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ABSTRACT
In this study, two triangular shell element having three and six
nodes are presented for geometrically nonlinear analysis of
thin and thick shell structures. The main contribution of this
research is to achieve efficient seven-parameter shell ele-
ments, which can be employed in the geometrically nonlinear
analysis of thin, moderately thick and thick shell structures. The
present formulation employs seven degrees of freedom at
each node of elements. Owing to this fact, thickness variation
is considered as degree of freedom. This formulation makes it
possible to investigate the effect of thickness-stretching and
calculate its value for all types of shells, especially thick ones.
To avoid shear and membrane locking, the Mixed
Interpolation of Tensorial Components (MITC) is adopted in
formulation. In addition, the fully 3D constitutive relation is
used due to consideration of the thickness variation.
Furthermore, several nonlinear benchmark problems are stu-
died to illustrate the accuracy and ability of authors’ scheme in
comparison with that of other references. Consequently, the
effects of thickness extension on the results will be investi-
gated in most of them by presenting the related equilibrium
paths of shells with different values of thickness.
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1. Introduction

In the past decades, finite-element method has been widely developed to
analyse the arbitrary thin and thick shell structures. In order to achieve a
more realistic behaviour of such structures, especially in the nonlinear analy-
sis, it is essential to utilise a proper mathematical model, including 3D effects.
Triangular shell element is still an interesting subject to develop, because such
element has powerful ability to analyse the structures with general geometrical
shape, especially curved bodies. Furthermore, considering new effects, such
as, complexity of the thickness-stretching is interesting. Up to this date, the
most important developments of shell structure analyses are based on the
finite-element method. Hence, developing a reliable and efficient new element
is the main aim of this study.
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So far, many curved quadrilateral and triangular degenerated shell
elements have been proposed. In addition, various formulations have
been developed in conjunction with them for the geometrically nonlinear
structural analysis. For the first time, the degenerated shell element theory
was obtained by Ahmad, Irons, and Zienkiewicz (1970)for analysing the
curved shell elements. Moreover, the research of Liu, Law, Lam, and
Belytschko (1986)among the many other studies expressed the same pro-
cedure for the shell analysis. Furthermore, the books of Bathe (1982;
Chapelle & Bathe, 2011) and Crisfield (1986) have explained the general
developments of the degenerated shell element procedure.

In 2007, a research was performed about employing an efficient co-rotational
formulation to develop a curved six-node triangular shell element by Li andVu-
Quoc (2007). The rigid-body translations and rotations were obtained in the
global coordinate system to calculate the strain energy. They also employed the
interpolation of strain to alleviate the shear and membrane locking. In another
research, a particular linearisationmethodwas proposed to develop the updated
Lagrangian formulation for the geometrically nonlinear analysis of shell struc-
tures by Kordkheili, Naghdabadi, and Jabbarzadeh (2008). They utilised Green-
Lagrange strain and the second Piola–Kirchhoff stress at two second-order
functions in terms of a through-the-thickness parameter. Furthermore, Dung
and Wells (2008)proposed a finite-element formulation for the geometrically
nonlinear analysis of thin shells. The rotation degrees of freedom were not
defined in their formulation. Development of a four-node flat quadrilateral shell
element for geometrically nonlinear analysis was performed by Boutagouga,
Gouasmia, and Djeghaba (2010). They used in-plane rotational degree of free-
dom to improve the in-plane behaviour of the element. In their formulation, six
degrees of freedom were employed in each node of the element. Nguyen-Van,
Nguyen-Hoai, Chau-Dinh, and Tran-Cong (2015)studied the nonlinear beha-
viours of plates and shells using an efficient four-node flat element. The von
Kármán large deflection theory and the Total Lagrangian formulation were
employed in their research. Jung and Han (2015) proposed another scheme for
a nine-node shell element for geometrically nonlinear analysis. Their solution
was based on the Total Lagrangian formulation. In addition, a refined first-
order shear deformation theory, for the thin and thick shells, was developed in
their studies.

One of the powerful procedures in deriving the free-locking elements is the
Mixed Interpolation of Tensorial Components (MITC) method. This scheme
found its roots in the research of Dvorkin and Bathe (1984), where a four-
node general shell element, called MITC4, was proposed. In another research,
9-node and 16-node general shell elements were studied by Bucalem and
Bathe (1993). They used MITC formulation to develop their shell elements. A
review of using MITC method to investigate three general shell elements,
including MITC4, MITC8 and MITC4-TLH, was performed by Dvorkin
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(1995). Based on this technique, a simple procedure was employed by Lee and
Bathe. They presented an isotropic triangular shell element by using the
MITC approach. The element was a six-node element with five degrees of
freedom per node (Lee & Bathe, 2004). Recently, a new triangular shell
element enriched by the bubble functions, which was formerly presented in
Lee, Lee, and Bathe (2014), was employed by Jeon, Lee, Lee, and Bathe (2015)
to perform geometrically nonlinear analysis. They did not incorporate the
effect of thickness variation in their formulation. One of the newest researches
about MITC shell element was performed by Rezaiee-Pajand, Arabi, and
Masoodi (2018). They formulated an efficient locking-free triangular shell
element to employ in the nonlinear analysis. It should be mentioned that
thickness-stretching effects were not included in their study. Thermo-
mechanical analysis of shell structures was implemented by Masoodi and
Arabi (2018). They used a six-node triangular shell element which was for-
mulated based on the MITC method for the geometrically nonlinear analysis
of thin and moderately thick shell structures. They also did not consider
thickness variation in their research.

In many researches, the effects of normal strain along the thickness of shell
elements are ignored. When the thick shell structures are analysed, it is
required to take the effects of thickness variations into account. One of the
methods to consider the variation of thickness is utilising solid elements.
Experiences have demonstrated that using general shell elements, based on
the degenerated shell theory, are more applicable and suitable and needs less
computational efforts. A geometrically nonlinear formulation was proposed
for the 3D solid-shell by Surana (1982). The proposed element was an
essential work connecting between the solid and shell elements. In another
research, a complete 3D constitutive law without modification was directly
proposed by Buchter, Ramm, and Roehl (1994), including a linear varying
shell thickness. They utilised a seven-parameter theory. Moreover, El-Abbasi
and Meguid (2000) developed a new seven-parameter shell element for
analysis of shell structures accounting for through-thickness deformation. In
addition, a fully nonlinear analysis of shell structures using multi-parameter
shell element was performed by Pimenta, Campello, and Wriggers (2004).
They proposed a triangular shell element with thickness variation as a nodal
degree of freedom. Coda and Paccola (2007)employed a new finite-element
shell formulation based on the non-conventional nodal parameters. These
investigators considered nodal parameters as nodal positions and generalised
vector components comprising through-thickness changes and director
cosines. To perform the geometrically nonlinear analysis, Arciniega and
Reddy (2007) developed a tensor-based finite-element formulation of seven-
parameter higher-order quadrilateral shell element. Kim and Bathe (2008)
proposed a popular shell element MITC4 for incompressible analyses. The
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element was enriched by a fully 3D stress–strain description, appropriate for
through-thickness displacements and pressure degrees of freedom.

Based on the stated literature review, some researches were implemented
about the formulation of seven-parameter shell element. However, developing
an efficient triangular shell element which can analyse thin to thick shell
structures, using fewer numbers of element and without locking phenomena,
has not been suggested yet. Thus, studying the geometrically nonlinear ana-
lysis of thin and thick shells is themain objective this research. In addition, the
authors propose two efficient, free-locking and seven-parameter triangular
shell elements having three and six nodes to be able to analyse complicated
shell structures. It is worth mentioning that seven degrees of freedom, includ-
ing transitional, rotational and thickness variation are assigned to each node
of elements. Accordingly, the thickness variation is considered as the nodal
degrees of freedom. To obtain the stiffness matrix, it is necessary to use fully
3D stress–strain constitutive matrix in formulation. One of the important
contributions of this study is using the MITC approach which makes it
possible that the proposed elements behave without shear, membrane and
thickness locking. The authors only compared their proposed elements in
regard to displacement results. In order to show the ability of proposed
formulation for analysing large displacement and rotation problems, some
popular nonlinear benchmarks are studied as well. Consequently, the
obtained responses are reported for two cases. Firstly, nonlinear analysis of
thin shell structures is carried out to demonstrate that the elements are
locking-free. Afterwards, the responses are provided for thick shells to indi-
cate the role of thickness-stretching on the equilibrium paths.

2. Geometric and kinematic description

In this section, the geometric and kinematic relations of thick shells are
presented. The elements used in this study are three- and six-node trian-
gular shell elements as depicted in Figure 1(a,b), respectively.

Each element is considered to have 7 degrees of freedom per shell node:
Three translations, two rotations and two degrees of freedom for thickness
change. The shell geometry at time 0 is interpolated as follows:

0~x r; s; tð Þ ¼
Xm
i¼1

hi r; sð Þ0~xi þ t
2

Xm
i¼1

0aihi r; sð Þ0~Vi
n (1)

where hi r; sð Þis the shape function. Moreover, ai and ~Vi
n are the thickness

and the director vector at node i, respectively. The natural coordinates are
depicted by r, s and t. Moreover, m defines the number of element nodes.
After deformation, the shell geometry expresses in the following form:
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t~x r; s; tð Þ ¼
Xm
i¼1

hi r; sð Þt~xi þ t
2

Xm
i¼1

taihi r; sð Þt~Vi
n þ t2

Xm
i¼1

0aihi r; sð ÞtQi
n Vn

t!i

(2)

where Vn

t!i
and tai are the director vector, and thickness of node i corre-

sponding to the configuration at time t, respectively. Additional degree of
freedom corresponding to quadratic displacement functions is presented
by tQi

n. Based on Equation (2), the following incremental displacement
vector is obtained:

Figure 1. Geometry of triangular shell element: (a) three-node element and (b) six-node
element.

Figure 2. The position of tying points for three- and six-node elements.
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~u r; s; tð Þ¼tþΔt~x r; s; tð Þ�t~x r; s; tð Þ

~u r; s; tð Þ ¼
Xm
i¼1

hi r; sð Þui!þ t
2

Xm
i¼1

hi
tþΔtai Vn

tþΔt!i�tai Vn

t!i
� �

þ t2
Xm
i¼1

hi r; sð Þ0ai tþΔtQi
n Vn

tþΔt!i�tQi
n Vn

t!i
� � (3)

By using the next expressions, Equation (3) can be extended in terms of
the degrees of freedom:

ui
!¼ ui e1

!þ vi e2
!þ wi e3

!
tþΔtai � tai ¼ 0a:Δi

a
tþΔtQi

n � tQi
n ¼ qin

(4)

where incremental translations are given in global coordinate. It should be
noted that the incremental thickness change, which is normalised with
respect to the initial thickness, is defined by Δi

a. To obtain the director
vector at time t þ Δt, from that at the configuration at time t, the rotation
matrix tþΔt

t Φi should be utilised:

Vi
j

tþΔt!
¼ t þ ΔttΦ

i Vi
j

t!
j ¼ 1; 2; nð Þ (5)

The series expansion of the finite rotation tensor is as follows:

tþΔt
tΦ

i ¼ I3 þ tþΔt
t Θi þ 1

2!
tþΔt
t Θi
� �2 þ 1

3!
tþΔt
t Θi
� �3 þ : : : : : : : : (6)

where I3 is the 3� 3 identity matrix, and tþΔt
t Θi is the skew-symmetric

matrix, including the rotational degrees of freedom. After some simplifica-
tion, the following relation is in hand:

tþΔt V
!i

n � t!
Vi
n
ffi βi

t!
Vi
1
� αi

t!
Vi
2
� 1
2

αi
2 þ βi

2� �
t!
Vi
n

(7)

where αi and βi are the incremental rotational degrees of freedom about

V1

t!i
and V2

t!i
, respectively. In addition, V1

t!i
and V2

t!i
are unit vectors ortho-

gonal to Vn

t!i
and have the next relations:

t~Vi
1 ¼

~e2 � t~Vi
n

~e2 � t~Vi
n

�� ��
t~Vi

2 ¼ t~Vi
n � t~Vi

1

(8)

Substituting Equations (4) and (7) into Equation (3), the incremental dis-
placement vector is obtained. It is worth mentioning that the incremental
displacement field can be divided into linear and quadratic parts as follows:
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~u r; s; tð Þ ¼ ul
! r; s; tð Þ þ uq

! r; s; tð Þ (9)

where

~ul r; s; tð Þ ¼
Xm
i¼1

hi r; sð Þui!þ t
2

Xm
i¼1

hi
0ai Vn

t!i
iΔi

a � tai V2

t!i
iαi þ tai V1

t!i
iβi

� �

þ t2
Xm
i¼1

hi r; sð Þ0ai Vn

t!i
qin � tQi

n V2

t!i
αi þ tQi

n V1

t!i
βi

� �

~uq r; s; tð Þ ¼ t
2

Xm
i¼1

hi �0ai V2

t!i
Δi
aαi þ 0ai V1

t!i
Δi
aβi

�
� 1
2
tai Vn

t!i
α2i þ β2i
� ��

þ t2
Xm
i¼1

hi r; sð Þ0ai �V2

t!i
qinαi þ V1

t!i
qinβi

�
� 1
2
tQn Vn

t!i
α2i þ β2i
� ��

(10)

3. Strain interpolation

The covariant Green–Lagrange strain tensor is calculated by using the next
formula:

t
0εij ¼

1
2

t~gi � t~gj � 0~gi � 0~gj
	 


(11)

Here, the covariant base vector of the element in the convected coordinate
system ri (r1 ¼ r; r2 ¼ s; r3 ¼ t) are as follows:

0~gi ¼ @0~x
@ri

t~gi ¼ @t~x
@ri

¼ @0~x
@ri

þ @t~u
@ri

¼ 0~gi þ t~u;i
(12)

The incremental covariant strains are obtained as follows:

0εij ¼ tþΔt
0 εij � t

0εij

0εij ¼ 1
2 ~u;i � t~gj þ t~gi �~u;j þ~u;i �~u;j
	 
 (13)

Equation (13) can be split into linear and nonlinear parts as follows:

0eij ¼ 1
2

@~ul
@ri

� t~gj þ t~gi � @~ul@rj

	 

¼ Bij~U

0ηij ¼ 1
2

@~ul
@ri

� @~ul@rj

	 

þ 1

2
@~uq
@ri

� t~gj þ t~gi � @~uq@rj

	 

¼ 1

2
~U

T
Nij~U

(14)

where Bij and Nij express the linear and nonlinear strain-displacement
matrices, respectively. Moreover, ~U is the nodal incremental displacement
vector. In order to derive locking free elements, the MITC formulation is
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employed. In this scheme, the assumed strains are obtained by interpolating
the displacement based strains at tying points as follows (Lee & Bathe, 2004):

ε̂ij r; s; tð Þ ¼
Xm
k¼1

hkij r; sð Þεijj rkij;s
k
ij;t

� � (15)

For the six-node triangular element, both the in-plane and transverse shear
strains are interpolated, while only transverse shear strains’ interpolation is
required for the three-node element. The functions used for interpolating
in-plane strains of the six-node element are defined as follows:

ε̂rr ¼ a1 þ b1r þ c1s
ε̂ss ¼ a2 þ b2r þ c2s
ε̂qq ¼ a3 þ b3r þ c3 1� r � sð Þ

(16)

where

a1 ¼ m 1ð Þ
rr � l 1ð Þ

rr ; b1 ¼ 2l 1ð Þ
rr ; c1 ¼

ffiffiffi
3

p
ε 1ð Þ
crr � a1 � b1r1

	 


a2 ¼ m 2ð Þ
ss � l 2ð Þ

ss ; b2 ¼
ffiffiffi
3

p
ε 2ð Þ
css � a2 � c2s1

	 

; c2 ¼ 2l 2ð Þ

ss

a3 ¼ m 3ð Þ
qq � l 3ð Þ

qq ; b3 ¼ �2l 3ð Þ
qq ; c3 ¼

ffiffiffi
3

p
ε 3ð Þ
cqq � a3 � b3r1

	 


m ið Þ
jj ¼ 1

2
ε ið Þ
1jj þ ε ið Þ

2jj

	 

; l ið Þjj ¼

ffiffiffi
3

p

2
ε ið Þ
2jj � ε ið Þ

1jj

	 

: j ¼ r; s; q i ¼ 1; 2; 3

(17)

On the other hand, the interpolation functions of the transverse shear
strains have the following form:

ε̂rt ¼ a1 þ b1r þ c1sþ d1rsþ f1s2

ε̂st ¼ a2 þ b2r þ c2sþ d2rsþ f2r2
(18)

The required coefficients are defined as follows:

a1 ¼ m 1ð Þ
rt � l 1ð Þ

rt ; b1 ¼ 2l 1ð Þ
rt ; c1 ¼ 6εcrt � 3εcst þ 2m 3ð Þ

st � 2m 3ð Þ
rt � 4a1 � b1 þ a2

a2 ¼ m 2ð Þ
st � l 2ð Þ

st ; b2 ¼ �3εcrt þ 6εcst � 2m 3ð Þ
st þ 2m 3ð Þ

rt þ a1 � 4a2 � c2; c2 ¼ 2l 2ð Þ
st

f 1 ¼ �6εcrt þ 3εcst � 3m 3ð Þ
st � l 3ð Þ

st þ 3m 3ð Þ
rt þ l 3ð Þ

rt þ 3a1 þ b1 þ c2

f 2 ¼ 3εcrt � 6εcst þ 3m 3ð Þ
st � l 3ð Þ

st � 3m 3ð Þ
rt þ l 3ð Þ

rt þ b1 þ 3a2 þ c2

d1 ¼ �f2 ; d2 ¼ �f1

m ið Þ
jt ¼ 1

2
ε ið Þ
1jt þ ε ið Þ

2jt

	 

; l ið Þjt ¼

ffiffiffi
3

p

2
ε ið Þ
2jt � ε ið Þ

1jt

	 

: j ¼ r; s i ¼ 1; 2; 3

(19)

For three-node element, the following relations are held:
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ε̂rt ¼ εð1Þrt þ cs ; ε̂st ¼ εð2Þst � cr

c ¼ εð2Þst � εð1Þrt � εð3Þst þ εð3Þrt

(20)

Based on Equation (16), the interpolation function of the in-plane shear
strain is obtained as follows:

ε̂rs ¼ 1
2

ε̂rr þ ε̂ssð Þ � ε̂qq (21)

The tying point positions of three- and six-node elements are defined in
Figure 2 and Table 1.

In order to alleviate the thickness locking phenomena, the following
interpolation is used for transverse normal strain (Kim & Bathe, 2008).

ε̂33 r; s; tð Þ ¼
Xm
k¼1

hk rk; skð Þε33j rk;sk;t¼0ð Þ þ ε33j r;s;tð Þ � ε33j r;s;t¼0ð Þ
	 


(22)

4. Linearised governing equation

In conjunction with Total Lagrangian formulation, the principle of virtual
work is utilised to obtain the variational governing equation. After linear-
isation, the following incremental equation is available:ð

0V
0~C

ijkl
0~ekl δ0 ~eij

0dV þ
ð

0V

t
0
~S
ij
δ0 ~ηij

0dV ¼ tþΔt< �
ð

0V

t
0
~S
ij
δ0 ~eij

0dV (23)

where t
0
~Sij is the second Piola–Kirchhoff stress tensor. Moreover, 0~eij and

0~ηij are the linear and nonlinear terms of Green–Lagrange strain tensor,

respectively. The fully 3D stress–strain relation is depicted by 0~Cijkl in

Table 1. The tying points positions.
Element ε r s

Three-node ε
ð1Þ
rt

1=2 0

ε
ð2Þ
st

0 1=2
ε
ð1Þ
rt , εð2Þst

1=2
1=2

Six-node εcrt , εcst 1=3
1=3

ε
ð1Þ
1rr , ε

ð1Þ
1rt

1=2� 1�
2

ffiffiffi
3

p 0

ε
ð2Þ
1ss , ε

ð2Þ
1st

0 1=2� 1�
2

ffiffiffi
3

p
ε
ð3Þ
cqq

1=2� 1�
2

ffiffiffi
3

p 1=2� 1�
2

ffiffiffi
3

p
ε
ð1Þ
2rr , ε

ð1Þ
2rt

1=2þ 1�
2

ffiffiffi
3

p 0

ε
ð2Þ
2ss , ε

ð2Þ
2st

0 1=2þ 1�
2

ffiffiffi
3

p
ε
ð3Þ
2qq , ε

ð3Þ
2qt

1=2� 1�
2

ffiffiffi
3

p 1=2þ 1�
2

ffiffiffi
3

p

ε
ð3Þ
1qq , ε

ð3Þ
1qt

1=2þ 1�
2

ffiffiffi
3

p 1=2� 1�
2

ffiffiffi
3

p

ε
ð1Þ
crr

1=2� 1�
2

ffiffiffi
3

p 1� ffiffiffi
3

p
ε
ð2Þ
css

1� ffiffiffi
3

p 1=2� 1�
2

ffiffiffi
3

p
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global Cartesian coordinates. The components of the constitutive matrix in
the local curvilinear system are defined and transformed as follows:

C
_mnop

¼ E
Δ

1� ν ν ν 0 0 0

1� ν ν 0 0 0

1� ν 0 0 0
1
2 � ν 0 0

sym 1
2 � ν 0

1
2 � ν

2
666666664

3
777777775

Δ ¼ ð1� 2νÞð1þ νÞ

~C
ijkl ¼ ~g i:~em

� �
~g j:~en
� �

~g k:~eo
� �

~g l:~ep
� �

C
_mnop

(24)

Substituting the incremental relations in terms of degrees of freedom into
Equation (23), the finite-element form of the governing equation can be
obtained as follows:

t
0KL þ t

0KNL
� �

~q ¼ tþΔt< � t
0F (25)

where ~q is the vector of nodal displacement. t
0Fand

tþΔt< are the internal
and external forces, respectively.

5. Numerical study

To show the capability of the proposed elements, four problems are studied
and the results are compared with those available in the literatures. It should
be mentioned that 7 Gauss points have been employed for the in-plane
direction, and the number of Gauss’s points used across the thickness direc-
tion was equal to 4. The nonlinear solution method, which is employed in this
study, is Generalised Displacement Control Method (GDCM). The conver-
gence is assumed to be reached whenever the ratio of the residual force norm
to the external force norm is less than the tolerance criteria. Note that all units
used for force and lengths are reported in N and mm, respectively.

5.1. A cantilever plate

As a first example, a convergence study is considered for a cantilever plate,
which is depicted in Figure 3. Solving this problem shows the high perfor-
mance and accuracy of the proposed elements. It is aimed to illustrate the
capability of the authors’ scheme in the linear analysis of thin and thick plate
structures, as well. In addition, the effects of considering thickness-stretching
as a degree of freedom are investigated, separately. First, convergence study is
implemented to reach the optimum number of triangular shell elements.
Then, the structure is solved for different thickness values to investigate the
effect of thickness on the deflection responses.
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The beam length is equal to 10. The mechanical and geometrical proper-
ties of plate are as follows:E ¼ 1:2� 106 MPa ; ν ¼ 0:0 and B ¼ 1:0mm.
As it is shown in Figure 3, the maximum distributed load, which is applied
at the free end of plate is assumed to be equal to 4. Based on the
Timoshenko beam theory, the exact solution of tip displacement for a
plate is available as follows:

G ¼ E
2
¼ 6� 105MPa

w ¼ PL3

3EI
þ PL
κAG

¼ 4� 103

3� 1:2� 106 � 1�0:13
12

þ 4� 10
5
6 � 0:1� 1� 6� 105

¼ 13:33413mm

(26)

Since this theory satisfies the first-order of shear deformation, the
responses of five-parameter shell element, which was formulated in
Rezaiee-Pajand et al. (2018), are accurate while the proposed the
seven-parameter shell element obtains the results with a little difference.
It should be noted that 3D stress–strain matrix is employed for deriving
the stiffness matrix of seven-parameter while a reduced plane stress
constitutive matrix is utilised for stiffness matrix of five-parameter
element. This fact is due to consider thickness-stretching effects on
the formulation of element. It is observed that by increasing the thick-
ness of plate, the effect of thickness-stretching and the differences of
results are more considerable.

Two cases are considered. First, five-parameter element with no
thickness-stretching effect is employed for mesh discretisation. Second,
seven-parameter shell element, proposed in this paper, is used for
modelling. The percentage of differences between two cases is compared
with each other in Figure 4 for the various thicknesses. Figure 5 illus-
trates the convergence curve. This study is performed for three-node
triangular shell element. The obtained results show that using 32 trian-
gular shell elements is adequate for finding the near exact solution with

Figure 3. A cantilever plate under the end distributed shear force.
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the error of less than 0.1%. This study is performed for a thin shell in
which the thickness is equal to 0.1.

5.2. Slit annular plate

In this example, a slit annular plate depicted in Figure 6 is analysed. This
problem is solved to present that the proposed element is free of locking in
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Figure 4. The percentage of differences between five- and seven-parameter shell element
versus thickness variation.
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Figure 5. The convergence curve provided for a cantilever plate under the end distributed
shear force.
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thin shell structures. In addition, large rotation can be predicted accurately
based on the proposed formulation. The inner and outer radius of the plate
is equal to 6.0 mm and 10.0 mm, respectively. Moreover, one end of the
structure is clamped and the other one is free. In addition, a uniform
distributed load P, which is equal to 3.2 N, is applied at the free end of the
plate. The module of elasticity is equal to E ¼ 21� 106 MPa. The thickness
of plate is 0.03 mm. This structure undergoes large displacements and large
rotations. To model this plate, a 5 × 60 and 6 × 120 mesh discretisation,
including 300 and 720 elements, are employed for six-node and three-node
element, respectively. These are shown in Figure 6.

The obtained equilibrium path is compared with research’s results of
Sze, Liu, and Lo (2004). Figure 7 shows the deformed shape of the plate at
the final step of loading.

The vertical displacements (W) of the points A and B are depicted in
Figure 8. It should be added that the results are obtained for both proposed
seven-parameter elements. Due to low thickness of the slit annular plate, the
thickness-stretching should not be effective on the responses. This fact is also
concluded from the obtained results. Furthermore, the difference between
reference solution and results of three-node element is due to the lower cap-
ability of the three-node shell element in large rotation analysis. It should be
emphasised that this deficiency will be made up by increasing the number of
element.

5.3. Pull-out cylindrical shell

In this part, the nonlinear behaviour of cylindrical shell under two oppo-
site point loads is investigated. The boundary conditions at the two ends of
the structure are assumed to be free. The material and geometrical char-
acteristics employed in this example are as follows:

P
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R
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y

z

x

Clamped

Figure 6. The geometry of slit annular plate.
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E ¼ 10:5� 106 MPa; ν ¼ 0:3125

L ¼ 10:35mm;R ¼ 4:953mm; a ¼ 0:094mm
(27)

Taking advantage of the structure symmetry, only an octant of cylind-
rical shell is considered by utilising 10 × 10 × 2 mesh discretisation for
both proposed elements. As it is shown in Figure 9, the displacements are

Figure 7. The deformed shape of slit annular plate at the last step of analysis.
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Figure 8. The vertical displacement (mm) of slit annular plate at the points A and B.
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obtained for three points, including wA, uB and uC. It is obvious that w and
u are the displacements along z- and x-directions, respectively.

The results of both three- and six-node elements and those reported in
Arciniega & Reddy (2007; Sze et al., 2004) and are demonstrated in Figure 10.

The comparison of obtained results with the reference solutions shows
good agreement. However, there are some differences between the
responses of three-node element discretisation and the reference solution,
in particular, when the load factor is >0.5. This is because the lower-order
polynomial has been employed in the formulation of the three-node
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Figure 9. The geometry and mesh description of cylindrical shell.
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Figure 10. Displacement responses (mm) of cylindrical shell at points of A, B, and C.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 177



element. Figure 11 demonstrates the deformed shape of cylindrical shell at
the end of loading.

5.4. Shallow panel under point load

A shallow panel is analysed here by considering the thickness-stretching
effects. Figure 12 shows the mesh pattern and geometry of the structure
under a concentrated load at the centre of the shell. The number of three-
and six-node shell elements that are used for this modelling is equal to 200

Figure 11. Deformed shape of pull-out cylindrical shell at the end of loading.
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and 50, respectively. It should be added that the numbers of total degrees
of freedom are the same. The geometry and Mechanical properties of the
shallow shell are as follows:

a ¼ 12:7mm R ¼ 2540mm L ¼ 508mm α ¼ 0:1rad

υ ¼ 0:3 E ¼ 3102:75MPa
(28)

Due to the structural symmetry, a quarter of the shallow shell is con-
sidered for analysis. It should be noted that various thicknesses including
6.35 mm, 12.7 mm, and 25.4 mm are employed for modelling this shallow
structure. The effects of these thicknesses, along the equilibrium path of
the vertical displacement, and thickness variation, are studied. It is
expected that the variation of vertical displacement for the lower thickness
shell is the same as the reference solution (Arciniega & Reddy, 2007),
because the effects of thickness-stretching on the deflection of the thin
shell can be ignored. This fact is completely proven in this example.
Moreover, the results of vertical displacement versus load factor are
obtained in Figures 13–15. It should be added that the responses are
provided for both proposed three- and six-node elements. In Figures 13
and 14, authors’ responses are compared with the reference solution for
the thicknesses of 6.35 mm and 12.7 mm (Arciniega & Reddy, 2007).

Figure 16 shows the rate of thickness variation versus load factors for
various thicknesses of the shell. To verify the solution, two mesh patterns,
including 50 and 200, for the six-node shell element are employed for the
case of 25.4-mm thickness. It is observed that the responses do not change
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Figure 12. The geometry of shallow panel under the central concentrated load.
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by refining the mesh discretisation. Therefore, it can be concluded that the
obtained results are reliable.

According to Figure 16, it can be concluded that the rate of thickness
variation for the thicker shell is more considerable than that of the thin
one. It is obvious that the effect of εzz can be negligible for the thin
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Figure 13. The equilibrium path of shallow panel with the thickness of 6.35 mm.
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shells. The deformed shape of shallow shells at the last step of loading is
illustrated in Figure 17.

5.5. Clamped plate under central uniform distributed load

The objective of this example is to analyse a clamped plate. The two ends of
plate are considered to be fixed. The boundary conditions and geometry of
structure are shown in Figure 18. The plate undergoes a uniform distributed
load (q) with the value of 64,000 N/mm, which is applied per unit of
undeformed surface of plate. Due to considering the thickness effects on the
results, three different thicknesses, including 0.3 mm, 0.625 mm, and 1.2 mm,
are employed here. The geometry and mechanical properties are as follows:

L ¼ 12:0mm B ¼ 1:0mm a ¼ 0:3mm; 0:625mm and 1:20mm

υ ¼ 0:3 E ¼ 107 MPa
(29)

The number of three- and six-node shell elements that are used for
discretisation is equal to 32. Figure 19 illustrates the structural equilibrium
path of the central deflection for different thicknesses. The results are
provided for both proposed elements.

It can be observed that there is a good agreement between the results
obtained by two elements. Figure 20 reports the rate of thickness variation
versus load factors. It is noticeable that this parameter is increased in the
thicker plates. As it is demonstrated, the deformed shape of plate at the last
step of load is shown in Figure 21.
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Figure 15. The equilibrium path of shallow panel with the thickness of 25.4 mm.
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Figure 17. Deformed shape of shallow panel at the end of loading.
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Figure 18. The geometry and mesh discretisation of clamped plate under central uniform
load.
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6. Conclusions

The main objective of this research was proposing two seven-parameter
triangular shell elements for the geometrically nonlinear analysis of the
thin and thick shell structures. Two shell elements, with three and six
nodes were formulated. In order to model the thickness variation, two
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Figure 19. The equilibrium path of clamped plate under central concentrated load at point C.
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additional degrees of freedom were used at each node. It is worth men-
tioning, the fully 3D constitutive relation was utilised in authors’ formula-
tion. To resolve numerical problems, such as, membrane, shear and
thickness locking, the MITC method was applied in this study. Based on
the obtained results, it can be concluded that the effects of the thickness-
stretching are more considerable as the thickness of the shell increases. The
validity and accuracy of proposed elements were determined by comparing
the results with the findings of the other researchers.
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