the conforming element SFR8 has been found too stiff and far out the
reference solutions. The nonconforming element SFR8I presented more
accurate results than SFR8 but remains relatively stiff in some shell problems.

In this paper, we adopt an updated Lagrangian framework to describe
large displacement and small strain kinematics and evaluate its impact on
the SFR8 and SFR8I responses. This choice is motivated by two main
reasons: firstly, the fact that the added nodal rotations based on the SFR
concept are small (or moderate) which implies that an updated Lagrangian
description would be more convenient than the total Lagrangian scheme
adopted in Meftah et al. (2016) and secondly, the interesting results of the
SFR concept-based membrane quadrilateral elements (PFR4 and PFR4I) in
nonlinear geometric plane problems, under an updated Lagrangian
description, recently reported by Zouari, Hammadi, and Ayad (2016).

The outline of the paper is as follows. Section 2 develops the variational
formulation of the nonlinear geometric problem considering an updated
Lagrangian description. In Section 3, we present the nonlinear formulations
of the SFR concept hexahedral elements SFR8 and SFR8I using the updated
Lagrangian framework. Section 4 deals with an evaluation of SFR8 and SFR8I
responses through a set of nonlinear large deflection benchmarks.

2. Small strain updated Lagrangian formulation

The updated Lagrangian formulation presented in this section follows a
similar description given by Zouari et al. (2016), but for completeness it is
also briefly reported here.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 145



We consider a deformable body undergoing large displacements as
shown in Figure 1. Suppose that the total load applied to this body is
applied in several increments so that the body occupies intermediate
configurations before converging to the final configuration Cf . Consider
the loading interval ½tn; tnþ1� and denote with the indexes n and n + 1 all
quantities at tn and tnþ1, respectively. We assume that the body is in
equilibrium at t ¼ tn and hence the configuration Cn is known. In the
updated Lagrangian formulation, the last known deformed configuration
Cn is chosen as the reference configuration CR to describe the body motion
(Figure 1). An increment of the external load leads to an increment of the
displacement vector between the configurations Cn and Cnþ1. We denote

by C ðkÞ
nþ1 the last known configuration between Cn and Cnþ1 that does not

verify the body equilibrium. A correction of the displacement vector dΔ�u

should be determined to reach the next configuration C ðkþ1Þ
nþ1 . The weak

form of the equilibrium at configuration C1;C ðkÞ
nþ1 reads:

W ¼ snV
nþ1
n SðkÞij δðnþ1

n EðkÞij ÞdnV � ½snS
nþ1
n Tiδui d

nSþ snV
nþ1
n f vi δui d

nV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nþ1
n Wext

�

(1)

where nþ1
n T and nþ1

n f v are, respectively, the boundary traction forces and the

body forces applied to Cnþ1 and referred to the reference configuration Cn,
nþ1
n SðkÞ and nþ1

n EðkÞ are, respectively, the second Piola–Kirchoff stress tensor
and the Green–Lagrange strain tensor of the configuration C1 referred to Cn,
and nþ1

n Wext denotes the virtual work done by the external loads.
To simplify, the following notation is adopted:

nþ1
n SðkÞij ¼ 1

n Sij ; nþ1
n E ðkÞ

ij ¼ 1
n Eij ; Δ�uðkÞ ¼ Δ�u (2)

Figure 1. Reference and deformed configurations of a 3D elastic body.
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which leads to a simplified expression of the weak form (1):

W ¼ snV
1
nSij δð1nEijÞdnV|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
nWint

�nþ1
n Wext (3)

By remarking that

1
nEij ¼ n

n Eij þ ΔnEij and 1
nSij ¼ n

n Sij þ ΔnSij (4)

the internal virtual work is rewritten as:

1
nWint ¼ snV

1
nSij δðΔnEijÞdnV (5)

The increment of the Green–Lagrange strain tensor ΔnE between Cn and
C1 can be decomposed into linear ΔnE lin and nonlinear ΔnE nl strain
tensors in terms of the displacement vector Δu:

ΔnEij ¼ ΔnE
lin
ij þ ΔnE

nl
ij ; ΔnE

lin
ij ¼ 1

2
@Δui
@xj

þ @Δuj
@xi

� �
; ΔnE

nl
ij

¼ 1
2

@Δuk
@xi

� @Δuk
@xj

� �
(6)

where xi, i = 1,2,3 are the Cartesian coordinates of the reference
configuration Cn.

The use of Equations (5) and (6) into Equation (3) results in the
following expression of the weak form of equilibrium at C1:

W ¼ snV
1
nSij ðδðΔnE

lin
ij Þ þ δðΔnE

nl
ij ÞÞdnV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1
nWint

�nþ1
n Wext (7)

The solution of Equation (7) can be obtained by the finite element method.
This will be developed in the next section by formulating two eight-node
hexahedral solid elements with rotational DOFs based on the SFR concept
introduced by Ayad (2002).

3. Finite element approximation

3.1 Updated Lagrangian formulation of the conforming element SFR8

In this subsection, we develop the updated Lagrangian formulation of the
conforming hexahedral element SFR8. We start by choosing one point q of
the standard eight-node hexahedral element as depicted in Figure 2. The SFR
concept supposes fictive small rotations, represented by the rotation vector
θ i, of the nodal fibre iq around the node i (Figure 2(a)). These rotations result

in an additional vector θ i ^ iq which enhances the classical approximation of

the displacement vector of q (Ayad, 2002; Ayad et al., 2013):
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u qð�; η; ζÞ ¼
P8

i¼1Nið�; η; ζÞðui þ θi ^ iqÞ )
u

v

w

8><
>:

9>=
>; ¼ P8

i¼1
Nið�; η; ζÞ

ui þ ðz � ziÞθyi � ðy� yiÞθzi
vi þ ðx� xiÞθzi � ðz � ziÞθxi
wi þ ðy� yiÞθxi � ðx� xiÞθyi

8><
>:

9>=
>;

(8)

Nið�; η; ζÞ are the classical trilinear Lagrange interpolation functions

associated with the eight-node hexahedral element, fuig ¼ fui viwigT is

the vector of nodal displacements and θif g ¼ fθxi θyi θzigT (Figure 2(b)) is
the vector of nodal fictive rotations.

As previously mentioned in the introduction, it is important to note that
the small rotations of the nodal fibre iq around the node i have no physical
meaning from mechanics point of view.

The approximations (8) can be rewritten in a matrix form as:

u
v
w

8<
:

9=
; ¼ ½N�fueng ; ½N� ¼

fNugT
fNvgT
fNwgT

2
4

3
5 ¼

fNuigT
� � � fNvigT � � � i ¼ 1; 8

fNwigT

2
4

3
5
(9)

where

Nuif g ¼ f Ni 0 0 0 Niðz � ziÞ �Niðy� yiÞ gT
Nvif g ¼ f 0 Ni 0 �Niðz � ziÞ 0 Niðx� xiÞ gT
Nwif g ¼ f 0 0 Ni Niðy� yiÞ �Niðx� xiÞ 0 gT

(10)

Figure 2. The SFR concept. (a) Fictive small rotations of the nodal fibre iq around the
node i inducing an additional displacement vector θ i ^ iq. (b) The rotation vector θi of
the nodal fibre iq.
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and uen
� � ¼ f� � � j ui vi wi

..

.
θxi θyi θzij � � � i ¼ 1; 8gT is the elementary nodal

DOFs vector containing the nodal displacements and fictive rotations.
We introduce at this stage the following notation

Δu ¼ Δu1; Δv ¼ Δu2; Δw ¼ Δu3; x ¼ x1; y ¼ x2; z ¼ x3 (11)

At the element level, the internal virtual work 1
nWint is rewritten in the

following matrix form:

1
nWint ¼ snVðfδΔnE

lingT þ fδΔnE
nlgTÞf1nSgdnV (12)

Using Equation (6) and the approximations (9), it is possible to show that
δΔnE lin

� �
and δΔnE nl

� �
are related to δΔuen

� �
through two matrices ½BL�

and ½BNL�, respectively, as follows:

δΔnE
lin

� � ¼ ½BL� δΔuen
� �

; δΔnE
nl

� � ¼ ½BNL� δΔuen
� �

(13)

where

½BL�|{z}
ð6�48Þ

¼

Ni;x 0 0 0 Ni;xðz � ziÞ �Ni;xðy� yiÞ
0 Ni;y 0 �Ni;yðz � ziÞ 0 Ni;yðx� xiÞ
0 0 Ni;z Ni;zðy� yiÞ �Ni;zðx� xiÞ 0

� � � Ni;y Ni;x 0 �Ni;xðz � ziÞ Ni;yðz� ziÞ Ni;xðx� xiÞ� � � � i ¼ 1; 8

Ni;yðy� yiÞ
Ni;z 0 Ni;x Ni;xðy� yiÞ Ni;zðz � ziÞ� �Ni;zðy� yiÞ

Ni;xðx� xiÞ
0 Ni;z Ni;y Ni;yðy� yiÞ� �Ni;yðx� xiÞ Ni;zðx� xiÞ

Ni;zðz � ziÞ

2
666666666666666664

3
777777777777777775

;

(14)

½BNL�|ffl{zffl}
ð6�48Þ

¼ ½Bϕ�½Bσ�; ½Bϕ�|{z}
ð6�9Þ

¼

Δu;x 0 0 Δv;x 0 0 Δw;x 0 0
0 Δu;y 0 0 Δv;y 0 0 Δw;y 0
0 0 Δu;z 0 0 Δv;z 0 0 Δw;z

Δu;y Δu;x 0 Δv;y Δv;x 0 Δw;y Δw;x 0
Δu;z 0 Δu;x Δv;z 0 Δv;x Δw;z 0 Δw;x

0 Δu;z Δu;y 0 Δv;z Δv;y 0 Δw;z Δw;y

2
6666664

3
7777775;

(15)
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½Bσ�|{z}
ð9�48Þ

¼

fNui;xgT
fNui;ygT
fNui;zgT
fNvi;xgT

� � � fNvi;ygT � � � i ¼ 1; 8
fNvi;zgT
fNwi;xgT
fNwi;ygT
fNwi;zgT

2
66666666666666664

3
77777777777777775

(16)

and

Ni;α ¼ @Ni

@α
; Nui;α

� � ¼ @ Nuif g
@α

; α ¼ x; y; z

Accordingly, the residual vector of the conforming element SFR8 is
given by:

fReg ¼ fnþ1
n Feextg � f1nFeintg ; f1nFeintg ¼ snVð½BL�T þ ½BNL�TÞf1nSgdnV

(17)

The elementary tangent stiffness matrix of SFR8 is found by performing a
variation of the internal virtual work:

1
nWint ¼ snVfδΔnEgTf1nSgdnV )
dWint ¼ snVfδΔnEgTfdΔSgdnV þ snVfdδΔnEnlgTf1nSgdnV

(18)

By remarking that dΔSf g ¼ ½C� dΔEf g where ½C� is the (6 × 6)-sized
elasticity matrix, the first term of dWint gives the linear and nonlinear
stiffness matrices of SFR8:

½Ke
L� ¼ snV ½BL�T½C�½BL�dnV (19)

½Ke
NL� ¼ snVð½BL�T½C�½BNL� þ ½BNL�T½C�½BL� þ ½BNL�T½C�½BNL�ÞdnV (20)

The geometric stiffness matrix is obtained from the second term of dWint

as follows:

½Ke
geom� ¼ snV ½Bσ�T½ 1n�S �½Bσ�dnV with ½1n�S� ¼

½ 1nS � 0 0
0 ½ 1nS � 0
0 0 ½ 1nS �

2
664

3
775
(21)
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and

½ 1nS � ¼

1
nSxx

1
nSxy

1
nSxz

1
nSxy

1
nSyy

1
nSyz

1
nSxz

1
nSyz

1
nSzz

2
66664

3
77775

Finally, the following finite element model is solved to determine the
correction dΔuen

� �
between C1 and C2:

ð½Ke
L� þ ½Ke

NL� þ ½Ke
geom�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½Ke
T �

ÞfdΔueng ¼ fReg (22)

where ½Ke
T� is the elementary tangent stiffness matrix of SFR8.

3.2. Updated Lagrangian formulation of the nonconforming element SFR8I

We introduce three incompatible displacement modes au, av and aw in the
natural space of SFR8 to avoid the Poisson’s ratio locking as explained in
Ayad et al. (2013; Yunus et al., 1991). The natural space extra modes are
given as follows:

ua ¼ ð1� �2Þau
va ¼ ð1� η2Þav
wa ¼ ð1� ζ2Þaw

8><
>: (23)

In this case, we obtain an enhanced Green–Lagrange strain vector:

Ef g ¼ E uf g þ E af g; E af g ¼ ½M a� af g (24)

where E uf g and E af g are, respectively, the conforming and nonconform-
ing strain vectors, af g is the vector of incompatible modes and ½M a� the
matrix relating E af g to af g (see Ayad et al., 2013 for more details).

After introducing the enhanced strain vector in the equilibrium weak
form (3) at the element level, we obtain the following system of equations:

½Ke
L� þ ½Ke

NL� þ ½Ke
geom� ½Ke

ua�
½Ke

au� ½Ke
aa�

2
64

3
75 fdΔueng

fdΔag

( )
¼

fnþ1
n F e

extg � snVð½BL�T þ ½BNL�TÞf1nSgdnV

�snV ½Ma�Tf1nSgdnV

( ) (25)

where
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½Ke
ua� ¼ snVð½BL�T þ ½BNL�TÞ½C�½Ma�dnV; ½Ke

au� ¼ ½Ke
ua�T;

½Ke
aa� ¼ snV ½Ma�T½C�½Ma�dnV

(26)

The vector of internal variables dΔaf g can be eliminated at the element
level by using a static condensation. We obtain

fdΔag ¼ �½Ke
aa��1 ð½Ke

au�fdΔueng þ snV ½Ma�Tf1nSgdnVÞ (27)

Finally, the following system of equations should be solved to determine
the correction dΔuen

� �
for the nonconforming element SFR8I:

½�K e
T� dΔuen
� � ¼ �Re� �

(28)

with

½�K e
T� ¼ ½K e

L� þ ½K e
NL� þ ½K e

geom� � ½K e
ua�½K e

aa��1½K e
au� (29)

f�Reg ¼ fnþ1
n Feextg � snVð½BL�T þ ½BNL�TÞf1nSgdnV

þ ½Ke
ua�½Ke

aa��1snV ½Ma�Tf1nSgdnV
(30)

½�Ke
T� and �Re� �

are the elementary tangent stiffness matrix and the residual
vector of SFR8I, respectively.

It is worthy to note that a 2 × 2 × 2 Gauss points numerical integration
scheme was chosen to calculate all terms of SFR8 and SFR8I formulations.
The tangent stiffness matrices of these two elements exhibit 12 spurious
zero-energy modes which are controlled by the same stabilisation techni-
que as in Ayad et al. (2013).

4. Numerical validation

This section is devoted to assess the capability and accuracy of the above-
proposed formulations in some popular nonlinear benchmark problems. The
presented results are obtained from the finite element code ABAQUS
Standard after introducing SFR8 and SFR8I, under the updated Lagrangian
description, as user elements (ABAQUS, 2016). The results of the SFR con-
cept-based hexahedral elements are compared with those based on the total
Lagrangian approach (Meftah et al., 2016) and some advanced solid and solid-
shell elements from the literature. To simplify the presentation of the obtained
results, SFR8 and SFR8I based on the total and the updated Lagrangian
frameworks are designated by SFR8-TL, SFR8I-TL and SFR8-UL, SFR8I-UL,
respectively. To carry out finite element calculations with the SFR concept-
based elements, constraints on the rotational DOFs are prescribed in addition
to the classical displacement ones (see Ayad et al., 2013 for more details).
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For all the following numerical examples, the total numbers of incre-
ments and iterations required to reach the ultimate solutions were found to
be equivalent to those reported in Meftah et al. (2016).

4.1. Clamped square plate subjected to a uniform load

A thin clamped square plate is subjected to a uniformly distributed load
q = 20 as shown in Figure 3. Owing to symmetry, only one-quarter of the
square plate is analysed with 4 × 4 × 1 hexahedral elements (Figure 4). We
show in Figure 4 the load–central deflection curves of SFR8 and SFR8I

Figure 3. One quarter of the clamped square plate modelled with 4 × 4 × 1 hexahedral
elements.

Figure 4. Load–central deflection curve of the clamped square plate.
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compared with the analytical solution by Chia (1980) and C3D20 (the
classical 20-node hexahedral element of ABAQUS with an exact numerical
integration scheme).

We remark that the obtained results agree globally well with the analytic
solution by Chia (1980). For small values of the central deflection (lower
than 1.2), the total and updated Lagrangian schemes give approximately
the same results with SFR8 and SFR8I. However, for higher values, a
notable difference between the two formulations is observed and the
updated Lagrangian description gives more accurate results than the total
Lagrangian scheme.

4.2. Clamped circular plate subjected to a concentrated load

We consider in this second example the clamped circular plate of Figure 5
subjected at its centre to a concentrated load F that is increased up to
Fmax ¼ 106. Thanks to symmetry, only one-quarter of the circular plate is
modelled with 12 hexahedral elements (Figure 5). The load–central deflec-
tion curves of SFR8 and SFR8I, compared to C3D20 and the analytical
solution by Chia (1980), are depicted in Figure 6. Globally, the same
remarks as the clamped square plate (Section 4.1) hold for this second
example.

4.3. Pullout of an open-ended cylindrical shell

An open-end cylindrical shell of length L ¼ 10:35, radius R ¼ 4:953 and
constant thickness h ¼ 0:094 loaded by two opposite concentrated loads is

Figure 5. One quarter of the clamped circular plate modelled with 12 hexahedral elements.
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considered. Owing to symmetry, only one-eighth of the cylinder is mod-
elled with 8 × 12 × 1 hexahedral elements as depicted in Figure 7 and
adopted in Fontes Valente et al. 2004 and Sze et al., 2002. The applied load
is increased up to 40,000 and the displacements of points A along Z and B
and C along X (Figure 7) are determined. Figure 8 shows the load–
deflection curves at points A, B and C of SFR8 and SFR8I compared
with the reference solutions by Sze et al. (2004), the solid-shell element
HS of Sze et al. (2002) and the solid-shell element HCiS12 of Fontes

Figure 6. Load–deflection curve of the clamped circular plate.

Figure 7. One-eighth of the open-end cylindrical shell modelled with 8 × 12 × 1 hexahedral
elements.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 155



Figure 8. The open-end cylindrical shell. (a) Load–displacement along Z of point A curve. (b)
Load–displacement along X of point B curve. (c) Load–displacement along X of point C curve.
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Valente et al. (2004). It is worth noting that the results of the solid-shell
element HS shown in Figure 8 are based on an updated Lagrangian
scheme. Moreover, Sze et al. (2002) have reported a notable difference
between the total and updated Lagrangian descriptions results.

First, we remark that the adopted updated Lagrangian description per-
mits to largely enhance the accuracy of the conforming element SFR8 and
in this case SFR8-UL results are in good agreement with the reference
curves by Sze et al. (2004). Second, the updated Lagrangian scheme allows
also to clearly improve the SFR8I accuracy especially to predict the slight
snap-through behaviour of the cylindrical shell around P ¼ 20; 000.

4.4. Pinching of a clamped cylinder

A cantilever elastic cylindrical shell subjected to two opposite concentrated
loads is analysed in this example. Owing to symmetry, only one-quarter of
the cylinder is modelled with 16 × 16 × 1 hexahedral elements as depicted
in Figure 9 and considered in Fontes Valente et al. (2004). We show in
Figure 10 the obtained load–deflection curves of SFR8 and SFR8I com-
pared with the solid-shell element HCiS12 of Fontes Valente et al. (2004)
and the four-node shell element of Brank, Damjanic, and Peric (1995)
(taken as the reference curve).

The load–deflection curves of Figure 10 show that the too stiff behaviour
of SFR8-TL is clearly enhanced by the adopted updated Lagrangian
approach. The SFR8I-UL solution, which is found very close to HCiS12,
also largely surpasses that of SFR8I-TL and correctly predicts the slight
instability of the cylindrical shell around F ¼ 700.

Figure 9. One-fourth of the pinched clamped cylinder modelled with 16 × 16 × 1 hexahedral
elements.
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4.5. Hinged cylindrical roofs subjected to central point loads

We consider in this last assessment test two thin and thick circular
cylindrical roofs subjected to central point loads as depicted in
Figure 11. The longitudinal boundaries are hinged and immovable
while the curved edges are completely free. Thanks to symmetry, only a
quarter of each roof is modelled with 4 × 4 × 2 hexahedral elements as
considered in Mostafa et al. 2013 and Schwarze & Reese, 2011
(Figure 11). The use of two elements across the thickness permits to
correctly represent hinged boundary conditions as explained in Mostafa
et al. (2013). Due to the snapping behaviour, the arc-length method is
used to solve this problem. We show in Figures 12 and 13 the load–
displacement curves of SFR8 and SFR8I compared with the solid-shell
element Q1TSs of Schwarze and Reese (2011), the solid-shell element of
Mostafa et al. (2013) (only for the thin shell) and the reference curves by
Sze et al. (2004).

We remark that SFR8 and SFR8I with the total and updated Lagrangian
descriptions predict correctly the unstable snap-back and snap-through
behaviours of the thin and thick cylindrical roofs. As for the previous
studied benchmarks, the updated Lagrangian approach enhances in parti-
cular the response of the conforming element SFR8 whose results show
better agreement with the reference curves.

Figure 10. Load–displacement curve of the pinched cylindrical shell.

158 W. ZOUARI ET AL.



5. Conclusion

Based on the so-called SFR concept, two eight-node solid hexahedral
elements with rotational DOFs, named SFR8 and SFR8I, were developed
by the updated Lagrangian approach to analyse geometrically nonlinear
large deflection problems. As validation tests, five plate and shell nonlinear

Figure 12. Load–deflection curve of the thin hinged cylindrical roof.

Figure 11. One-fourth of the hinged cylindrical roof modelled with 4 × 4 × 2 hexahedral
elements.
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benchmarks were considered and the obtained results were mainly com-
pared with those based on the total Lagrangian description. In particular, it
was found that the updated Lagrangian approach significantly enhances
the accuracy of the conforming element SFR8 compared with the total
Lagrangian description. Besides, the relatively stiff behaviour of the non-
conforming element SFR8I in some shell problems seems to be improved
by the proposed updated formulation.
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