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Abstract

Discussed is a comparison of computational and experimental evaluations
of passive drag during human swimming. Experimentally, ten trials were
conducted per athlete at five chosen velocities, using a commercial resistance
trainer to record the tension force in a rope during a streamline position
tow test. The resistive force recorded was assumed equal to the passive drag
force and an average value of passive drag was found across each tow test.
Mean passive drag values measured during the tow test were agreed well
with existing experimental data across the range of velocities used, varying
between 20 N at 1 ms−1 up to 100 N at 2 ms−1. Computationally, using
the immersed boundary method in OpenFOAM, basic geometry validation
cases and streamline passive drag cases were simulated. Validation cases were
completed on 2D cylinders and 3D spheres with the drag coefficient found
at low and high Reynolds numbers, using the simpleFoam solver within
OpenFOAM. Results tended to be slightly over predictive when compared
with existing simulation and experimental data in literature. The accuracy of
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results could potentially be improved using a finer mesh and better quality
geometries. The passive drag was also computed using OpenFOAM over a
range of velocities, similar to the experiments, varying from 30 N at 1 ms−1

to 120 N at 2 ms−1. Drag forces computed using simpleFoam were over pre-
dictive when compared to existing literature and the completed experiments,
likely due to the inaccuracy of the geometry used in the simulations. When
results were compared to existing literature for swimmers not in a perfect
streamline position, more similar to the geometry used in this study, results
were in better agreement. The accuracy of the results could be improved using
a better quality geometry in the correct position.

Keywords: Immersed boundary method (IBM), passive drag, OpenFOAM,
validation.

Introduction

Passive drag is the resistance generated by a swimmer’s body whilst the
swimmer moves through the water in a fixed position [1, 2] and is typically
composed of frictional, pressure, and wave drag. Passive drag acts on the
swimmer during the glide phases of the stroke, such as when streamlining off
the wall or following a dive-entry [3]. The streamline position is typically the
phase of a race with the highest velocity, due to the explosive nature of a div-
ing start or wall push-off. Accounting for passive drag could allow for better
understanding of how to maximise velocity during these streamline phases.
Passive drag is typically investigated via experimental and computational
methodologies, as outlined below.

Passive drag experiments are common in literature, with the earliest
examples involving swimmers being towed aft of a rowboat, with the resistive
force measured using a dynamometer and assumed equal to the passive
drag force [4]. Towing is one of the more common methods for finding a
passive drag value, with typical tow rigs making use of either electric motors
or a weight and pulley system [5, 6]. The swimmer is attached to a rope
under tension before being towed towards the motor or pulley whilst in a
streamline position. Typically, the athlete is towed at a constant velocity,
with a dynamometer measuring a resistive force value. The experiment is
typically repeated at a number of different velocities in order to investigate the
drag-velocity relationship for an individual athlete [7]. The towing method is
accepted as one of the more accurate estimation methods of passive drag and
as such there is little variation to the method with time [7].
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The flume method is another experimental method of determining passive
drag, acting like an aquatic treadmill, with precisely controlled water inlet
velocity [8, 9]. Similar to the towing method, the swimmer is attached
to a length of rope in a streamlined position, with the rope attached to a
dynamometer. Fans controlling the water velocity are then turned on and
create moving water around the stationary swimmer. The dynamometer then
records the force at which the swimmer is pushed away by the moving
water, which is assumed to be equivalent to the passive drag of a swimmer.
Passive drag results found via the flume method tend to agree well with
the towing method, with five separate studies finding passive drag values of
approximately 110 N, at a flow velocity of 2 ms−1 using both flume and
towing methods [10]. Although the flume method does provide an accurate
measurement of passive drag, there are differences between free swimming
and flume swimming, such as wall impact on flows and velocity variations,
which will lead to inaccuracies within the flume method [7, 11, 12].

A further method of predicting passive drag is via the gliding decay
method, first developed by Bilo and Nachtingall [13] by looking at birds
and aquatic animals, with the first human passive drag trial completed by
Kjendlie and Stallman [14]. A typical testing protocol involves a swimmer
submerging and pushing off the wall in a streamlined position, causing an
acceleration, followed by a deceleration due to the resistive forces of the
water acting on the streamlined body. Resistive forces can be estimated by
finding the instantaneous deceleration via cable accelerometers, underwater
video analysis, and body mass of the swimmer [14, 15]. An extra water mass
is moved together, with the swimmer and their body mass, which must be
considered as part of the inertia. This is difficult to calculate due to the
dependence on several factors such as area of impact and hydrodynamic
coefficient. It is common in literature for this added mass to be ignored [15].
This method of determining passive drag is cheap, with results comparable
to flume and towing methods, although drag values tend to be consistently
higher in past studies [7]. Negatives of the method include difficulties in
maintaining depth, with athletes often rising to the surface, and the added
complexity of added mass [7, 16].

Passive drag can also be investigated computationally via the use of
computational fluid dynamics (CFD). Passive drag simulations have been
run in both 2D and 3D, for steady state and unsteady flow conditions [17].
Typical methods will make use of a body-fitted grid with the region around
the geometry refined to the required level, trying to capture the flow as accu-
rately as possible. Many simulations to date have successfully implemented
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a turbulence model, with the k- ε model very common. Accuracy of these
simulations can be greatly impacted by the accuracy of the geometry on
which simulation work is being carried out [7]. Accuracy is also limited by
the refinement level of the mesh used to capture the fluid flow, with refinement
limited by the available computational hardware. One method to avoid body
fitted meshes around complex shapes is to employ the immersed boundary
method (IBM), as explained in more detail in the theory section below. There
is an example of an IBM used in order to model the flow around a swimmer
during underwater butterfly kick, although no drag force calculation was
completed. The IBM method used was a ghost cell method using a finite
difference approximation and LES turbulence modelling in order to predict
flow features around the swimmer [18, 19].

Several CFD simulations have demonstrated accurate estimation of drag
when compared to towing and flume methods, but are very reliant on
detailed reproduction of the geometry and motion of the swimmer, both
of which present considerable challenges for conventional body-fitted CFD
approaches [7].

This study aimed to investigate the accuracy of single-phase CFD sim-
ulations for predicting the passive drag of a swimmer, using the immersed
boundary method. Suitability of the method was assessed by comparing
predicted drag forces with existing simulation literature and with a series of
experimental passive drag tow tests.

Theory and Governing Equations

The incompressible turbulent flows that are being considered in the follow-
ing simulations are governed by the continuity and momentum equations,
included below [20]:

∇ · u = 0 (1)

∂u

∂t
+ ∇ · (uu) = −1

ρ
∇p+∇ · (ν∇u) + S (2)

where u is the velocity vector, p is the pressure, ν is the kinematic vis-
cosity, and S is a general source term for additional forcing terms, which
in this case is not required. The solutions to the governing equations are
approximated using the finite-volume method (FVM). In the FVM, the com-
putational domain is divided into finite volumes and the governing equations
are discretised using appropriate numerical schemes [20].
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Foam-extend [21], a fork of OpenFOAM, was used as a solver for all
computations. Since the focus is on single-phase passive drag validation,
only single-phase steady-state calculations were conducted using the simple-
Foam solver within foam-extend. The simpleFoam solver uses the SIMPLE
algorithm [22] to resolve the pressure-velocity coupling for incompressible
flows.

Turbulence

Due to the high Reynolds number of the flow being considered, approxi-
mately 4 million, turbulence models must be introduced to model near wall
physics. During simulations the Reynolds Averaged Navier-Stokes (RANS)
equations are used, instead of the Navier-Stokes equations. During the
Reynolds decomposition, the velocity is divided into a mean component,
U , and a fluctuating component, U ′. Following the decomposition for the
continuity and momentum equations, time averaging the equations results in
the following RANS equations [20]:

∇ ·U = 0 (3)

∂U

∂t
+∇ · (UU) = −1

ρ

∂P

∂x
+∇ · (ν∇U)−∇ · (u′u′) (4)

∂V

∂t
+∇ · (VU) = −1

ρ

∂P

∂y
+∇ · (ν∇V )−∇ · (v′u′) (5)

∂W

∂t
+∇ · (WU) = −1

ρ

∂P

∂z
+∇ · (ν∇W )−∇ · (w′u′) (6)

where U is the mean velocity vector, u′ is the fluctuating velocity vector,
U, V and W are mean velocity components and u′, v′ and w′ are fluctuating
velocity components. During the time averaging of the convection term, a
new term with fluctuating velocities appears, known as the Reynolds stress
term. Turbulence models are used to close the RANS equations, in these cases
the two-equation k-ε and k-ω models are used [20].

The Boussinesq hypothesis states the Reynolds Stresses are proportional
to the mean deformation rates and can be described for incompressible flows
as follows [20]:

−ρu′ ⊗ u′ = µt[∇U +∇(U)T ]− 2

3
ρkI (7)
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where µt is the eddy viscosity and k is the turbulent kinetic energy per unit
mass:

k =
1

2
((u′)2 + (v′)2 + (w′)2) (8)

In the k-ε and k-ω models’ transport equations, the turbulent kinetic
energy, k, the viscous dissipation rate, ε, and the rate of specific dissipation,
ω, are used to predict the kinetic energy, turbulent viscosity, and Reynolds
stresses [20].

k-ε Turbulence Model

The turbulent kinetic energy, k, and the viscous dissipation rate, ε, are used
to define the velocity, ϑ, and length, l, scales of the large-scale turbulence as
below [20, 23]:

ϑ = k
1
2 (9)

l =
k

3
2

ε
(10)

The eddy viscosity can then be described using k and ε, with the help of
the velocity and length scales, as follows:

µt = Cρϑl = ρCµ
k2

ε
(11)

where Cµ is a dimensionless constant. The standard k-ε model, developed
by Launder and Spalding, used within OpenFoam uses simplified transport
equations as below [20, 24]:

∂ρk

∂t
+∇ · (ρkU) = ∇ ·

[
µt

σk
∇k

]
+ µt

[
∇U +∇(U)T

]
∇U − ρε (12)

dρε

dt
+∇ · (ρεU) = ∇ ·

[
µt

σε
∇ε

]
+ C1ε

ε

k
µ
t
[∇U +∇(U)T ]∇U

− C2ερ
ε2

k
(13)

SST k-ω Turbulence Model

The SST k-ω model, developed by Menter [25], is a two equation eddy-
viscosity model making use of the shear stress transport (SST) formulation.
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The model is based on the following formulation:

∂ρk

∂t
+∇ · (ρkU) = P̃k = β∗ρkω +∇ · [(µ+ σkµt)∇k] (14)

∂ρω

∂t
+∇ · (ρωU) = αρS2 = βρω2 +∇ · [(µ+ σωµt)∇ω]

+ 2(1− F1)ρσω2
1

ω
∇k∇ω (15)

where P̃ is a production limiter and F1 is a blending function, as described
by Dohler [14]. In the freestream of the flow, the blending function F1 is set
equal to 0, meaning the k-ε is used. F1 is set to equal 1 in the boundary layer,
meaning the Wilcox k-ω model is used. From Menter et al, the coefficients
in Equations (14) and (15) are a combination of the k-ε and k-ω models as
follows [20, 25].

β∗ = 0.09, α = 0.44, σk = 0.85, σω = 0.5 and σω2 = 0.856

Wall Models

Wall models are used to model near-wall physics so as to allow a coarser mesh
to be used near the wall region. The refinement level of the mesh is dictated
by the y+ value, defined as the dimensionless quantity for the distance from
the wall to the centre of the first grid cell. The approximate y+ value when
using turbulence models should be 30 < y+ < 300. The immersed boundary
method within Foam-Extend-5.0 has its own set of k- ε wall models, for each
variable. In this case, the cells were refined such that the non-dimensional cell
height is approximately equal to 30, although having a y+ value of exactly 30
can prove difficult [20].

The Immersed Boundary Method (IBM)

The immersed boundary method, developed by Peskin [26], was designed in
order to remove the need for a body fitted grid. The method typically accounts
for solid boundaries in the discretised domain by altering the governing
equations by a source term. However, the IBM in foam-extend is based on
a more conservative approach that uses a cut-cell method rather than adding
a source term to account for the presence of a physical boundary. The cut-
cell method cuts intersected cells at the location of the immersed boundary,
conserving mass and momentum near the boundary. The cells are reshaped
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Figure 1 Diagram of the immersed boundary cut cell method implemented within Foam-
Extend-5.0.

into trapezoids, with living cells (active) added to the fluid cells and dead
cells added to the body cells. For the discretisation, the mass, momentum,
convective and diffusive fluxes, and the pressure gradients must be evaluated
on all cell faces [20].

The cut-cell method in foam-extend-5.0 goes by the name – Immersed
Boundary Surface Method (IBS). Within this method three cell types exist:
solid (dead), intersected, and fluid (live) cells, with all intersected cells
identified as immersed boundary cells, as shown in Figure 1 [20]:

The intersected cells are cut by the immersed boundary, with a linear
cut between intersection points of each intersected cell. The cells are then
divided into live and dead volumes and faces. The new fluid volumes become
a live cell with a new cell centre and volume calculated, as well as new face
area, face centre, and face area vector for the cut faces and new immersed
boundary face. All dead cells are removed from the discretisation matrix,
with the new geometry data of the new live part of the cut cells replacing
old cut cell data. This means the immersed boundary can be added as a body
fitted boundary condition on the fluid cells and the conventional FVM can be
employed [20, 27].

Closed cells must be ensured after the cutting process via the Marooney
Manoeuvre. For normal cells the summation over all faces should be
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zero [20]: ∑
C

Sf = 0 (16)

For open cell interfaces, the Marooney Manoeuvre is implemented, with
old surface face areas, Sf , corrected by a face correction, γf . The corrected
immersed boundary face area, SfIB , can then be added to the summation as
follows [20]:

SfIB = −
∑
C

γfSf (17)

The IBM allows meshing of moving body problems to be simplified as a
new body fitted mesh is not required for each geometry position of the moving
body, reducing computational requirements, although the cases discussed in
this study are not moving body problems [20].

Drag Force

The final passive drag forces acting on the body are a combination of the
normal pressure force and the tangential viscous forces as shown below [28]:

Pd =
∑
i

ρiSf,i(Pi − Pref ) +
∑
i

Sf,i · (µRdev) (18)

Where i is the identified cell, Pd is the passive drag, ρ is the density of the
fluid, Sf,i is the face area vector, p is the pressure, µ is the dynamic viscosity,
and Rdev is the deviatoric stress tensor.

Experimental Methodology

Participants

Ten athletes, evenly split as 5 males and 5 females, who train in the top squads
in Lisburn City Swimming Club (Northern Ireland, UK), participated in the
study. All athletes involved in the testing were required to be at least 16 years
old (anthropometric details in Table 1).

Ethics Approval and Consent to Participate

This study was approved by the local Queen’s University Belfast ethics
committee, namely the Engineering and Physical Sciences Faculty Research
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Table 1 Anthropometric data of the athletes
Height (m) 1.72 ± 0.18
Chest Depth (m) 0.22 ± 0.03
Shoulder Width (m) 0.39 ± 0.06
Mass (Kg) (8 athletes only) 67.81 ± 18.79

Figure 2 Diagram of the passive drag tow experiment.

Ethics Committee, and was performed in accordance with the guidelines and
regulations of the Declaration of Helsinki. All participants were provided
with verbal and written explanations of the purpose, procedure and risks
related to the study and provided written consent. Informed consent was
obtained from all participants of the study.

Equipment

The equipment used to tow the athletes was a 1080 Sprint [29] (1080 Motion,
AB, Lindingo, Sweden) robotic resistance device, able to record resistive
force readings at a sampling frequency of 333 Hz for a constant towing
velocity that is pre-set into the device by the operator. The 1080 Sprint records
the tension force in the rope, distance, and velocity of the athlete across the
towing distance, at each timestep.

Experimental Procedure

Figure 2 displays the equipment set up for the passive drag tows. The 1080
Sprint was mounted on a diving block at approximately 0.72 m above the
surface of the water. A red rope attached at both ends of a 25 m pool
was used to identify a depth of 1 m below the water’s surface, acting as a
depth reference to aid the athletes’ ability to maintain constant water depth.
Anthropomorphic data was collected after the experimental towing had been
completed.
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Figure 3 Diagram of approx. streamline position used by the athletes [30].

The athletes were instructed to enter the water and would begin each trial
in the water facing the 1080 Sprint at a distance of 25 m from the equipment,
with the towing velocity pre-set into the 1080 sprint. The athletes were
attached to the 1080 Sprint via an additional piece of rope attached around
their hands that was then harnessed to the equipment’s tether. The athletes
were instructed that they would be towed in a streamline position, with arms
stretched out in front. The streamline position of the athlete is shown by the
geometry in Figure 3, with arms outstretched, one hand on top of the other
and feet pointed. Ensuring position uniformity across athletes is difficult, but
the standard of experimental participants is sufficient such that variability in
streamline position across the trial will be a minimum. Differences in position
are likely to be anthropomorphic.

As the towing began, the athletes felt a slight tugging on the shoulders,
indicating the tow had commenced. As the tow commenced, the athletes were
instructed to submerge to a depth of 1m as quickly as possible, using the
guide line as a depth guide, whilst maintaining a streamline position. The
athletes were towed a distance of approximately 20 m whilst underwater in
a streamline position. The athletes repeated the tow at each velocity twice.
There were five predetermined velocities as follows: 1.00 ms−1, 1.25 ms−1,
1.50 ms−1, 1.75 ms−1 and 2.00 ms−1. By the end of the full trial, each athlete
had performed ten passive drag tows across the five velocities.

Post-Processing

During the experiments, 20 trials were completed for each of the five veloci-
ties. In order to select the trial results for post processing, the validity of each
trial was checked using graphs of force against distance. Typical graphs tend
to have an oscillatory motion, and one such trial is shown in Figure 4.
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Figure 4 Raw data from one trial in the passive drag towing experiment.

For each completed tow, the Matlab [31] function findpeaks was used to
identify the peak values of each oscillation. A minimum peak value constraint
was added to ensure no artificially low peaks were identified and mistaken for
the maximum resolved tension force values produced in the stroke cycle. This
minimum peak value was set equal to the average value of the full passive
drag tow. A boxplot of the peak values was then plotted in Matlab. Any peak
values that lay outside the upper and lower limits of the boxplot were used
to exclude the associated oscillation from the results. The first 5 m of the
trial were discounted in each case as to allow the athlete time to reach both
the required depth and an equilibrium, allowing the oscillation amplitude to
reduce significantly. Due to the relatively short distance over which to collect
data (15 m), data collected up until the finish of each tow has been used in
the averaging process, as opposed to discounting the end of the data set. The
remaining passive drag force data recorded by the 1080 Sprint was resolved
to its horizontal component, based on the angle of elevation above the water
as shown in Equation 19, before being averaged across the remaining passive
drag data of the trial. The angle of elevation varied across the tow, based on
the distance of the athlete from the equipment.

0 ≤ θ ≤ 90 THT = TT cos θT (19)
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THT refers to the horizontal component of the raw tension force in the rope
collected by 1080 Sprint, respectively (TT ), when the rope is at an angle.
The angle θT is the angle between the rope and the water of the 1080 Sprint.
Gonjo and Olstad used a similar equation in their prediction of active drag to
account for the impact of the angle of the rope caused by the height of their
equipment [32].

Of the 20 trials for each velocity, two trials at each velocity have been
discarded due to difficulty in processing results, leaving 18 full trials at
each velocity for post processing. Of the 18 remaining full trials, 9 have the
biological sex male and 9 have the biological sex female.

Statistical Analysis

Statistical analysis of measured towing forces was performed using the
R Statistical Programming Language [33] and some additional packages.
Specifically, data manipulation and exploratory analysis was performed using
the ‘tidyverse’ ecosystem [34, 35] and ‘GGally’ [36] packages, and analysis
of variance (ANOVA) was performed with the aid of the ‘rstatix’ pack-
age [37]. A mixed-design ANOVA (in which athlete sex was treated as a
between-subjects factor and velocity was treated as a within-subjects factor,
due to the repeated measurement of athletes across and within velocities) was
used to investigate the contribution of athlete’s velocity and sex to measured
drag force. Post-hoc contrasts were performed at each towing velocity, using
multiple pairwise comparisons with Bonferroni adjustment, to investigate if
there were any differences in mean drag force between males and females
at each velocity. Assumptions of normality, homogeneous variance, and
sphericity for the ANOVA were checked using common tests available in
the ‘rstatix’ package. Mixed-effects regression analysis was performed using
the ‘lme4’ package [38, 39] to investigate the ability of towing velocity and
athlete-specific surface area to fit the measured drag force and to estimate
drag coefficients for each sex. Mixed-effects regression differs from conven-
tional multiple regression in that it allows separate assessment of factors that
are hypothesised to directly affect mean response (fixed effects) and factors
that contribute only to variance (random effects). To account for repeated
measurements (due to each athlete being towed multiple times across differ-
ent velocities and within each velocity) and other potential athlete-specific
effects not captured by the anthropometric measurements, pseudonymised
athlete ID was treated as a random effect for the mixed-effects analysis
performed in this study. Visual inspection of residuals was used to check
conformity with model assumptions.
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Figure 5 Blender geometries of a) 2D cylinder b) 3D sphere.

Computational Procedure

Primitive Geometry Validation Cases

Firstly, validation was undertaken using geometric primitives. A 2D cylinder
and a 3D sphere (Figure 5) were designed within Blender [40], before
being imported into OpenFOAM [21]. Blender is an open source animation
software capable of both geometric design and animation.

The 2D and 3D case setup was similar, with the 2D case slightly more
involved. The first step was to create a Cartesian mesh using the blockMesh
utility within OpeFOAM. A base grid size of 60x40 cells was employed for
the 2D cases and a grid of 60x40x40 cells was used in the 3D cases. Following
blockMesh, another utility called snappyHexMesh was used to refine the
region around the geometry. Three mesh refinements were used for each of
the 2D and 3D cases, namely a coarse, medium, and fine mesh. Due to the
computational limits on the local supercomputer cluster, a fourth finer mesh
dramatically increased the case set-up time and has not been completed.

Following mesh refinement using snappyHexMesh, extrudeMesh and
autoPatch were used in the 2D case set-up to extrude the mesh from an
existing patch and divide the external faces into patches based on a feature
angle respectively. The feature angle, the angle above which a surface is not
extruded, was 89 degrees in this case. The 2D mesh set-up was complete at
this point. The number of cells in each of the 2D and 3D meshes are listed in
Table 2.

Upon completion of mesh generation, the boundary and initial conditions
were applied. Within the boundary folder of each case, an additional patch
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Table 2 Number of cells in the 2D and 3D meshes
Mesh Refinement Level 2D Cell Count 3D Cell Count
Coarse 17766 96000
Medium 66864 1388788
Fine 1033380 10510719

Table 3 Number of cores used in the 2D and 3D cases
Mesh Refinement Level 2D Number of cores 3D Number of cores
Coarse 8 8
Medium 8 24
Fine 16 128

was added allowing for the immersed boundary condition to be applied. The
new immersed boundary patch is treated like a wall with no internal flow
permitted through the geometry.

There were two case conditions set for each level of mesh refinement for
the 2D and 3D cases: a low Reynolds number of 20 and a high Reynolds
number of either 10000 or 100000, depending on the use of the k-ω model
or the k-ε model. In order to account for the change in Reynolds number,
the kinematic viscosity was set at 0.1 m2s−1 for a low Reynolds number
and either 2×10−4 m2s−1 or 2×10−5 m2s−1 for high Reynolds number
simulations. The inlet velocity was set at 1 ms−1 in all cases, with the
density remaining constant in the incompressible simulations. The cases were
decomposed, if required, to allow for parallelisation of the problem into the
core distribution summarized in Table 3.

The steady-state solver uses the SIMPLE algorithm in order to solve the
velocity and pressure terms of the Navier Stokes equations. All cases were
set to run for 10000 iterations, with the U, ε and k tolerances set as 1×10−6

and the P tolerance set as 1×10−8. The iteration number was reached before
tolerance in a number of cases and at this point the simulation was stopped.

Swimmer Passive Drag Cases

Figure 6 displays the geometry that was used during the passive drag sim-
ulations, purchased from codethislab [30]. The geometry in Figure 3 was
unusable, although the geometry is more reflective of a true streamline posi-
tion, due to a large number of intersection points being present, which could
result in simulation divergence if cells are tagged incorrectly. The geometry
was imported into Blender for reshaping and translation. Due to the number
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Figure 6 Streamline geometry for passive drag simulations.

of nodes in the geometry, there were limitations on the ability to reshape
and translate the geometry due to the time consuming nature of the node
manipulation. Other limitations were due to specific areas of the shoulders
beginning to move into the volume of the body, which would usually be
prevented by human skin. This could potentially cause errors in the CFD due
to an open geometry. As such, the approximate streamline position shown in
Figure 6 was the best approximation possible for this particular geometry. The
geometry was then imported into OpenFOAM (version Foam-Extend-5.0).

Following a similar set-up to the validation cases, blockMesh was run to
set-up the Cartesian mesh. A grid of 60x40x40 cells was used in the 3D pas-
sive drag cases. Following blockMesh, snappyHexMesh was used to refine
the region around the geometry. Two regions were refined around the body: an
inner region and an outer region, so as to maximise computational efficiency.
The inner region was refined to a significantly finer mesh than the outer
region, dictated by the refinement level selected. Three mesh refinements
were used as a mesh convergence study; a fourth finer mesh resulted in the
computational processes taking too long, likely due to hardware limitations.
The cell counts for each refinement level are visible in Table 4.

Upon completion of mesh generation, the boundary and initial condi-
tion were applied. Unlike the validation geometry cases, the passive drag
associated with changing, as opposed to constant, velocity was investigated.
As such, the inlet velocity of the inlet flow was changed for the fine mesh
simulations as follows according to the velocities listed in Table 5.
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Table 4 Number of cells in the swimmer geometry
Mesh Refinement Cell Count
Coarse 1097084
Medium 7442290
Fine 57573014

Table 5 Velocities used in CFD simulations
Simulation Number Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

Velocity (ms−1) 1.00 1.25 1.50 1.75 2.00

The velocity conditions imposed for each simulation are a direct reflection
of the velocity conditions imposed during the experimental passive drag
tow experiment, as discussed in the experimental procedure section. The
initial values for k, p, ε, and kinematic viscosity were unchanged throughout
the simulations. The cases were decomposed to allow for parallelisation of
the problem. The core distribution was the same as those used in the drag
coefficient validation cases for coarse, medium, and fine meshes, as shown in
Table 3.

After the cases are decomposed, a potential flow initializer is used. All
cases were set to run for 10000 iterations, with the U, ε and k tolerances set as
1×10−6 and the P tolerance set as 1×10−8. The final iteration was reached
before tolerance in a number of cases and at this point the simulation was
stopped.

Results and Discussion

Experimental Underwater

Mean passive drag was observed to increase as the towing velocity increased
(Figure 7 and Table 6a and b). The increase in passive drag force with increase
in towing velocity is expected, as predicted by the drag equation shown in
Equation (20) where D is the drag and S is the wetted surface area [41]:

D =
1

2
ρCdV

2S (20)

Analysis of variance indicated that only towing velocity significantly
affected variance in measured force (p < 0.001, Table 6b). Effect size analysis
using partial-eta-squared (η2p = proportion of variance explained by a given
factor after accounting for variance explained by other factors) demonstrated
that considerably higher proportion of variance was explained by velocity
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Figure 7 Box and whisker plots of passive drag measurements at different velocities for the
male and female athletes. Significant contrasts between male and female average drag forces
at each velocity are indicated by asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001).

Table 6(a) Summary table of ANOVA investigating contribution of sex and velocity, and
their interaction, to measured drag force. dfB = between group degrees of freedom, dfW
= within-group degrees of freedom, F = F-statistic (representing ratio of explained and
unexplained variance according to the ANOVA model being tested), ηp = partial eta-squared

Effect dfB dfW F p p<.05 η2
p

Sex 1 8 3.318 0.106 0.293
Velocity 4 32 712.885 < 0.001 *** 0.989
Sex:Velocity 4 32 1.605 0.197 0.167

Table 6(b) Average drag force for male vs female athletes at each towing velocity (expressed
as mean ± standard deviation)

Male Average Female Average
Velocity (ms−1) Passive Drag (N) Passive Drag (N) p (Female = Male)
1.00 21.0 ± 4.4 18.2 ± 1.6 0.096
1.25 28.2 ± 3.6 26.5 ± 1.5 0.212
1.50 39.5 ± 4.4 35.3 ± 2.7 0.027
1.75 53.1 ± 4.0 48.6 ± 3.4 0.021
2.00 72.4 ± 6.3 65.5 ± 5.1 0.021

(η2p = 0.989) compared with either sex or the interaction between sex and
velocity (η2p = 0.293 and 0.167 respectively).

The average passive drag was larger for males than females at each
towing velocity but differences were only significant at the higher velocities
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Table 7 Comparison of experimental results with existing literature

Male Average Gatta Gatta
Velocity (ms−1) Passive Drag (N) et al. (N) [42] et al. (N) [6]

1.00 21.0 25 ± 4 32.1

1.25 28.2 41 42.5

1.50 39.5 58 53

1.75 53.1 87 70

2.00 72.4 113 ± 15 93

(Figure 7), indicating sex is more likely to impact passive drag at higher
velocities. Standard deviation was largest at 2 ms−1 for both males and
females, with female standard deviation steadily increasing with velocity.
Standard deviation was more consistent for male athletes across the veloc-
ity ranges. An increase in variability with towing velocity is expected, as
shown by the female athletes, as the drag differences caused by the varying
size, shape, and body positions of athletes would be amplified as velocity
increases. This is assuming each athlete maintains approximately the same
body position across all towing velocities. For male athletes, the standard
deviation did not always increase with velocity. Results indicate that it is
possible the technique of the female athletes is more consistent than that of
the males, due to less variation at each velocity. It is also possible that there
is a larger range of male body types, which would result in an inflated value
of standard deviation at lower velocities, although this would need further
investigation.

Generally, the passive drag forces, shown in Table 6b, matched or were
slightly lower when compared to existing literature of passive drag tows
(Table 7).

Results in literature tend to vary from approx. 20–25 N at 1.00 ms−1 to
70–120 N at 2.00 ms−1 [7]. The testing protocol of Gatta et al and this paper
was very similar, with the main difference being the depth of the tow. Gatta et
al used a slightly different force measurement device, namely a dynamometer,
in order to record the forces. This slight decrease could be due to the athletes
being towed at a depth of 1 m, whereas athletes were typically towed at
surface level in other studies, giving rise to additional wave drag.

Other reasons for the differences between reported results and literature
could be due to differences in body shape and size. The reasons stated
for differences in results are speculative and would again need further
investigation.
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Figure 8 Measured force vs approximated surface area, stratified by velocity and sex. Equa-
tions describing lines of best fit (and associated coefficients of determination) are included for
each combination of stratification levels above each line. Shaded regions around lines are 95%
confidence intervals.

Prior to curve fitting according to the expected form of Equation (20)
(i.e. F ∝ V 2S), further stratification of the relationship between velocity
and towing force by approximated surface area and sex demonstrates that
measured force was moderately correlated with surface area at most velocities
(Figure 8). Athlete surface area was approximated based on a model proposed
by Reading and Freeman [43]:

S =
1

6
(mh)0.5 (21)

where m is the mass of the athlete in kilograms and h is the height of the
athlete in meters. While sensitivity to area (indicated by the slope of each
regression line) did not exhibit a pattern for male athletes (slopes oscillating
between 19–29), sensitivity to area tended to increase more noticeably with
velocity for female athletes (slopes monotonically increasing from 1.7–24).

Generally, these results show that passive drag at a given velocity tends
to increase as surface area increases, in agreement with the work of Cortesi
where drag increases with cross sectional area [44]. This is expected based
on the drag equation shown in Equation (20). Correlation of surface area with
passive drag force was mostly moderate at each velocity: R2 ranged between



Estimation of Passive Drag in Swimming via Experimental 275

Table 8 Summary table of mixed-effects regression analysis of drag force as a function of
sex, surface area, and velocity. In mixed-effects analysis the conditional R2 measures overall
proportion of variance explained by both fixed and random effects, while the marginal R2

measures proportion of variance explained by only fixed effects
Parameter Cd 95% CI p Fit
Sex (F): Area × Velocity2 0. 0191 (0.0184, 0.0199) <.001
Sex (M): Area × Velocity2 0.0183 (0.0177, 0.0189) <.001
R2 (conditional) 0.98
R2 (marginal) 0.96

0.38–0.65 across the different velocities, with the exception of the slowest
tow for female athletes (R2 = 0.03 at 1 ms−1).

In order to fully analyse results, a linear mixed-effects regression model
was fitted to the physics-based assumption represented by Equation (21)
earlier, i.e. assuming force is proportional to the square of velocity multiplied
by athlete surface area. The analysis was also stratified by athlete sex, to
enable estimation of separate drag coefficients for female and male athletes
(Table 8). For the mixed-effects analysis, sex, surface area, and velocity were
treated as fixed affects (i.e. assumed to affect the level of response) while
participant ID was treated as a random effect (assumed to affect variability of
the response, e.g. due to unmeasured subject-specific factors that accumulate
in measurements during repeated testing of individuals across velocities and
at each velocity).

A higher drag coefficient was estimated for female athletes (Cd =
0.0198) relative to male athletes (Cd = 0.0183). Interestingly, it appears
the drag coefficient for female athletes is higher than males, implying that for
the same surface area, females will exhibit higher passive drag at particular
velocity values. This could be due to body composition or technique but
would need further investigation.

The mixed-effects regression analysis demonstrated significant corre-
lation (p < 0.001) for both female and male athletes according to the
assumption that drag force is a function of athlete surface area and the square
of velocity (Table 8). The fixed effects (surface area, velocity, and sex),
as represented by R2 (marginal), accounted for 96% of measured variance.
Including the random effect due to unmeasured athlete-specific factors, as
represented by R2 (conditional), accounted for only a further 2% of measured
variance. The relatively small contribution to variance from the random
effects term implies that in future a conventional regression model using only
the fixed effects may be sufficient to explain many of the results.
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Further Experimental Results: Surface vs Underwater Towing

Typically, passive drag tow tests are completed on the water surface. To help
provide context to the current underwater results, a previous set of data
collected by the authors (in which a limited number of surface tow tests were
completed, based on the maximum swimming velocity of the athletes) were
also analysed. A total of 14 passive drag tows were completed, with seven
male athletes completing one towing velocity twice, corresponding to the
maximum velocity recorded for said athlete during semi-tethered swimming.
The semi-tethered equipment set up was almost identical, with the only major
difference being that towing was completed on the surface and not at depth.
The results of the surface trial are shown in Figure 9, in combination with
the underwater results collected in the main experiment discussed in this
paper. A key difference between the previous and current study is the athlete-
specific specification of velocity in the surface study, which prevents direct
contrasts at the controlled velocities used in the underwater study, which is
evident from the lack of alignment between test velocities between the lower
underwater tests and the upper surface tests in Figure 9.

Ordinary least squares fitting of a quadratic velocity curve to the force
data qualitatively demonstrates the expected relationship between force and
velocity for both surface and underwater towing (Figure 10).

Figure 9 Scatter plot showing the relationship between passive drag and surface area,
stratified by towing depth and towing velocity.
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Figure 10 Plot of surface against underwater passive drag at different velocities with
quadratic line of best fit applied.

Table 9 Summary table of mixed effects regression analysis of drag force as a function chest
cross-sectional area and velocity; Type(Surf) implies surface tests and Type(UW) implies
underwater tests

Parameter Cd 95% CI p Fit
Type (Surf): Area × Velocity2 0. 0184 (0.0179, 0.0200) <.001
Type (UW): Area × Velocity2 0. 0182 (0.0179, 0.0200) <.001
R2 (conditional) 0.97
R2 (marginal) 0.94

From Figures 9 and 10, there is no clear difference in passive drag results
between being towed underwater and on the surface. In order to further
investigate and compare results, a more thorough surface tow test would have
to be carried out, following the same protocol as used for the underwater
towing tests. Similar to the underwater study, a mixed-effects regression
analysis was completed using surface area and velocity as fixed effects and
participant ID as the random effect (Table 9). Athlete sex was dropped from
the analysis to allow test type (surface vs underwater) to be used to stratify
estimates of drag coefficient for each test type.

Again, results show the significant correlation (p < 0.001) of passive
drag with the surface area and velocity of the athlete being towed. Estimated
values for the drag coefficient for each test type were very similar (0.0184
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for surface tests vs 0.0182 for underwater tests), indicating that test type
does not seem to influence the average values of measured drag force. The
large marginal R2 value again indicates that subject-specific factors other
than athlete surface area, e.g. potential variations in technique, contribute
very little to total variance compared to the fixed effects of surface area and
velocity.

CFD Simulations

Primitive geometry validation cases
Beginning with the 2D cases, results for both turbulent models for low
Reynolds 2D flows compared well to 2D cylinder experimental data [45]
(Table 10). The results for k-ω simulations are more accurate, likely due
to improved refinement levels. Results are also comparable with 2D CFD
simulation results, with the results for the current study marginally lower [46].

Predictions begin to differ when investigating the high Reynolds num-
ber case. The k-ε turbulence model underpredicted the drag coefficient
and became less accurate with increasing mesh refinement. In contrast, the
k-ω predictions were considerably closer to existing experimental [45] and
approximate simulation data [47]. The reason for improved predictions when
using the k-ω model compared to the k-ε model could be due to the superior
near-wall modelling properties of the k-ω model, although this would need
further investigation.

For the 3D case only the k-ε model predictions are included (Table 11)
as the increased computational requirements to create an appropriate mesh
for the k-ω model prevented simulations from being set up for the latter
model. For the low Reynolds number cases, the prediction error decreased
with increased mesh refinement for the k-ε model, matching experimental
data reasonably [48]. The drag coefficient for the high Reynolds number case
fluctuated with increasing mesh refinement, with largest error predicted for
the finest mesh, when compared to experimental literature [48]. Results for

Table 10 Drag coefficients of 2D cylinder at different levels of mesh refinement
2D Cd Cd Cd Cd Cd Cd

Cylinder (low Re) (low Re) Existing Data (high Re) (high Re) Existing Data
Refinement (k-ε) (k-ω) (low Re) [45] (k-ε) (k-ω) (high Re) [45]
Coarse 2.27 2.42 2.40 0.83 0.91 1.05 – 1.20
Medium 2.21 2.39 2.40 0.43 0.89 1.05 – 1.20
Fine 2.15 2.36 2.40 0.18 0.98 1.05 – 1.20
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Table 11 Drag coefficients of 3D sphere at different levels of mesh refinement
3D Sphere Cd Cd Lit Cd Lit Cd
Refinement (low Re) (high Re) Low Re [48] High Re [48]
Coarse 1.64 0.45 2.50 0.50
Medium 2.83 0.51 2.50 0.50
Fine 2.80 0.20 2.50 0.50

Table 12 Total Drag force of streamline geometry at different levels of mesh refinement
3D Passive Drag Pressure Drag (N) Viscous Drag (N) Total Drag (N)
Coarse 151.2 10.6 161.8
Medium 114.6 13.8 128.4
Fine 99.3 17.0 116.3

Figure 11 Convergence of passive drag force at different mesh refinement levels.

the coarse and medium cases were reasonable. These oscillations may be due
to solving an unsteady flow problem with a steady flow solver, although this
would need further investigation.

Passive drag simulation of streamlined swimmer
The results of the mesh convergence study for the passive drag simulations
indicate convergence had not been achieved, but as previously stated, compu-
tational limitations hindered further investigation (Table 12 and Figure 11).

In order to compare the simulation results with the experimental results,
cases were run for the finest mesh for each of the velocities used in the exper-
imental study (Table 13 and Figure 12). The trends of the simulations are
encouraging, with the total drag force, equivalent to passive drag, increasing
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Table 13 Passive drag value on streamline geometry for changing velocity. Experimental
drag refers to averages for male athletes ± standard deviations

Velocity Pressure Viscous Total Experimental
(ms−1) Drag (N) Drag (N) Drag (N) Drag (N)
1.00 26.3 4.9 31.2 21.0 ± 4.3
1.25 40.2 7.3 47.5 28.2 ± 2.8
1.50 56.9 10.1 67.0 39.5 ± 4.3
1.75 76.7 13.3 90.0 53.1 ± 3.8
2.00 99.3 17.0 116.3 72.4 ± 6.7

Figure 12 Convergence of passive drag force at different velocity values.

with velocity. The results also show rate of growth of passive drag increases
as the velocity increases (Figure 13), as expected from Equation (20) since
the drag should scale with the square of velocity.

When compared to the experimental results and existing literature, the
CFD simulations over-predict drag for a streamline position. Typical results
from literature range from approx. 19.7 N at 1.00 ms−1 to approx. 70–90 N
at 2.00 ms−1 [7], similar to the experimental results of this study (Table 6
and Table 12). A breakdown of existing interpolated results are included in
Table 14.

The values tend to vary significantly from study to study, likely due to
the geometry used and set-up conditions. The surface area of the model used
in this study was approx. 2.2 m2, compared to a surface area of 1.859 m2

by Bixler et al. [8]. The frontal surface area of the geometry in this paper is
unknown for comparison, but it is expected to be larger than that of Bixler.
Due to this larger surface area, the passive drag results should be larger, as
displayed by the results. With respect to geometry, the mesh used to represent
the swimmer in the CFD simulations had arms that were more separated
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Figure 13 Increase of passive drag values with increase of velocity.

Table 14 Comparison of computational results with existing literature
Velocity Male Average Zaidi Bixler
(ms−1) Passive Drag (N) et al. (N) [49] et al. (N) [8]
1.00 31.2 – –
1.25 47.5 – –
1.50 67.0 30 31.58
1.75 90.0 45 42.74
2.00 116.3 55 55.57

Table 15 Comparison of passive drag with existing literature for geometry with open arms
Velocity (ms−1) Zhan Passive Drag (N) [50] Passive Drag (Current Analysis) (N)
1.00 30.0 31.2
1.25 43.0 47.5
1.50 65.0 67.0
1.75 85.0 90.0
2.00 115.0 116.3

than was evident in the experimental study and some of the studies reviewed
in the literature. When compared to a study by Zahn et al [50], where the
athlete is in a position more similar to the geometry used in this study, i.e.
with arms separated, the results match better (Table 15). Although results do
match well, Zahn conducted simulations at the surface of the water, meaning
the results could be slightly inflated and less comparable with results in the
current analysis.
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Table 16 Comparison of passive drag results when comparing standard geometry with
scaled geometry

Standard Geometry Mesh Scaled Up Geometry Mesh
Cell Count 1097084 5553480
Total Passive Drag (N) 161.8 285.2

Zahn et al. also used a body fitted mesh in contrast to the immersed
boundary mesh used above, which could also be responsible for the slight
differences. Other differences could include the quality of the actual geometry
used in simulations, as the geometry used by Zahn et al. appears to be more
realistic when compared to the mesh used in this study [50].

The drag coefficient of the streamlined swimmer in the finest mesh case
was approximately 0.12, an order of magnitude higher than the reported
experimental drag coefficients found in the tow test. This implies that the dif-
ference in drag between simulated and experimental results could be caused
by differences in drag coefficients of the CFD geometry when compared to
human athletes, as the velocities and density are all approximately consistent
when comparing experiments and simulations. It is also unlikely the wetted
surface areas of the experimental cases, literature cases and computational
analysis are the same, especially considering the limitations of reshaping the
geometry. This could cause further error in the prediction of the passive drag
force acting on a swimmer in a streamline position.

In order to display the sensitivity of passive drag to a change in surface
area, the surface area of the swimming geometry was approximately doubled,
from 2.20 m2 to 4.44 m2, using the ‘blender’ software. The change in the
wetted surface area, which will be the main surface area that impacts drag, is
unknown but expected to have increased substantially. Included in Table 16
are results for a coarse mesh, with the minimum cell size equal to the
minimum cell size of the standard geometry coarse mesh detailed above, but
a slightly larger refined domain, to account for the increased geometry size.
This comparison case has been run with an inlet velocity of 2 ms−1, with
all other initial conditions and numerical schemes remaining the same as the
unscaled coarse case.

Results for passive drag for the scaled geometry were larger when com-
pared to the standard geometry, as expected due to the surface area term
in the drag equation. Results do show that the utilised immersed boundary
surface method is able to cope with different geometry characteristics, which
is promising for future work in the field.
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The relative consistency of a streamline position between athletes makes
this a good choice for validating computational simulations. However, this
consistency makes it difficult to suggest feedback in order to reduce one’s
passive drag. Nevertheless, one suggestion that could be made is to encourage
coaches to suggest athletes remain in a ‘tight’ streamline position, as shown
in Figure 3, and avoid a ‘loose’ streamline position, similar to the position
shown in the CFD geometry in Figure 6.

The comparison of passive drag within this study is a first step in future
drag predictions in swimming, with the long-term aim being to predict the
active drag profile of an athlete via CFD (using the immersed boundary sur-
face method proposed in this study) and experimental means (as completed
by Haskins et al. [51]). Active drag is defined as the change in drag across
a stroke cycle when an athlete is actively swimming through the water, for
example during Freestyle swim. Provided it is possible to alter the kinematics
of a swimming geometry quickly for use in CFD, it would potentially be
possible to use CFD simulations to suggest technical changes that could allow
the reduction of active drag for an athlete. The limitations of performing
this task would need further investigation, although the work completed
in the current study demonstrates this would be a natural next step in the
research.

There are several notable novel aspects of this work. This is the first study,
to the authors’ knowledge, that uses a finite volume with immersed boundary
surface method to predict passive drag in swimming, thus demonstrating a
novel approach to this challenging problem. This work is also one of the
few studies that investigates the passive drag of an athlete using more than
one methodology, i.e. towing and CFD, allowing for immediate validation
of the method. The use of the 1080 Sprint as a method to measure passive
drag has also been completed for a first time, based on the current published
literature, although other research groups are currently using this method,
namely Ulster University. The measurement of passive drag via the towing
method whilst completely underwater is also uncommon in literature, with
this research adding to the field. Comparing these results to surface tows, as
outlined in the results section, is also uncommon within the existing literature
in the field.

Conclusions

There are a number of conclusions that can be drawn from the work com-
pleted in this paper. Firstly, the experimental results showed and confirmed
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the important influence of velocity on the passive drag of an athlete.
The results also confirmed, in line with literature, that biological sex and
athlete surface area also have an important role to play in the passive drag
produced when in a streamlined position.

Secondly, although there are some over-predictions when using the
immersed boundary method to find the drag coefficients of primitive geome-
tries, drag coefficient results are reasonable, especially in 3D and in 2D when
using the k-Ω SST instead of the k-ε model. Results are likely to improve in
3D with the implementation of the k-Ω SST model and by using a smoother
3D sphere. The immersed boundary method estimated reasonable results for
drag produced by a swimmer in streamline, especially when results were
compared to a similar positioned geometry in literature. The results also
indicate that the wetted surface area and drag coefficient could be responsible
for the differences in computational solutions when compared with data
found experimentally and in literature.

Overall, using the immersed boundary method to predict drag coefficients
of primitive shapes and the passive drag of an athlete was promising, although
somewhat over-predictive. CFD results do show the general trend of data, as
found experimentally, meaning that feedback can still be suggested based
on results with the disclaimer that collected CFD results are likely to be
over-predictive. The results indicate that the immersed boundary method
could be useful in removing body fitted meshing issues, whilst still providing
reasonably accurate, if not slightly over predictive, results. This has the
potential for further application in moving body problems.
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